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Abstract. SPARC (osteonectin/BM40) is a secreted 
protein that modifies the interaction of ceils with ex- 
tracellular matrix (ECM). When we added SPARC to 
cultured rabbit synovial fibroblasts and analyzed the 
secreted proteins, we observed an increase in the ex- 
pression of three metalloproteinases-collagenase, 
stromelysin, and the 92-kD gelatinase-that together 
can degrade both interstitial and basement membrane 
matrices. We further characterized the regulation of 
one of these metalloproteinases, collagenase, and 
showed that both collagenase mRNA and protein are 
upregulated in fibroblasts treated with SPARC. Experi- 
ments with synthetic SPARC peptides indicated that a 
region in the neutral or-helical domain III of the 
SPARC molecule, which previously had no described 
function, was involved in the regulation of collagenase 
expression by SPARC. A sequence in the carboxyl- 
terminal CaE+-binding domain IV exhibited similar ac- 
tivity, but to a lesser extent. SPARC induced col- 
lagenase expression in cells plated on collagen types I, 
II, III, and V, and on vitronectin, but not on collagen 

type IV. SPARC also increased collagenase expression 
in fibroblasts plated on ECM produced by smooth 
muscle cells, but not in fibroblasts plated on a base- 
ment membrane-like ECM from Engelbreth-Holm- 
Swarm sarcoma. Collagenase was induced within 4 h 
in cells treated with phorbol diesters or plated on 
fibronectin fragments, but was induced after 8 h in 
cells treated with SPARC. A number of proteins were 
transiently secreted by SPARC-treated cells within 6 h 
of treatment. Conditioned medium that was harvested 
from cultures 7 h after the addition of SPARC, and 
depleted of residual SPARC, induced collagenase ex- 
pression in untreated fibroblasts; thus, part of the 
regulation of collagenase expression by SPARC ap- 
pears to be indirect and proceeds through a secreted 
intermediate. Because the interactions of cells with 
ECM play an important role in regulation of cell be- 
havior and tissue morphogenesis, these results suggest 
that molecules like SPARC are important in modulat- 
ing tissue remodeling and cell-ECM interactions. 

T 
hE interactions of a cell with its surrounding extra- 
cellular matrix (ECM) ~ can play an important role in 
the regulation of cell behavior and tissue architecture. 

While most cells in adult tissues remain anchored in place 
through specific interactions with tissue matrices, subsets of 
differentiated cells are specialized to move through the 
ECM. Biological cues can also induce normally stationary, 
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1. Abbreviations used in this paper: CM, conditioned medium; DESPARC, 
a 90% pure fraction of SPARC; ECM, extracellular matrix; EHS, 
Engelbreth-Holm-Swarm; GAPDH, glyeeraldehyde-3-phosphate dehy- 
drogenase; IL-1, interleukin-l; LH, lactalbumin hydrolysate; RGD, Arg- 
Gly-Asp; RSF, rabbit synovial fibroblasts; RT, reverse transcription; TPA, 
12-O-tetradecanoylphorbol-13-acetate. 

adherent cells to move over and through the ECM. In some 
cases, a specific interaction of a cell with certain matrices 
can help to stabilize or maintain a phenotype or particular 
tissue structure (Menko and Boettiger, 1987; Sorokin et al., 
1990; Adams and Watt, 1990); in actively remodeling tis- 
sues, however, the cellular interaction with ECM is not static 
but is constantly changing (Mackie et al., 1988; ffrench- 
Constant et al., 1989; Gladson and Cheresh, 1991; Damsky 
et ai., 1992). 

Diversity in celI-ECM interactions is the consequence of 
several factors: the integration of the transcriptional regula- 
tion of ECM components and their receptors, the net ac- 
cumulation of ECM constituents resulting from the balance 
of synthesis and degradation of ECM molecules, and the as- 
sembly of the ECM components into tissue-specific matrices 
(Cheresh et al., 1989; Dahl and Grabel, 1989; Dustin and 
Springer, 1991; for review see Hay, 1991; Damsky et al., 
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1992). Cues provided by tissue-specific matrices are inter- 
preted by cells in the decision to adhere, invade, migrate, se- 
crete, or differentiate. There is strong correlative evidence 
that information transduced into the cell by adhesion of cells 
to specific matrices can lead to alterations in cell phenotype 
or to changes in gene expression (Menko and Boettiger, 
1987; Werb et al., 1989; Sorokin et al., 1990; Adams and 
Watt, 1990; Talhouk et al., 1992; for review see Burridge et 
al., 1988; Hynes, 1992). Apart from establishing adhesive 
contacts with the ECM, a cell must somehow modify these 
contacts with the matrix, i.e., to de-adhere or break the in- 
teraction with the matrix. Controlled proteolysis might be 
one mechanism used by cells to diminish adhesive contacts 
with the ECM. Proteinases have been shown to be present 
at focal contacts in certain cells and can act to modulate the 
assembly of the actin cytoskeleton in these cells (Beckerle 
et al., 1987; Estreicher et al., 1990). ECM-degrading metal- 
loproteinases are specifically enhanced in fibroblasts plated 
on fragments of fibronectin when compared with fibronectin 
or collagen type I (Werb et al., 1989), a response that could 
also diminish adhesion of cells to the ECM. Another way to 
effect changes in cell adhesion is to modify existing matrices 
by deposition or synthesis of additional matrix-associated 
molecules. Several ECM-associated molecules, including 
SPARC, thrombospondin, dermatan sulfate proteoglycans, 
and tenascin, have been shown to perturb the adhesion of 
cells to the matrix (Sage et al., 1989c; Lawler et al., 1988; 
Murphy-Ullrich and Hook, 1989; Chiquet-Ehrismann, 
1991; Murphy-Ullrich et al., 1991). Thrombospondin and 
tenascin have both adhesive and anti-adhesive properties, 
and may interact with cells in a way that Arg-Gly-Asp (RGD) 
inhibits (Lawler et al., 1988; Bourdon and Ruoslahti, 1989), 
whereas SPARC acts in a manner insensitive to RGD (Sage 
et al., 1989c). 

SPARC, tenascin, and thrombospondin are expressed tran- 
siently in tissues that are actively remodeling their matrix, 
where cells are dividing or migrating (for review see 
Chiquet-Ehrismann, 1991; Sage and Bornstein, 1991). Al- 
though SPARC is expressed transiently in a wide range of tis- 
sues during development, in adults SPARC is expressed 
chiefly in rapidly renewing populations of cells (Sage et al., 
1989a,b). MetaUoproteinase expression is also increased in 
regions of tissue where increased cell division, migration, or 
remodeling is observed (for review see Alexander and Werb, 
1991). This is interesting because the expression of the 
ECM-degrading metalloproteinases collagenase and stro- 
melysin correlates with perturbation of the actin cytoskel- 
eton (Unemori and Werb, 1986), and tenascin, SPARC, and 
thrombospondin in culture have been shown to destabilize 
actin in focal contacts (Murphy-Ullrich et al., 1991). 

The expression of collagenase and stromelysin is induced 
in cultured rabbit synovial fibroblasts (RSF) plated on 
fibronectin fragments or on anti-fibronectin receptor anti- 
body but not on substrates of intact plasma fibronectin (Werb 
et al., 1989). This culture system might therefore be useful 
in the dissection of information transduced by celI-ECM in- 
teractions. Because SPARC diminishes adhesion of cultured 
cells by destabilizing focal contacts (Sage et al., 1989c; 
Murphy-Ullrich et al., 1991), we designed experiments to 
determine whether the addition of SPARC to cultured syno- 
vial fibroblasts alters the expression of metalloproteinases in 
these cells. 

Materials and Methods 

Cells and Cell Culture 

RSE isolated as described previously (Aggeler et al., 1984a,b) and used 
between passages 1 and 10, were cultured in DME (Cell Culture Facility, 
University of California, San Francisco), supplemented with 10% FBS 
(Hyclone Labs., Logan, UT). Cells (0.5-1 x 105) were plated in uncoated 
24 or 48-well tissue culture dishes (Costar Corp., Cambridge, MA), and 
cultured in DME containing 10% FBS for 3-4 h, afler which the 
monolayers were washed and incubated further in DME supplemented with 
0.2% lactaibumin hydrolysate (LH) (GIBCO BRL, Gaithersburg, MD). 
Cells were plated on ECM-coated dishes at a density of 105 and were cul- 
tured in one of two serum-free media, DME-LH or Fibroblast Growth 
Medium (Clonetics Corp., San Diego, CA). 

Preparation of ECM Ligand Substrates 
Fibronectin was purchased from Collaborative Research (Bedford, MA) 
and Boehringer Mannheim Corp. (Indianapolis, IN); fibronectin fragments 
and vitronectin were purchased from Telios Pharmaceuticals (San Diego, 
CA). Bovine collagen type I (Vitrogen) was purchased in a solution of 0.1 N 
HCI from the Collagen Corp. (Palo Alto, CA); collagen types I, II, III, IV, 
V were purchased from Collaborative Research or from Eureka Laborato- 
ries (Sacramento, CA) and reconstituted as directed by the manufacturer. 
Culture dishes were coated with fibronectin or vitronectin at 10-20 #g/ml 
by incubating them overnight (9-15 h) in PBS, pH 7.4, at 4°C. Human colla- 
gen types I, II, III, IV, V, or bovine collagen type I were diluted from acidic 
solutions into distilled water to a concentration of 20 #g/ml and culture 
dishes were further incubated in this solution overnight (9-15 h) at 4°C. Un- 
occupied binding sites were blocked by incubation with 0.2% BSA (Sigma 
Chem. Co., St. Louis, MO) at ambient temperature for 2 h; wells were then 
washed three times with PBS and used immediately. Culture dishes coated 
with a basement membrane matrix from Engelbreth-Holm-Swarm (EHS) 
sarcoma (Alexander and Werb, 1992) or the smooth muscle matrix from 
R22 rat smooth muscle cells (Werb et al., 1980) were prepared as described 
previously. 

Addition of SPARC or SPARC Peptides to 
Cell Cultures 

SPARC was prepared from mouse parietal yolk sac (PYS-2) cells as de- 
scribed previously (Sage et al., 1989c). Purified SPARC was solubilized in 
PBS at a concentration of 250 #g/ml and used at a final concentration of 
10-40 #g/ml; SPARC was used as a soluble ligand except where noted 
otherwise. In many experiments we used a slightly less pure (90%) fraction 
of SPARC (DESPARC), isolated by anion-exchange chromatography, which 
contains a carder protein for SPARC; this protein was more stable and avail- 
able in larger quantities than pure SPARC. The synthetic peptides used in 
this study were synthesized, characterized, and used as described previ- 
ously (Lane and Sage, 1990). 

Antibodies 

The mouse anti-rabbit collagenasc mAbs used for immunoprecipitations 
and analysis of secreted collagenase in this study were described by Werb 
et al. (1989). The mouse anti-human stromelysin antibody, SL188.2 (Wil- 
helm et al., 1992) used in the immunoblots was a generous girl of Dr. Scott 
Wilhelm (Miles Research, West Haven, CT). The horseradish peroxi- 
dase-conjugated and biotinylated secondary antibodies were purchased 
from Sigma Chem. Co. Texas red-streptavidin conjugate was purchased 
from Amersham Corp. (Arlington Heights, IL). Goat anti-SPARC antibody 
was prepared with purified SPARC as antigen, and its specificity character- 
ized by immunoprecipitation and immunoblotting; the titer was measured 
by ELISA, and was maximal at 1:500 and half-maximal at 1:250. 

To deplete SPARC from the medium, we incubated 500 #1 of antiserum 
or normal goat serum with 100 #1 packed protein G-Sepharose beads (Phar- 
macia LKB Biotechnology Inc., Piscataway, N J) for 1 h and washed them 
extensively with PBS, and then incubated the beads with 200 #1 conditioned 
medium (CM) for 1 h. 

Biosynthetic Labeling of Secreted Proteins and 
Analysis of Metalloproteinases 

Proteins were biosynthetically labeled by incubating cultures with 50-100 
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/~Ci/ml of [35S]methionine (Expresslabel; New England Nuclear, Boston, 
MA) for 2-4 h in methionine-free DME at 37°C. Secreted proteins were 
precipitated from the CM with quinine sulfate and SDS as described (Un- 
emori and Werb, 1986). Samples were then analyzed by SDS-PAGE using 
the Laemmli buffering system followed by fluorography (En3Hance, New 
England Nuclear), as previously described (Unemori and Werb, 1986). Al- 
ternatively, eollaganase in the radiolabeled CM was immunoprecipitated 
with a mixture of anti-collagenase mAbs (Werb et al., 1989). Zymography 
was used to analyze the gelatinases in the CM (3Verb et ai., 1989). The 
stromelysin and collagenase protein in the enriched culture supernatants 
was also identified by immunnblotting procedures (Harlow and Lane, 1988) 
with the use of anti-human stromelysin mAb (Wilhelm et al., 1992) and 
anti-rabbit eollagenase mAbs (Werb et al., 1989). Briefly the CM was 
resolved by SDS-PAGE and the proteins were transferred to Immobilon P 
membranes (New England Nuclear). Unoccupied binding sites on the mem- 
brane were blocked by incubation with 3% BSA in TBS (150 mM NaC1, 
20 mM Tris-HC1, pH 7.5), washed once with TBS, and incubated with the 
primary antibody for 1-2 h. The membrane was washed briefly with TBS, 
and then washed three times for 20 min with a solution of TBS containing 
0.5% Tween-20 (Sigma Chem. Co.). After incubation with a horseradish 
peroxidase-conjugated secondary anti-mouse antibody, the membrane was 
washed as described above, and specific bands were visualized by enhanced 
chemiluminescence (Amersham Corp.) as described by the manufacturer. 
To quantify the amount of collageuase in the CM, we applied dilutions of 
the CM to nitrocellulose membranes (Schleicher and Schuell, Inc., Keene, 
NH) using a slot-blot filtration manifold (Schleicher and Schuell, Inc.). The 
filters were blocked and incubated with anti-collagenase antibodies as de- 
scribed above. The resulting films were scanned by laser densitometry and 
the amounts of collngenase in the CM were compared. 

RNA Isolation, Polymerase Chain Reaction, 
Hybridization Conditions, and cDNA Probes 

Total cellular RNA was isolated from cultured cells and 1-#g samples were 
analyzed by reverse transcription (RT) and amplification of specific se- 
quences by the PCR (Rappolee et al., 1989). Synthetic primers used to am- 
plify eollagenase eDNA sequences were selected from regions of identity 
in the rabbit and human eDNA sequences. The eollagenase primer pair 
(nncleotides 1154-1174 and 1433-1453 in the rabbit collagenase gene 
[Brenner et al., 1989]) amplified a 300-bp fragment of the transcribed 
cDNA. Synthetic primers used to amplify eDNA sequences coding for the 
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
spanned the sequence 3308-3337 and 3649-3672 in the rat gene, and pro- 
duced a 241-bp fragment (Rappolee et al., 1989). Amplifications with both 
primer pairs were performed with 4 mM MgC12 at an annealing tempera- 
rare of 60°C. 

PCR products were analyzed by agarose gel electrophoresis followed by 
staining with ethidium bromide. For quantification of the amplified product, 
negatives of the gels were analyzed by scanning densitometry, and the area 
under the peak corresponding to specific bands was plotted against the dilu- 
tion of the RT mixture used in that amplification. The amounts of GAPDH 
and collagenase mRNA in the RT mixture were compared in the linear por- 
tion of the curve. To analyze mRNA by blotting, we applied a series of linear 
dilutions of total RNA to nylon membranes using a slot-blot filtration mani- 
fold (Sambrook et al., 1989). The filter was probed with 32p-labeled 
eDNA inserts from pCL1, a clone of rabbit coUagenase (Frisch et al., 1987), 
and human 3'-actin (Engel et ai., 1981; a gift ofL. Kedes, Stanford Univer- 
sity, Palo Alto, CA) as described (Werb et ai., 1989). 

Results 

The Expression of Metailoproteinases Is Upregulated 
in Synovlal Fibroblasts Treated with SPARC 
To determine if SPARC alters expression of proteins synthe- 
sized by RSF, we added purified SPARC or DESPARC to 
adherent RSF in culture. We compared the expression of 
proteins secreted by SPARC-treated cells with that of pro- 
reins secreted by untreated cells. We also incubated cells 
with the phorbol diester 12-O-tetradecanoylphorbol-13- 
acetate (TPA), which rapidly induces the expression of 
metalloproteinases in many cell types (Frisch and Werb, 

Figure 1. SPARC induces the synthesis and secretion of proteins in 
synovial fibroblasts. Freshly trypsinized RSF were cultured in 
DME-10% FBS in 48-well plates for 3 h. The cells were incubated 
further in DME-LH (L/-/, lanes 1 and 2, in duplicate) or DME-LH 
supplemented with either 100 ng/ml TPA (lanes 3 and 4, in dupli- 
cate), 30 #g/ml pure SPARC (lanes 5 and 6, in duplicate), 15 #g/ml 
pure SPARC (lanes 7 and 8, in duplicate), or 30 #g/ml DESPARC 
(lanes 9 and 10, in duplicate) for 30 h. The CM was removed, and 
the proteins were biosynthetically labeled by incubation of cells 
with [35Slmethionine in methionine-free DME for 2 h. The radio- 
labeled secreted proteins were concentrated with quinine sulfate- 
SDS and analyzed by SDS-PAGE and autoradiography. Procol- 
lagenase (CL), migrating at 53 and 57 kD, is indicated on the right. 
Molecular weight ( x  10 -3) markers are indicated on the left. 

1989). SPARC induced the synthesis of biosynthetically la- 
beled secreted proteins migrating between 50 and 60 kD that 
are characteristic of the proenzyme forms of collagenase and 
stromelysin (Fig. 1). We detected no difference in the pattern 
of metalloproteinase expression in RSF induced by pure 
SPARC and DESPARC, and, unless otherwise stated, the 
two were used interchangeably in later experiments. 

To identify and quantify the metalloproteinases in the CM 
harvested from SPARC-treated RSF, we used mAbs against 
collagenase and stromelysin. Immunoprecipitable collage- 
nase represented >30% of the radiolabeled protein secreted 
by RSF after treatment with SPARC for 40 h (Fig. 2 A). In- 
creases in total collagenase and stromelysin were also de- 
tected by immunoblotting CM harvested from SPARC- 
treated RSF (Fig. 2 B). Changes in proteolytic activity were 
evident on zymograms that used a gelatin substrate incorpo- 
rated into the resolving gel. Increases in the gelatinolytic 
doublet of collagenase, migrating at 57 and 53 kD, and of the 
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Figure 2. SPARC induces the 
expression of collagenase pro- 
tein in synovial fibroblasts. 
(A) Freshly trypsinized RSF 
plated in 48-well plates were 
allowed to attach and spread 
in DME-10% FBS for 3 h. 
The medium was removed, 
the monolayers were washed 
and cells were incubated fur- 
ther in DME-LH or in DME- 
LH supplemented with 30/zg/ 
ml DESPARC for 40 h. 
The CM was removed and 
saved for later analysis. The 
proteins were biosynthetically 
labeled for 3 h by incuba- 
tion of cells with 50 #Ci/ml of 
[35S]methionine in methio- 
nine-free DME. Samples of 

CM containing radiolabeled secreted proteins from untreated RSF (LH, lanes 1 and 3) or RSF treated with DESPARC (SPARC, lanes 2 
and 4) were concentrated with quinine sulfate-SDS (lanes 1 and 2) to show total proteins secreted into the medium, or proteins secreted 
into the medium were immunoprecipitated with anti-collagenase mAbs (lanes 3 and 4) and the precipitates were separated on a 10% 
SDS-polyacrylamide gel and analyzed by autoradiography. The doublet of procollagenase (CL) is indicated by arrows. (B) CM harvested 
from untreated RSF (LH, lanes 1 and 3) or SPARC-treated RSF (SPARC, lanes 2 and 4) was separated on a 10% SDS-polyacrylamide 
gel under denaturing conditions, and the proteins were transferred to membranes and analyzed by immunoblotting with anti-collagenase 
mAbs (lanes 1 and 2) or an anti-stromelysin mAb (lanes 3 and 4). Procollagenase (CL) and prostromelysin (SL) are indicated by arrows. 
(C) The proteinase content of the 40-h CM harvested from untreated RSF or from RSF treated with SPARC was analyzed by zymography. 
The proteins were separated on a 10% polyacrylamide gel that contained 0.1% gelatin under nondenaturing conditions. The zymograms 
were stained with Coomassie blue R250 after development overnight (14 h). Proteolytic degradation of gelatin appears as a clear band 
on a dark background. Note the induction of gelatinases migrating at 92, 57, and 53 kD corresponding to the proenzyme forms of the 
92-kD gelatinase (92) and collagenase (CL). Molecular weight (xl0 -3) markers are indicated on the left. 

92-kD gelatinase show that these metalloproteinases are in- 
duced by SPARC (Fig. 2 C). In the rest of the experiments 
described in this report, we concentrated on the effects of 
SPARC on the regulation of coUagenase gene expression. 

Regardless of the basal level of coUagenase secretion, 
SPARC reproducibly upregulated the expression of col- 
lagenase in RSE The induction of collagenase in RSF treated 
with SPARC, measured as radiolabeled secreted collagenase 
protein, was quantified by scanning densitometry of auto- 
radiographs (Table I). There was a mean 5.3-fold increase (+ 
2.7 SD) in the expression of collagenase in cultures treated 
with SPARC, compared with untreated cultures (n = 8 ex- 
periments, 2-3 replicates per treatment, p < 0.01; Student's 
t test). By comparison TPA induced an 8.6-fold increase (+ 
1.8 SD) in collagenase expression. Induction of collagenase 
expression in RSF was found using three preparations of 
SPARC and in RSF strains derived from six rabbits. 

In the preceding experiments we examined the effect of 
SPARC on the amounts of collagenase protein secreted by 
RSE We used RT-PCR to analyze the effect of SPARC on 
mRNA for collagenase. The accumulation of collagenase 
mRNA increased fivefold in RSF treated with SPARC (Table 
I), and when normalized for mRNA for the housekeeping 
gene GAPDH (Fig. 3), this increase correlated with the ex- 
pression of collagenase protein by RSF treated with SPARC. 
The data analyzed in Fig. 3 B are an average of three experi- 
ments. In a separate blotting analysis of RNA from one ex- 
periment, a series of sequential dilutions of RNA was ap- 
plied to nylon membranes with a filtration manifold, and the 
membrane was probed with 32p-labeled eDNA probes for 
collagenase and 3,-actin. The autoradiographs were scanned 

and, normalizing to the level of 3,-actin expression, we saw 
a threefold increase in collagenase mRNA in cultures treated 
with SPARC compared with untreated control cultures; this 
increase was comparable to the levels obtained with RT-PCR 
(data not shown). 

Previous studies have indicated that induction of collage- 
nase and stromelysin gene expression strongly correlates 
with cell rounding, although treatment of RSF with a func- 

Table L Collagenase Expression in RSF Treated with 
SPARC and SPARC Peptides 

Peptide* Collagenase induction Go/S delay~ t Shape change§ 

(-fold) 
SPARC 5.3 + 2.711 Yes Yes 
1.1 1.2 + 0.4 No Yes 
2.1 1.1 + 0. Yes No 
3.2 10.0 + 1.711 No No 
3.4 1.1 -t- 0.511 No No 
4.2 4.3 + 0.511 No Yes 
TPA 8.6 d- 1.811 ND Yes 

To facilitate comparison of results from five experiments, we expressed data 
as "-fold induction" by normalizing data from treated to untreated cultures in 
individual experiments. For SPARC, eight different experiments were aver- 
aged. Data are shown as mean :[: SD. 
* See Fig. 6 A for location of peptides in the SPARC molecule. Peptides had 
the same structure as that described by Lane and Sage (1990) and were added 
to RSF at 0.8 mM for 30 h. SPARC was added at 30 tLg/ml. 
:~ From Funk and Sage (1991). 
§ From Lane and Sage (1990). 
II Significantly different from untreated controls (p < 0.05, Kruskall Wallis 
test). 
ND, Not done. 
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Figure 3. The expression of collagenase mRNA is up- 
regulated by SPARC. Freshly trypsinized RSF were 
cultured on type I collagen-coated wells in DME-LH 
or in DME-LH containing 30 #g/ml SPARC for 30 h. 
The total cellular RNA was isolated and analyzed by 
RT-PCR. (A) Sequences in eDNA were amplified with 
the use of specific primers for collagenase eDNA and 
GAPDH eDNA to yield 300- and 241-bp fragments, 
respectively. The products were separated on agarose 
gels and stained with ethidium bromide. For am- 
plification of the collagenase (CL) mRNA, the eDNA 
derived by RT of 2 #g RNA from control (COL) and 
SPARC-treated RSF (COL + SPARC) was diluted to 
10 -2 (lanes 2 and 8), 5 x 10 -2 (lanes 3 and 9), 10 -3 
(lanes 4 and It)), 5 x 10 -3 (lanes 5 and I/), 10 -4 
(lanes 6 and 12), or 5 x 10 -4 (lanes 7 and 13). For 
amplification of GAPDH mRNA, the eDNA derived 
by RT of 2 #g RNA from untreated RSF and RSF 
plated on collagen and treated with SPARC was 
diluted to 10 -1 (lanes 2 and 8), 5 x 10 -1 (lanes 3 and 
9), 10 -2 (lanes 4 and 10), 5 x 10 -2 (lanes 5 and 1/), 
10 -3 (lanes 6and 12), and 5 x 10 -3 (lanes 7and 13); 
lane I contained no template. (B) The data from three 
independent experiments were quantified by den- 
sitometry and are expressed as -fold induction (the ra- 
tio of values from SPARC-treated to untreated RSF 
values). Shaded bars represent mean values from un- 
treated ceils plated on collagen, and open bars repre- 
sent values from cells plated on collagen and treated 
with SPARC. Lines at the end of bars indicate SD. 

tion-perturbing anti-fibronectin receptor antibody can induce 
collagenase without significant change in cell shape (Aggeler 
et al., 1984b; Werb et al., 1989). As in the regulation of  col- 
lagenase in cells plated on fibronectin fragments or treated 
with anti-fibronectin receptor antibody, SPARC induced col- 
lagenase expression without a major morphological change 
(Fig. 4). This contrasts with the marked rounding of  en- 
dothelial cells and nuchal fibroblasts treated with SPARC 
(Sage et al., 1989c). 

The Induction of  Collagenase by SPARC Is 
ECM-Specific 

Because SPARC expression is tightly regulated during devel- 
opment and tissue remodeling, we wished to determine if 
there are particular ECM contexts in which SPARC initiates 
a remodeling cascade involving metalloproteinase expres- 
sion. Accordingly, we plated fibroblasts in serum-free medi- 
um in wells that had been coated with collagen types I, II, 
11I, IV, or V, with vitronectin, or with the more complex ma- 
trices synthesized by EHS tumor cells and R22 smooth mus- 
cle cells. 

SPARC increased collagenase synthesis 2-3-fold in RSF 
that were plated on vitronectin or collagens of  types I, 1I, HI, 
and V, but not in cells plated on collagen type IV (Fig. 5). 
SPARC was an inductive ligand for cells plated on R22 ma- 

Figure 4. SPARC induces collagenase without inducing cell round- 
ing in RSE Freshly trypsinized RSF were cultured on glass cover- 
slips in DME-10% FBS for 3 h. The cells were incubated in DME- 
LH (A and B) or in DME-LH supplemented with 30 /zg/ml 
DESPARC (C and D) for 30 h, then fixed, permeabilized, and 
stained with anti-collagenase mAbs. Paired phase-contrast (A and 
C) and immunofluorescent micrographs (B and D) are shown. Bar, 
10 #m. 
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Figure 5. SPARC induces collagenase expression in matrix-specific 
fashion. RSF were plated in 48-well plates that were coated with 
ECM proteins-collagens (COL) of types I, II, III, IV, or V; 
vitronectin (VN), EHS matrix, R22 matrix-in Fibroblast Growth 
Medium alone or with 30/~g/ml DESPARC (SPARC) and incubated 
for 30 h. The proteins were biosynthetically labeled by incubating 
cells with [35S]methionine, and the labeled secreted collagenase 
was quantified by scanning densitometry after SDS-PAGE and au- 
toradiography. Open bars indicate coUagenase synthesized by un- 
treated RSF plated on the indicated matrix molecule. Shaded bars 
indicate total collagenase secreted into the culture medium from 
RSF plated on the indicated matrix molecule and treated with 30 
#g/ml SPARC. Means of duplicate samples are shown; lines at end 
of bars indicate range. 

trix (which consists predominantly of  elastin and collagen 
types I and HI), but not for cells plated on EHS matrix (pre- 
dominantly laminin, collagen type IV, and heparan sulfate 
proteoglycan) (Fig. 5). Because the basal secretion of col- 
lagenase on EHS matrix was no lower than it was on other 
matrices in this experiment, and because cells plated on an- 
other basement membrane component (pure collagen type 
IV) did not regulate collagenase in response to SPARC, it is 
unlikely that TGF-/3, which is known to be associated with 
some preparations of EHS matrix, abrogated the effect of 
SPARC in lhese experiments. These results indicate that ceils 
treated with SPARC synthesize more collagenase than do un- 
treated fibroblasts plated on the matrices. 

SPARC Peptides Also Induce CoUagenase Expression 

Sequence analysis has indicated that there are four unique 
structural domains in the SPARC molecule (Mason et al., 
1986; Engel et al., 1987): I, an acidic Ca2+-binding do- 
main; H, a cysteine-rich domain; HI, a neutral a-helical se- 
quence containing a serine proteinase-sensitive site; and IV, 
a high-affinity Ca2+-binding EF handlike structure (Fig. 6). 
One approach that has been used successfully to define the 
structural motifs of  the SPARC molecule that affect cell 

Figure 6. SPARC peptides 
from domains HI and IV regu- 
late collagenase expression. 
(A) Schematic diagram of the 
SPARC molecule showing the 
location of specific domains 
and the synthetic peptides (1.1, 
2.1, 3.2, 3.4, and 4.2) used in 
this study. (B) The synthetic 
peptides (0.8 mM or 0.08 mM) 
or 30/~g/ml DESPARC were 
added to RSF plated in 48- 
well plates. Cultures were 
incubated for 24 h, and then 
radiolabeled with pS]methi- 
onine for 2 h. Biosynthetically 
labeled secreted proteins were 
analyzed by SDS-PAGE and 
autoradiography. This panel 
shows the induction of col- 
lagenase in RSF incubated 
with DME-LH alone (LH, 
lanes 1, 2, 17, and 18), with 
100 ng/ml TPA (lanes 3 and 
4), with DESPARC (lanes 5 
and 6), or with synthetic pep- 
tide 4.2 (0.8 raM) (lanes 7and 
8), peptide 3.2 (0.8 mM) 
(lanes 9 and 10), peptide 1.1 
(0.8 raM) (lanes 11 and 12), 
peptide 4.2 (0.08 mM) (lanes 
13 and 14), or peptide 3.2 
(0.08 mM) (lanes 15 and 16). 
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Figure 7. SPARC induces col- 
lagenase expression in RSF 
with slower kinetics than is 
seen for TPA or fibronec- 
tin fragments. Freshly tryp- 
sinized RSF were plated in 
wells coated with collagen 
type I in DME-LH alone 
(COL), or in DME-LH sup- 
plemented with 30 #g/ml 
SPARC (COL SPARC), or 
with 100 ng/ml TPA (COL 
TPA), or in wells coated with 
fibronectin (FN), or with the 
120-kD chymotrypsin frag- 
ment of fibronectin (120 FN). 
The cultures were incubated 
for 2--44 h, and proteins were 
biosynthetically labeled by in- 
cubation with 100 #Ci/ml of 
[35S]methionine for 2 h. The 
radiolabeled secreted colla- 

genase was analyzed by immunoprecipitation with anti-collagenase mAbs, and the precipitates were resolved by electrophoresis on a 10% 
SDS-polyacrylamide gel. (A) Autoradiogram of the immunoprecipitated radiolabeled collagenase protein. (B) Quantification of secreted 
collagenase by densitometry of autoradiographs. 

adhesion (Lane and Sage, 1990) or the cell cycle (Funk and 
Sage, 1991) is the synthesis of peptides corresponding to 
regions in domains I-IV and the monitoring of their efficacy 
in mimicking SPARC function. We tested a panel of syn- 
thetic peptides spanning portions of each of the four domains 
of the SPARC molecule (Lane and Sage, 1990) to define 
which domains in the SPARC molecule confer regulation of 
metalloproteinases in RSF. 

Peptides in domain I (1.1) and domain IV (4.2) destabilize 
adhesion of cells to the ECM and thus mimic the anti- 
adhesive properties of SPARC. Addition of peptide 4.2, at 0.8 
mM, to cultures of adherent RSF induced c011agenase ex- 
pression (Fig. 6, Table I). We detected no significant induc- 
tion of collagenase in response to peptide 1.1 (Fig. 6). Pep- 
tide 2.1, like intact SPARC, delays the Go/S transition when 
added to endothelial cells in culture (Funk and Sage, 1991); 
however, it did not induce collagenase expression in RSF 
(Fig. 6, Table I). Surprisingly, we saw an induction of col- 
lagenase in cells treated with peptide 3.2, which is in the neu- 
tral o~-helical domain III; peptide 3.2 was inductive at 0.08 
mM, which is a tenfold lower concentration than was induc- 
tive with peptide 4.2. Similar results were obtained with two 
different preparations of peptide 3.2. Peptides representing 
nearby sequences, both amino-terminal (peptide 2.1) and 
carboxyl-terminal (peptide 3.4), did not induce collagenase 
expression (Table I). These results suggest that regions in do- 
main HI and IV in the SPARC molecule induce metal- 
loproteinase expression in fibroblasts. 

The Regulation of  CoUagenase Expression by 
SPARC Is Temporally Distinct from Induction by 
TPA or Fibronectin Fragments 

Previous experiments have shown that fibronectin fragments 
and TPA induce collagenase expression within 4 h (Werb 
et al., 1989). To characterize the timing of the induction 
of collagenase by SPARC, we compared the time course of 
collagenase induction by SPARC, TPA, and fragments of 

fibronectin. RSF were plated in serum-free medium in 
collagen-coated wells, some of which were supplemented 
with 30/~g/ml DESPARC or 100 ng/ml TPA, or in wells that 
had been coated with fibronectin or the 120-kD chymotryp- 
sin fragment of fibronectin. At various times (2--44 h) after 
plating we incubated the cultures with [35S]methionine for 
2 h, immunoprecipitated the radiolabeled secreted collage- 
nase from the CM, and analyzed the immunoprecipitates by 
SDS-PAGE and autoradiography. Collagenase synthesis was 
detected in SPARC-treated cultures after 8 h but was appar- 
ent within 4 h in cultures plated on fibronectin fragments or 
treated with TPA (Fig. 7). When we analyzed the total pro- 
teins secreted by RSF after a 2-6-h incubation with SPARC, 
we noted the transient induction of several proteins that were 
not secreted by RSF treated with TPA (Fig. 8). 

SPARC Induces CoUagenase Expression by an 
Indirect Mechanism 

The data presented in Figs. 6, 7, and 8 suggest at least two 
potential mechanisms by which SPARC may regulate col- 
lagenase expression in fibroblasts. The slow induction of col- 
lagenase (>10 h) in RSF treated with SPARC is reminiscent 
of the time course of coUagenase induction in RSF elicited 
by agents that act by shape-dependent mechanisms, such as 
cytochalasins or culture in retracted collagen gels (Unemori 
and Werb, 1986). In our experiments, however, SPARC did 
not appear to alter the morphology of RSF. Alternatively, the 
induction of collagenase in cells treated with SPARC may be 
mediated by one of the molecules induced in SPARC-treated 
cultures before collagenase expression is induced. Although 
the experiment with SPARC peptides also suggests that two 
domains in the SPARC molecule regulate the expression of 
collagenase, possibly by distinct mechanisms, for simplicity 
we decided to clarify the mechanism by which native, intact 
SPARC affects the expression of collagenase in fibroblasts. 

To determine if the increase in collagenase expression was 
a direct response to treatment of cells with SPARC, or was 
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Figure 8. SPARC treatment 
transiently induces the ex- 
pression of several novel se- 
creted proteins. RSF were 
plated in 48-well plates in 
DME-10% FBS for 3 h. The 
medium was then replaced 
with DME-LH alone (LH) or 
with DME-LH supplemented 
with 100 ng/ml TPA (TPA), 
or 30 #g/ml DESPARC 
(SPARC). After incubation of 
cells for 2, 6, 10, or 24 h, the 
proteins were biosynthetically 
labeled by incubating cultures 
with [35S]methionine, and the 
total secreted proteins were 
concentrated and analyzed by 
SDS-PAGE and autoradiog- 
raphy. The bands representing 
procollagenase are indicated 
at the right. The novel SPARC- 
induced proteins are indicated 
by asterisks. Molecular weight 
(xl0 -3) markers are indi- 
cated. Data shown are from 
one experiment; however, the 
same results were obtained in 
a duplicate experiment. 

secondary to the action of a SPARC-induced molecule, we 
plated three sets of parallel cultures of RSF in wells coated 
with collagen type I, with or without 30 #g/ml pure SPARC 
or DESPARC (Fig. 9 A). One set of cultures was incubated 
with pure SPARC or DESPARC for 24 h. Another set of cul- 
tures was incubated with or without pure SPARC or 
DESPARC for 7 h, the medium was removed and saved, and 
the cultures were incubated further in DME-LH for 17 h. 
From the medium that was removed and saved, we depleted 
the residual SPARC by incubation of the CM with goat anti- 
SPARC IgG bound to protein G beads; we incubated a third 
set of cultures, plated on collagen type I, with this SPARC- 
depleted CM for 15 h. To confirm that SPARC, and not a con- 
taminating molecule in the preparation of DESPARC, in- 
duced the expression of collagenase, we removed SPARC 
from a duplicate sample of SPARC-supplemented culture 
medium by preadsorption with goat anti-SPARC IgG-loaded 
protein G beads before the addition of this medium to cul- 
tures. To ensure that SPARC was depleted from the samples 
incubated with anti-SPARC IgG beads, we subjected dupli- 
cate samples of SPARC, or CM harvested from SPARC- 
treated or control cultures, before and after incubation with 
anti-SPARC IgG, to analysis by SDS-PAGE under non- 
denaturing conditions. No residual SPARC was detected in 
the SPARC-depleted CM by immunoblotting (data not 
shown). To eliminate the possibility that serum-derived fac- 
tors associated with the washed IgG-loaded protein G beads 
may induce collagenase expression, we also incubated cul- 
tures for 24 h with medium that had been preabsorbed with 
protein G beads loaded with IgG from normal goat serum. 
All cultures were incubated with [35S]methionine 24 h after 
initial plating, and the biosynthetically labeled secreted col- 
lagenase was analyzed by immunoprecipitation. These ex- 

periments were performed with both DESPARC and pure 
SPARC. The data represent an average of three experiments. 

We saw a 3.5-fold increase in collagenase expression in 
cultures incubated with SPARC for 24 h (Fig. 9 B). In cul- 
tures incubated with SPARC for only 7 h, collagenase ex- 
pression remained at basal levels, similar to that of untreated 
controls. Interestingly, we saw a 2.5-fold increase in col- 
lagenase expression in cells incubated with the SPARC- 
depleted CM harvested from cultures treated with SPARC 
for 7 h, whereas cells cultured in SPARC-depleted CM har- 
vested from untreated cells synthesized basal levels of col- 
lagenase. Cells that were incubated with medium from 
which SPARC was preadsorbed before incubation, or cells 
incubated with medium that was preincubated with protein 
G beads containing normal goat serum IgG, also synthesized 
basal levels of collagenase. These results indicate that the 
mechanism of regulation of collagenase by SPARC is differ- 
ent from that of TPA or fibronectin fragments. The increased 
expression of collagenase associated with SPARC may, 
therefore, be mediated in part through a secreted factor that 
is produced during the first 7 h of treatment with SPARC. 

The upregulation of collagenase expression in response to 
peptide growth factors and cytokines is rapid and is initiated 
within 2-6 h of exposure to the inducing agent (Frisch and 
Werb, 1989). If  the regulation of collagenase by SPARC is 
mediated by the production of a secreted intermediate such 
as a cytokine, one prediction would be that the induction of 
collagenase expression in cells incubated with SPARC- 
depleted CM harvested from cells treated with SPARC for 
7 h would be faster than that seen in cultures incubated with 
SPARC. To analyze the kinetics of induction, we compared 
the number of cells staining positive by immunofluorescence 
for cell-associated collagenase from cultures treated with 
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Figure 9. SPARC indirectly induces collagenase ex- 
pression through a secreted intermediate. (A) RSF 
were plated on wells coated with collagen type I and 
incubated in Fibroblast Growth Medium, with or 
without 30/zg/ml DESPARC. One set of cultures (a) 
was incubated for 24 h. Experimental controls in- 
cluded RSF plated on type I collagen-coated wells 
in Fibroblast Growth Medium supplemented with 
DESPARC that had been preincubated with protein G 
beads loaded with goat anti-SPARC IgG, or in Fibro- 
blast Growth Medium containing protein G beads 
loaded with IgG from normal goat serum. In a second 
set of cultures (b), the CM was removed 7 h after plat- 
ing, and the cultures were incubated further in unsup- 
plemented Fibroblast Growth Medium for 17 h. The 
CM that was harvested from cells incubated for 7 h 
in Fibroblast Growth Medium with or without SPARC 
was depleted of residual SPARC by immunoprecipita- 
tion with protein G beads loaded with goat anti- 
SPARC IgG; this SPARC-depleted medium was added 
to a third set of cultures (c) that had been plated on 
wells coated with collagen type I, and the cultures 
were incubated for an additional 15 h. At 24 h after 
the initiation of the experiment, proteins were biosyn- 
thetically labeled by incubation of cells with [35S]me- 
thionine. The radiolabeled secreted collagenase was 
immunoprecipitated with anti-collagenase mAbs, and 
analyzed by SDS-PAGE followed by autoradiography. 
(B) The autoradiograms of the RSF treated as de- 
scribed in A from three independent experiments were 
quantified by densitometry. The data are expressed as 
-fold induction. Plus and minus signs indicate treat- 
ment with or without SPARC. 

SPARC for 35 h, or with SPARC-depleted CM harvested 
from SPARC-treated cultures for 10 or 35 h (counting about 
500 cells in 4 -5  microscopic fields). We then studied RSF 
plated on collagen-coated coverslips and treated with 
SPARC-depleted CM from cultures incubated in serum-free 
medium with or without 30 #g/ml pure SPARC for 6.5 h at 
10 and 35 h of  treatment. RSF treated with SPARC for 10 h 
showed little induction of  collagenase (see Fig. 7). However, 
at 10 h we saw a twofold increase in the total secreted col- 
lagenase and a 3.5-fold increase in the collagenase-positive 
cells in the cultures treated with CM from SPARC-treated 
cultures, whereas there was no change in secreted col- 

lagenase from cells treated with control CM. The increase 
in collagenase-positive cells compared with the increase in 
secreted collagenase reflects the short time elapsed to ac- 
cumulate induced collagenase during the 10 h of culture 
time. By 35 h, the cells incubated with SPARC continuously 
showed a 4.3-fold increase in secreted collagenase and a 3.0- 
fold increase in collagenase-positive cells, which was similar 
to the fourfold increase in secreted collagenase and 2.7-fold 
increase in collagenase-positive cells seen in cultures treated 
with 6.5 h CM from SPARC-treated cells, compared with un- 
treated controls or cells treated with CM from control cul- 
tures. The increase in collagenase-positive cells in cultures 
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incubated with SPARC for 35 h, or with SPARC-depleted, 
SPARC-conditioned medium for 10 and 35 h was sig- 
nificantly different from control cultures at all time points (p 
< 0.05, Student-Newman-Kuels test). The increase in the 
collagenase-positive cells in cultures treated for 10 h with 
SPARC-depleted CM from SPARC-treated cultures was not 
significantly different from cultures treated with pure 
SPARC for 35 h. Taken together, these data support the con- 
cept that a SPARC-induced secreted intermediate is at least 
a part of the cascade by which SPARC induces the expression 
of collagenase in RSE 

Discussion 

The decision not to adhere to a substrate has developmental 
and biological consequences. This concept has been derived 
from studies on neurite outgrowth and patterning of the ner- 
vous system (Tomaselli et al., 1987; Dodd et al., 1988; 
Klambt et al., 1991; Bovolenta and Dodd, 1991), from 
studies of the complex adhesive interactions of cells in the 
immune system (Kieffer and Phillips, 1990; Butcher, 1991) 
and from characterization of the migration of embryonic cell 
populations (Riou et al., 1990; ffrench-Constant et al., 1991; 
Hynes and Lander, 1992). One proposed mechanism for di- 
minishing the adhesion of cells to the ECM is through ECM- 
associated molecules with anti-adhesive properties (for re- 
view see Chiquet-Ehrismann, 1991; Sage and Bornstein, 
1991). A number of structurally dissimilar molecules with 
anti-adhesive properties that modulate ceI1-ECM interac- 
tions have been described: SPARC, tenascin, thrombospon- 
din, dermatan sulfate proteoglycans, and scatter factor have 
defined anti-adhesive effects on cells in culture (for review 
see Chiquet-Ehrismann, 1991; Sage and Bornstein, 1991). 
The expression of these proteins is tightly regulated to pro- 
duce developmental patterns and to respond to tissue injury; 
moreover, they localize to regions of tissue where cell divi- 
sion, migration, and ECM remodeling are prevalent (for re- 
view see Chiquet-Ehrismann, 1991; Sage and Bornstein, 
1991). 

In this report we have presented evidence that one of these 
anti-adhesive, ECM-associated molecules, SPARC, at a con- 
centration of '~0.5 nM, which is within physiological levels 
(Maillard et al., 1992), initiates a cascade of events that re- 
sult in the increased expression of the ECM-remodeling 
metalloproteinases. SPARC induced the expression of col- 
lagenase, stomelysin, and 92-kD gelatinase, metallopro- 
teinases capable of degrading both basement membranes and 
interstitial connective tissue matrices. Collagenase spe- 
cifically cleaves native, fibrillar collagens, whereas the 92- 
kD gelatinase degrades type IV collagen and denatured col- 
lagen. Stromelysin can degrade many molecules in the 
ECM, including proteoglycans and fibronectin (for review 
see Alexander and Werb, 1991). These results suggest that 
SPARC, in addition to its characterized effects on cell shape, 
may alter the nature of the ECM presented to the cell. 

Cellular responses to growth factors have traditionally 
been divided by temporal parameters into immediate, inter- 
mediate, and delayed effects. Likewise, cells can respond to 
SPARC within minutes of treatment, but there are also down- 
stream effects that can be measured hours to days after ex- 
posure. Immediate responses include actin disassembly and 
accumulation of mRNA coding for plasminogen activator 

inhibitor-1 in bovine aortic endothelial cells (Hasselaar et 
al., 1991). Intermediate responses include a delay in the 
Go/S transition in cycling bovine aortic endothelial cells 
(Funk and Sage, 1991). The generation ofa SPARC-induced 
secreted molecule that regulates collagenase expression in 
synovial fibroblasts is another intermediate response to 
SPARC, whereas a delayed response, the induction of metal- 
loproteinases in  cells treated with SPARC, occurs over a 
period of days. 

When we further characterized the regulation of col- 
lagenase in RSF, we noted that the regulation of collagenase 
by SPARC was distinct from the regulation of collagenase 
conferred by TPA or ligands acting through the fibronectin 
receptor. Collagenase expression induced by SPARC pro- 
ceeded with kinetics similar to that conferred by treatments 
that act by a shape-dependent mechanism, such as culture on 
polyhydroxyethyl methacrylate, in retracted collagen gels, or 
with cytochalasins. However, there are several reasons why 
it is unlikely that SPARC acts solely through a shape- 
dependent mechanism: (a) In contrast to the marked changes 
in the morphology of bovine nuchal fibroblasts or aortic en- 
dothelial cells mediated by SPARC (Sage et al., 1989c), RSF 
in culture remained well spread, although we may not have 
detected the subtle, transient alterations in the cytoskeleton 
that were described by Murphy-Ullrich et al. (1991); (b) we 
detected the synthesis of several novel SPARC-induced pro- 
teins that were secreted transiently before collagenase ex- 
pression; (c) supernatants that were removed from SPARC- 
treated cultures and depleted of SPARC induced coUagenase 
expression in untreated fibroblasts, whereas cultures from 
which SPARC was removed after 7 h of incubation did not, 
after further incubation, increase their expression of col- 
lagenase; furthermore, (d) the increase in cells staining for 
collagenase in cultures incubated with this SPARC-depleted, 
SPARC-conditioned medium for only 10 h was the same as 
that seen in cultures incubated continuously with pure 
SPARC for 35 h. 

Thus, one important feature of this induction is the synthe- 
sis or secretion of an intermediary molecule. The nature of 
this secreted intermediate is not known at present. In prelim- 
inary experiments in which we used RT-PCR to measure 
cytokines expressed by RSF after incubation with SPARC for 
7 h, we have observed increases in mRNA for basic FGF and 
tumor necrosis factor-or and a decrease in mRNA for TGF-B 
(unpublished observations). It is known that tumor necrosis 
factor-ix and basic FGF upregulate the expression of col- 
lagenase in cultured fibroblasts (for review see Frisch and 
Werb, 1989). Because TGF-/~ both inhibits the expression of 
metalloproteinases and induces the expression of the tissue 
inhibitor of metalloproteinases, further studies to character- 
ize this secreted intermediate will prove interesting. 

There are other examples of autocrine regulation of col- 
lagenase expression in fibroblasts. The induction of col- 
lagenase by ultraviolet irradiation of fibroblasts also pro- 
ceeds through an uncharacterized, secreted intermediate (for 
review see Herrlich et al., 1992). In synovial ceils both se- 
rum amyloid alpha and B2-microglobulin, which are in- 
duced in cells treated with TPA or interleukin-1 (IL-1), have 
been shown to induce the expression of collagenase in un- 
treated fibroblasts (Brinckerhoff et al., 1989). In other cul- 
ture systems, changes in adhesion correlate with the synthe- 
sis or secretion of growth factors (Hedin et al., 1989; Shaw 
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et al., 1990). Collagenase expression in fibroblasts is in- 
creased in response to a number of growth factors and 
cytokines that can be synthesized or stored in fibroblasts, in- 
cluding PDGF, basic FGF, tumor necrosis factor-tx, and IL-1 
(for review see Frisch and Werb, 1989). It is possible that 
any of these factors may be the secreted intermediate. 

Collagenase expression is regulated in synovial fibroblasts 
by cytochalasins, by culture on a substrate with altered adhe- 
sive properties (polyhydroxyethyl methacrylate), or in 
retracted collagen gels through mechanisms that involve a 
change in the actin cytoskeleton (Aggeler et al., 1984b; Un- 
emori and Werb, 1986), in which cell shape is altered from 
an extended, well-spread morphology to a rounded, cuboi- 
dal morphology. There may also be a cytoskeletal compo- 
nent to the induction of collagenase in RSF treated with 
SPARC. Although these cells remained spread and adherent, 
nuchal fibroblasts and aortic endothelial cells rapidly reor- 
ganize their actin cytoskeleton and lose their focal contacts 
after exposure to SPARC (Lane and Sage, 1990). Although 
a SPARC receptor has not yet been fully characterized, we 
cannot exclude the possibility that SPARC, acting through a 
specific cell surface receptor for SPARC, induces col- 
lagenase expression in fibroblasts in vivo. 

That SPARC induced collagenase expression in cells 
plated on a smooth muscle matrix is consistent with the ob- 
servations of Raines et al. (1992), who noted that SPARC and 
PDGF are increased in the neointima of atherosclerotic 
plaque. SPARC has been shown to delay the Go/S transition 
of cycling cells (Funk and Sage, 1991), to play a role in cal- 
cifying tissue (Termine et al., 1981), and to have defined 
effects on adhesion of cells to ECM (Lane and Sage, 1990). 
SPARC binds to PDGF in such a way as to block the interac- 
tion of PDGF (AB and BB) with its receptor (Raines et al., 
1992). Although both PDGF and IL-1 induce collagenase ex- 
pression in synovial cells, the addition of PDGF to IL- 
l-stimulated cells diminishes the proliferation and metal- 
loproteinase expression induced by IL-1 (Kumkumian et al., 
1989). Therefore, the sequestration of PDGF by SPARC may 
have several distinct consequences, such as modifying the 
cellular response to specific cues and/or initiating a mito- 
genic or remodeling cascade in the atherosclerotic plaque. 

We have used the induction of metalloproteinase expres- 
sion in cultured cells as an assay to expand the structure- 
function analysis of the SPARC protein. Domain IV contains 
a high-affinity Ca2+-binding site that diminishes the adhe- 
sion of cells in culture; this domain also mediates the interac- 
tion of SPARC with immobilized collagen type I. Our work 
supports the existing evidence that this carboxyl-terminal 
Ca 2÷ binding domain is important for SPARC function. We 
anticipated that peptide 4.2, derived from SPARC sequences 
representing the carboxyl-terminal Ca2÷-binding domain, 
would induce collagenase expression in RSF because this 
peptide causes cultured fibroblasts and aortic endothelial 
cells to assume a rounder morphology (Lane and Sage, 
1990). In addition, antibodies raised against peptide 4.2 re- 
act against native SPARC. Peptide 4.2 binds to collagen type 
I and blocks the interaction of native SPARC with collagen 
type I (Lane and Sage, 1990). In contrast, peptide 1.1, which 
spans sequences in the amino-terminal Ca÷-binding domain 
I of the molecule, also induces a cell shape change; however, 
peptide 1.1 did not cause significant changes in collagenase 
expression in RSE Peptide 1.1 does not inhibit SPARC bind- 

ing to immobilized collagen I (Lane and Sage, 1990). Our 
data also suggest that the presumptive extended or-helical do- 
main is important for some functions of SPARC. We did not 
anticipate that peptide 3.2, located in a stable helical struc- 
ture of domain HI in the SPARC molecule (Engel et al., 
1987; Bolander et al., 1988; Lane and Sage, 1990), would 
regulate collagenase expression in RSF to a significant de- 
gree. It is possible that proteolytic cleavage changes the con- 
formational constraints in the SPARC molecule and that 
these changes in turn alter the accessibility and/or function 
of the a-helical domain. Comparison of SPARC cDNA se- 
quences from Xenopus and several mammalian species 
shows that there is a high degree of sequence homology in 
the carboxyl-terminal domain IV and in domain III, but not 
in the negatively charged domain I (Damjanovski et al., 
1992). Taken together, these data indicate that domains HI 
and IV are functionally important for the interaction of 
SPARC with ECM or ceils and for functioning of SPARC in 
vivo. 
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