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TB remains a very significant global health burden. There is an urgent need for better tools for TB control, which
include an effective vaccine. Bacillus Calmette–Guérin (BCG), the currently licensed vaccine, confers highly vari-
able protection against pulmonary TB, the main source of TB transmission. Replacing BCG completely or boosting
BCG with another vaccine are the two current strategies for TB vaccine development. Delivering a vaccine by aero-
sol represents a way to match the route of vaccination to the route of infection. This route of immunisation offers
not only the scientific advantage of delivering the vaccine directly to the respiratory mucosa, but also practical
and logistical advantages. This review summarises the state of current TB vaccine candidates in the pipeline,
reviews current progress in aerosol administration of vaccines in general and evaluates the potential for TB
vaccine candidates to be administered by the aerosol route.
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Tuberculosis: a global health problem
TB remains a significant global health problem.1 Worldwide, in
2012, there were 8.6 million new cases and an estimated 1.3
million deaths, including 320 000 deaths among people
infected with HIV.1–3 In addition, an estimated one third of the
world’s population is thought to be latently infected with
Mycobacterium tuberculosis (M.tb), which can reactivate, leading
to TB disease. This latently infected population represents a large
potential reservoir of TB that is often undiagnosed. There is a 10%
lifetime risk of reactivation of latent infection, which increases to
a 10% annual risk in people who are co-infected with HIV.4 This
increased risk is only partially abrogated by anti-retroviral ther-
apy (ART). HIV and TB form a co-epidemic and one of the top pri-
orities as defined by the WHO Global Tuberculosis Report 2013 is
to increase ART coverage for HIV-positive, M.tb-infected patients,
to reduce the risks of reactivation. The scale of the TB disease
burden is further compounded by diagnostic challenges, and
the emergence of multi, extensively and now totally drug resist-
ant strains of M.tb.1,2,5,6 Less than a quarter of those estimated to
have MDR-TB were diagnosed in in 2012.1 The rate of decline of
TB incidence worldwide remains slow at approximately 2% per
year.1 Among the 22 high TB-burden countries, half of them
are not on track to reduce incidence, prevalence and mortality
in line with targets. This is in part due to resource constraints,
ongoing conflicts and the HIV epidemic.1 All efforts to control TB
are aimed at improved diagnosis, treatment and vaccination.

TB vaccine strategies
The only licensed vaccine against TB is bacille Calmette-Guérin
(BCG), which was developed after 13 years of continuous in vitro
passage of Mycobacterium bovis, the pathogen that causes TB in
cattle.7 BCG has been included in the Expanded Programme on
Immunisation since 1974. Recent guidelines specify that BCG is
not recommended in HIV-infected children or HIV-exposed
infants until the HIV status is known, due to the risk of dissemi-
nated BCG disease.8 When administered at birth, BCG is effective
in protecting against disseminated paediatric TB.1,9,10 However,
the protection conferred by BCG against pulmonary TB in adults
is highly variable.11,12 Revaccination with BCG provides no sub-
stantial additional protection and might be associated with an
increased frequency of adverse events.13,14

A safer and more effective vaccine that will provide robust pro-
tection against pulmonary TB is urgently needed. A strong cell-
mediated immune response is essential for protective immunity
against TB.15–18 Class-II restricted CD4+ T cells, together with
the antigen specific release of interferon-gamma (IFNg) and
tumour necrosis factor-alpha (TNFa) are necessary for protec-
tion19–24 and loss of CD4+ T cells increases the likelihood of
succumbing to TB.25 IL-2 is important for central memory T cell
responses26 and Class I restricted CD8+ T cells are also necessary
for optimal protection.27,28 However, none of these immuno-
logical parameters alone correlate well with protection. As there
is currently no correlate of protection pre-clinical animal models
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and in vitro mycobacterial growth inhibition assays have been
used as surrogate indicators to guide vaccine selection.29

Ultimately, expensive large efficacy trials are required to test
vaccine efficacy and advance our understanding about correlates
of risk and protection.30

In the last decade several candidate vaccines designed to
improve immunity against TB have been evaluated in clinical trials.29

There are two main approaches. The first is to develop novel whole
mycobacterial vaccines that are designed to replace BCG. Two BCG
replacement vaccines currently being evaluated in the clinic are
MTBVAC and rBCG VPM1002.31–33 MTBVAC, an attenuated strain of
M.tb that has deletions in the genes encoding phoP and fadD26
(both genes involved in M.tb virulence) is currently being evaluated
in a phase I trial.31 VPM 1002 is a live recombinant BCG strain that
expresses listeriolysin and has had the urease gene deleted.
Listeriolysin perforates the phagosomal membrane and the urease
deletion ensures optimum pH for listeriolysin activity.32 The rationale
for this design is to enhance release of BCG-derived antigens into the
cytosol and enhance MHC I presentation of these antigens.32 This
BCG is more immunogenic and safer than the wild type BCG in
mice.32 Phase I trials in Germany and South Africa have recently
been completed and a Phase IIa trial is underway.33

Several prophylactic subunit vaccines have been designed as
booster vaccines in BCG-vaccinated individuals or as an alterna-
tive vaccine in those for whom live vaccines are contraindicated.
Heterologous prime-boost immunisation regimens, where two
different vaccines expressing common antigens are given weeks
apart, are an effective way to induce strong cellular immune
responses.34–38 BCG would be the logical priming vaccine in such
a prime-boost regimen, to retain the protective effects in child-
hood. The main categories of subunit vaccines are adjuvanted
recombinant proteins or recombinant viral vectors, both inducing
immune responses to one or a few selected mycobacterial anti-
gens e.g., antigen 85A/B, ESAT6 and TB10.4. There is some interest
in so-called latency antigens such as Rv2660c, particularly for
post-exposure vaccines administered to latently infected people
to prevent the risk of reactivation. Protein and adjuvant vaccines
that have completed phase I trials include Hybrid 1(H1), a fusion
protein consisting of antigen 85B fused to ESAT 6, H56, consisting
of antigen 85B, ESAT6 and Rv2660c, and HyVaC 4, consisting of
Ag85B and TB10.4. All these fusion proteins are being evaluated
in clinical trials with IC31, a novel adjuvant that is an activator
of Toll-like receptor 9.39–41 M72, another fusion protein consisting
of 32 kDa and 39 kDa proteins, used with the GSK adjuvant
AS01, has been evaluated in several phase I/IIa trials and has re-
cently entered phase IIb efficacy testing (ClinicalTrials.gov
Identifier: NCT01755598) with expected completion in
November 2018.42,43 IDRI′s vaccine candidate, ID93+GLA-SE is
composed of a recombinant fusion protein of four M.tb antigens,
Rv2608, Rv3619, Rv3620 and Rv1813, combined with an oil in
water adjuvant and has entered phase I clinical trials.44

Viral vector vaccines are based on replication deficient virus
variants expressing various immunodominant TB antigens. Viral
vectors are a very potent and safe way to induce and boost cellu-
lar and humoral immunity. They are widely investigated for mal-
aria, TB, HIV and ebola vaccines and to date have appeared to be
well tolerated and immunogenic in all human studies. Examples
include MVA85A, a Modified Vaccinia virus Ankara expressing anti-
gen 85A; AdHu5Ag85A a recombinant human type 5 adenovirus
expressing antigen 85A; and AERAS-402, an Adenovirus Hu35

expressing Ag85A, Ag85B and TB10.4.45–47 MVA85A administered
intradermally boosts pre-existing BCG-induced immune
responses in adults. In a recent efficacy trial in BCG-vaccinated
infants, vaccine induced immune responses were much weaker
and no significant improvement in efficacy above BCG alone
was seen.30 AdHu5Ag85A has been shown to be effective at pro-
tecting against M.tb challenge when administered intranasally in
several animal models as a stand-alone vaccine or as a boost to a
BCG prime.48,49 A phase I study of intramuscular immunisation
with AdHu5Ag85A has recently been completed showing the
vaccine to be safe, well tolerated and immunogenic in BCG-
naı̈ve and BCG-vaccinated healthy volunteers, with more potent
immunogenicity in the latter group.50

A limitation of all virally-vectored vaccines is pre-existing or ‘de
novo’ anti-vector immunity that potentially precludes homolo-
gous boosting.45,51,52 However, a recent phase I study with
AdHu5Ag85A has demonstrated T cell responses despite pre-
existing anti-adenovirus immunity.50 Therefore, the functional
significance of anti-vector immunity is uncertain.

Concerns about potential immunopathology of TB vaccines and
the so called Koch phenomenon, especially in people infected with
TB, had been a concern in the early stages of vaccine development.
However, serial testing in people with increasing mycobacterial bur-
den over the last decade has demonstrated no immunopathology
with MVA85A or any other candidate TB vaccine tested to date.53

Another concern is the use of TB vaccines in HIV-infected indi-
viduals in whom susceptibility to TB is increased. Live vaccines
such as MTBVAC and VPM1002 will pose a potential safety issue
in HIV-infected individuals and BCG is contraindicated in this
population. However, virally vectored vaccines such as MVA85A
have been tested and demonstrated to be safe in HIV-infected
individuals.54

The vaccine candidates being developed vary in the particular
delivery system and antigens but to date have almost entirely
been administered systemically. There is an increasing focus on
a mucosal route of vaccination, in order to match the route of
vaccination to route of natural infection.

Rationale for aerosol vaccination for TB
The primary route of M.tb infection is via inhalation of aerosolised
droplets containing M.tb resulting in a primary infection focus in
the lung. Delivering a TB vaccine by aerosol directly to the respira-
tory mucosa might offer a physiological and immunological
advantage. This route of vaccination also offers potential logistic
advantages as it does not require highly trained personnel, thus
facilitating deployment; and also avoids risks associated with
use and disposal of needles and syringes.

Mucosal immunisation via the intranasal route has also been
considered. However, this route of immunisation has raised safety
concerns after the epidemiological association of facial nerve par-
alysis (Bell’s palsy) following administration of inactivated influ-
enza virosome vaccine (NasalFlu) containing an Escherichia coli
heat labile toxin adjuvant (ELT), leading to withdrawal of the
vaccine.55 In addition, two transient cases of facial nerve palsy
were reported following administration of nasal subunit vaccines
against HIV and TB in two concurrent phase I clinical trials.
In these trials, both protein vaccines were administered with the
same ELT adjuvant.56
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The exact cause and pathogenesis of the facial nerve palsy in
these cases remain unclear. In the case of NasalFlu, ‘the study
suggests a strong association between the inactivated intranasal
influenza’ and for the other two cases using the ELT adjuvant
intranasally, ‘the individual components for paralysis were not
identified’.55,56

Aerosol vaccination for measles and influenza
There are ongoing efforts to evaluate mucosal routes of vaccin-
ation for other respiratory pathogens. Pulmonary delivery of mea-
sles vaccine has been explored as an option to boost immunity
and interrupt transmission by improving herd immunity.57,58

Aerosol boosting of measles vaccination was shown to be effect-
ive and acceptable;59 and evoked a stronger and more durable
antibody response than injected measles vaccine.60 The device
used to generate the aerosolised vaccine was a commercially
available nebuliser that generates particles less than 5 mm diam-
eter using an electrically powered compressor (IPI Medical
Products, Division of Inhalation Plastics, Chicago, IL, USA). The cur-
rently available injectable vaccine is usually administered sub-
cutaneously and coverage reported as 84% in 2013.61 Aerosol
delivery of the vaccine could further improve coverage due to
ease of administration.

In all published comparative clinical trials, aerosolised measles
vaccination was equally or more immunogenic than the subcuta-
neous vaccination in children aged 10 months or older.57 Also,
administering a booster dose by the aerosol route yields a stron-
ger and more durable antibody titre than when it is given by the
subcutaneous route.60,62,63 Mass campaigns in South African and
Mexican schoolchildren have also demonstrated that the aerosol
route of vaccine delivery is not only safe and immunogenic, but
also an acceptable and feasible method.60,64 Pulmonary delivery
of measles vaccine will require re-licensure. Post licensure field
trials will be required to demonstrate efficacy of this route.

For seasonal influenza, an intranasally administered live atte-
nuated influenza vaccine (LAIV) has recently been licensed in add-
ition to the injectable trivalent vaccine (TIV). LAIV demonstrated
higher efficacy in children than TIV.65 LAIV was also associated
with a more sustained duration of protection than TIV.66

Mucosal immunisation with TB vaccines:
preclinical data
BCG administered to mice, guinea pigs and macaques by intrana-
sal or aerosol delivery confers greater protection than parenteral
BCG vaccination against M.tb challenge.67–71

Two candidate TB vaccines, both recombinant viral vectors,
have demonstrated significant efficacy against challenge in pre-
clinical animal models when administered direct to the respira-
tory mucosa. AdHu5Ag85A, delivered intranasally, conferred
significant protection against aerosol M.tb challenge when admi-
nistered either alone or as a mucosal boost in BCG-immunised
animals.48 49,72 Single intranasal vaccination with AdHu5Ag85A
also offered superior protection to cutaneous BCG vaccination
alone.49 No enhancement in protection above BCG alone was
seen when this vaccine was administered intramuscularly in the
murine model.49 In cattle, endobronchial boosting of BCG
vaccinated animals with AdAg85A induced local mucosal and

systemic responses that were similar in magnitude to intradermal
boosting.73 Mucosal delivery of AdAg85A has not yet been
evaluated in humans. MVA85A, administered intranasally to
BCG-vaccinated mice, also confers significant protection against
aerosol M.tb challenge.74 When administered by aerosol nebuliser
to BCG-vaccinated rhesus macaques, MVA85A induces potent
mucosal and systemic immunity.75 Interestingly, in this non-
human primate study, the strongest responses appeared to be
in the compartment to which the vaccine had been administered,
although the differences were not statistically significant.
Anti-MVA IgG antibodies were detected in the serum of the
animals vaccinated by the intradermal route, but not in those
vaccinated by the aerosol route.

Recently, AERAS-402 has been delivered by aerosol to BCG-
vaccinated and naı̈ve rhesus macaques where it showed robust
cellular immune response in the lungs, but failed to confer add-
itional protection against M.tb challenge.76 The intranasal delivery
of inert bacterial spores coated with TB antigens, MPT64 and a
hybrid protein consisting of alpha-crystalline (Acr) and antigen
85B, has been found to be immunogenic and conferred significant
protection against intranasal M.tb challenge in mice.77

This body of preclinical data suggests that the aerosol route of
delivery may be a promising route of immunisation for recombin-
ant viral vectors, and potentially for TB vaccines in general.

Aerosol vaccination for TB in humans
There is an early report of BCG being delivered by aerosol in a clin-
ical study. Rosenthal et al. reported aerosol nebulisation of BCG in
guinea pigs, school children and medical students.78 Rates of
tuberculin skin test conversion were used as an outcome measure
in this study. Although Rosenthal et al. described technical limita-
tions, in this study, BCG administered by aerosol was well toler-
ated and feasible in the populations studied. There are some
safety and regulatory concerns regarding the administration of
BCG, a live replicating mycobacterium, by aerosol in human sub-
jects, and BCG by any route remains contraindicated in immuno-
suppressed individuals.

The first clinical trial to administer a candidate TB vaccine dir-
ect to the respiratory mucosa has recently been reported.79

Twenty-four BCG-vaccinated healthy UK adults were randomised
to receive MVA85A by aerosol or intradermal administration. The
aerosol route of delivery was chosen over the intranasal route in
this study because the primary aim was to deliver small particles
to the distal airways. MVA85A was administered by aerosol in this
trial using a mesh nebuliser MicroAIR NE-U22 (Omron Healthcare
UK, Ltd., Milton Keynes, UK). This battery operated device was
designed for the delivery of bronchodilators and antibiotics and
has improved efficiency of drug deposition into the lungs com-
pared with jet nebulisers.80 This nebuliser uses ultrasound to
push liquid through a fine metal mesh with 6000 tapered holes
generating an aerosol mist with consistently sized particles of
about 3 mm in diameter.

Safety was comparable between the two groups, and the aero-
sol route of immunisation was well tolerated. In bronchoalveolar
lavage fluid (BALF) samples taken 7 days after immunisation,
antigen specific CD4+ T cells were detectable in both groups of
subjects, but were significantly stronger in those subjects immu-
nised by aerosol.79 Systemic antigen specific CD4+ T cell
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responses were comparable between the two groups. Antigen
85A-specific CD8+ T cell responses were higher in the BALF than
in the blood after both routes of immunisation. In the blood,
Ag85A specific CD8+ T cell responses were significantly higher
after aerosol administration than after intradermal administra-
tion.79 Serum antibodies to MVA were detected after intradermal
immunisation but not after aerosol administration of the
vaccine.79

A second study with aerosolised MVA85A is underway where
we evaluate the potential utility of boosting with MVA85A by
heterologous routes (NCT01954563).

Future considerations
The aerosol route of delivery offers practical advantages and
potential cost benefits, therefore field trials to evaluate new TB
vaccines using aerosol administration is important.

A reliable and robust animal model that reflects the human
response to vaccination is urgently required. In the murine
model of mucosal vaccination, vaccine responses are compart-
mentalised. In the non-human primate model, responses appear
less compartmentalised, but nevertheless magnitude of response
seems to be loyal to route, with strongest responses in the sys-
temic circulation after systemic delivery and strongest responses
in the BALF in animals immunised by aerosol. In humans, the
responses are somewhat different, with stronger responses in
the BALF after aerosol administration, equivalently in whole
blood after aerosol administration. Importantly, no reduction in
systemic responses is seen after aerosol immunisation. Given
the limitations in the animal models and the differences in anat-
omy between the various models, there is merit in evaluating this
route of immunisation in humans, in parallel with the animal
models. The best evaluation would be a human safety and
immunogenicity experiment side-by-side with a parallel NHP chal-
lenge experiment.

To date, the focus in TB vaccine development has been on
prophylactic vaccine, but there is now increased interest in thera-
peutic vaccines for those with TB disease and post-exposure
vaccination for individuals latently infected with M.tb, given
the significant global burden of this population, especially in
endemic countries. One of the benefits of a postexposure vaccine
would be to sterilise dormant M.tb bacteria and thereby prevent
reactivation and potentially reinfection. The development of a
post-exposure vaccine has in the past been overshadowed by
concerns in the field about the so called Koch phenomenon, a
mycobacteria-specific immunopathology seen when culture
filtrate tuberculosis protein was given to patients with TB.81

In early clinical vaccine development, vaccines were tested in ser-
ial trials in individuals with increasing mycobacterial burden.
MVA85A administered by intradermal injection was safely admi-
nistered systemically to individuals latently infected with M.tb.53

Equal care will need to be taken to ensure the safety of the aerosol
route of immunisation in subjects with latent M.tb infection, prior
to this route of immunisation being evaluated in TB high-burden
countries.

To make the aerosol route of vaccination practical in the field,
further work is needed on vaccine formulation. Powdered BCG
vaccine for inhalation has been generated by spray drying82 and
aerosol delivery of BCG nanomicroparticles has been shown to

protect guinea pigs from M.tb challenge better than paren-
teral BCG.69

In parallel with efforts to evaluate the aerosol route of vaccine
delivery, new methods of immunomonitoring for aerosol vaccin-
ation need to be explored. Bronchoscopy and bronchoalveolar lav-
age are likely to represent a robust and representative sample of
mucosal immunity, but remain an invasive method. One method
that could be explored for immunomonitoring of respiratory
mucosal immunity is induced sputum. Induced sputum has
been used to assess airway inflammation in asthma, cystic fibro-
sis and healthy volunteers and also as an immunoassay in
patients with tuberculosis.83–87 Furthermore, markers in the
blood that correlate with established immunity in the respiratory
mucosa, and study of mucosal homing receptors would be a use-
ful non-invasive tool for immunosurveillance, especially in those
considered high risk.

The first study of a viral vector vaccine administered by aerosol
to humans has been successfully completed. Further studies look-
ing at selection of aerosol TB vaccine candidates in representative
animal models, studying aerosol delivery of other TB vaccine can-
didates, developing the aerosol route for use in the field evalu-
ation in TB high-burden countries and identifying robust
immunomonitoring techniques will all facilitate the evaluation
and development of the aerosol delivery of TB vaccines.
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