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Shenmai injection (SMI), as a patented traditional Chinese medicine, is extracted from
Panax ginseng and Ophiopogon japonicus. It commonly used in the treatment of
cardiovascular disease and in the control of cardiac toxicity induced by doxorubicin
(DOX) treatment. However, its anti-cardiotoxicity mechanism remains unknown. The
purpose of this study was to investigate the underlying mitochondrial protective
mechanisms of SMI on DOX-induced myocardial injury. The cardioprotective effect of
SMI against DOX-induced myocardial damage was evaluated in C57BL/6 mice and H9c2
cardiomyocytes. In vivo, myocardial injury, apoptosis and phosphoinositide 3-kinase
(PI3K)/protein kinase B (PKB/Akt)/glycogen synthase kinase 3 beta (GSK-3b) signaling
pathway related proteins were measured. In vitro, apoptosis, mitochondrial superoxide,
mitochondrial membrane potential, mitochondrial morphology, levels of mitochondrial
fission/fusion associated proteins, mitochondrial respiratory function, and AMP-activated
protein kinase (AMPK) activity were assessed. To further elucidate the regulating effects of
SMI on AMPK and PI3K/Akt/GSK-3b signaling pathway, compound C and LY294002
were utilized. In vivo, SMI decreased mortality rate, levels of creatine kinase, and creatine
kinase-MB. SMI significantly prevented DOX-induced cardiac dysfunction and apoptosis,
decreased levels of Bax/Bcl-2 and cleaved-Caspase3, increased levels of PI3K, p-Akt,
and p-GSK-3b. In vitro, SMI rescued DOX-injured H9c2 cardiomyocytes from apoptosis,
excessive mitochondrial reactive oxygen species production and descending
mitochondrial membrane potential, which were markedly suppressed by LY294002.
SMI increased ratio of L-OPA1 to S-OPA1, levels of AMPK phosphorylation, and DRP1
phosphorylation (Ser637) in order to prevent DOX-induced excessive mitochondrial
fission and insufficient mitochondrial fusion. In conclusion, SMI prevents DOX-induced
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cardiotoxicity, inhibits mitochondrial oxidative stress and mitochondrial fragmentation through
activation of AMPK and PI3K/Akt/GSK-3b signaling pathway.
Keywords: doxorubicin, Shenmai injection, cardiotoxicity, PI3K/Akt signaling pathway, AMP-activated protein kinase,
mitochondrial dynamics
INTRODUCTION

Doxorubicin (DOX) is one of the most effective anti-cancer
agents. Despite of its efficacy on lymphoma and leukemia
treatment, its clinical use is limited by severe cardiotoxicity.
During the first year of therapy, cardiotoxicity of DOX occurs
and mainly presents with cardiomyocyte death (Vejpongsa and
Yeh, 2014; Cardinale et al., 2015), which is the main cause of
non-cancerous morbidity and mortality in cancer patients after
chemotherapy (Dillenburg et al., 2013). Dexrazoxane (DRZ), as
the only Food and Drug Administration approved drug to
alleviate DOX-induced cardiotoxicity, has not been preferred
because of its myelosuppression effect (Seifert et al., 1994). It is
necessary to find cardioprotective drugs with low toxicity to
combine with DOX in cancer treatment.

Mitochondria are the main target organelle of myocardium
damaged by DOX. Accumulating evidence indicates that DOX
facilitates cardiomyocyte apoptosis and death through damaging
mitochondrial structure and function, which is attributed to
disturbance of mitochondrial oxidation-reduction homeostasis
and mitochondrial dynamic. DOX causes mitochondrial ROS
production as well as oxidative stress, and thereby impairs
mitochondrial membrane structure, depolarizes mitochondrial
membrane potential, which triggers apoptosis (Caso et al., 2017).
Recent reports have confirmed that DOX caused excessive
mitochondrial fragmentation characterized by upregulation of
dynamin-related protein-1 (DRP1) phosphorylation and
downregulation of optic atrophy 1 (OPA1), which promotes
mitochondrial-dependent apoptosis in cardiomyocytes
(Catanzaro et al., 2019; Wan et al., 2019). In particular, GSK-
3b is a downstream effector of PI3K/Akt signaling pathway and
can lead to the mitochondrial permeability transition pore
(mPTP) opening (Nishihara et al., 2007). Phosphorylation of
GSK-3b prompts cell to resist mPTP opening and subsequently
apoptosis. Moreover, AMP-activated protein kinase (AMPK)
plays a role in regulating mitochondrial dynamics. It inhibits
mitochondrial fission through phosphorylation of DRP1
at Ser637.

Shenmai injection (SMI), containing extracts of Panax
ginseng C.A.Mey and Ophiopogon japonicus (Linn.f.) Ker-Gawl,
is widely used medication in the prevention and treatment of
cardiovascular disease (CVD) in China (Shi et al., 2015; Xian
et al., 2016). And it is often combined with chemotherapeutic
drugs to increase their curative effects, reduce their damage to
non-cancerous tissue and improve immune function of cancer
patients (Liu et al., 2014; Liu et al., 2017; Fang et al., 2018). A
clinical evidence has shown that SMI could decrease the
incidence of electrocardiogram abnormality and cardiac
function abnormality in breast cancer patients with DOX
treatment (Liu et al., 2014). Experimental evidences have
ntiersin.org 2
reported that the cardioprotective efficacy of SMI against DOX
is associated with scavenging free radical and relieving calcium
overload (Wang and Ma, 2001; Chen L. et al., 2003; Liu et al.,
2009). SMI alleviated acute cardiotoxicity induced by DOX via
regulation of inflammatory mediators (Zhang et al., 2019).
Shengmai injection, composed of schisandra chinensis and
other two components same as SMI, has been reported to be
reflective of the energy disruption and cardiac dysfunction
induced by DOX (Chen et al., 2015). Moreover, Ophiopogoni
D, one of the main active constituents, could rescue autophagic
cell death through attenuating mitochondrial damage in DOX-
treated cardiomyocytes (Zhang et al., 2015). Despite of these
researches, it was not determined whether SMI could regulate
mitochondrial homeostasis in DOX-injured myocardium.
Therefore, the purpose of this research was to investigate the
underlying protective mechanisms of SMI on DOX-induced
myocardial injury.
MATERIALS AND METHODS

Reagents and Chemicals
SMI was purchased from CTQ Pharmaceutical Group Co. Ltd.
(Hangzhou, China), the same batch as previous study (Yu et al.,
2019). Cell culture supplies were purchased from Gibco (Grand
Island, NY, USA). Anti-PI3K, anti-Akt, anti-Phospho-Akt (Ser473),
anti-GSK-3b, anti-Phospho-GSK-3b (Ser9), anti-GAPDH, anti-
AMPKa, anti-Phospho-AMPKa (Thr172), anti-Phospho-DRP1
(Ser616), anti-Phospho-DRP1 (Ser637), anti-Bax, anti-Bcl-2, anti-
Caspase3, and anti-cleaved-Caspase3 were purchased from Cell
Signaling Technology (Danvers, MA, USA). Anti-OPA1, anti-
MFN2, and anti-FIS1 were purchased from Abcam (Cambridge,
MA, UK). Anti-DRP1 and anti-MFN1 were purchased from Santa
Cruz Biotechnology (Dallas, Texas, USA). MitoSOX Red,
MitoTracker Green, and MitoTracker Deep Red were purchased
from Invitrogen (Eugene, USA).
Animals and Treatment
Adult male (22 ± 1 g) and female (18 ± 1 g) C57BL/6 mice, 6
weeks of age, were purchased from Beijing Vital River Laboratory
Animal Technology Co., Ltd. Mice were routinely kept at the
animal room of the Tianjin University of Traditional Chinese
Medicine. All interventions and animal care procedures were
performed in accordance with the Guidance Suggestions for the
Care and Use of Laboratory Animals issued by the Ministry of
Science and Technology of China. The protocols were approved
by the Laboratory Animal Ethics Committee of Tianjin
University of Traditional Chinese Medicine (Tianjin, China;
Permit NO. TCM-LAEC2018028).
June 2020 | Volume 11 | Article 815

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Li et al. Shenmai Injection Protects the Heart
Mice were randomly divided into the following four groups,
based on their body weight: control group (Control), DOX injury
group (DOX), SMI treatment group (DOX + SMI), DRZ
treatment (20 mg/kg) group (DOX + DRZ). Mice in SMI
treatment group were administrated with SMI (2.5 ml/kg body
weight, i.p.) from day 2 to 6 each week. Mice in DRZ treatment
group were administrated with DRZ (2.5 ml/kg body weight, i.p.,
250 mg dissolved in 25 ml sodium lactate solution and 6.25 ml
normal saline) on day 3 each week. Mice except Control group
were administrated with DOX (2 mg/kg body weight, i.p.) on day
3 each week 30 min after the first administration. Normal saline
was given as a control. In accordance with the previous methods
(Vandenwijngaert et al., 2017), administrations lasted for 12
weeks. The accumulative dosage of DOX was 24 mg/kg body
weight. Dose of 2.5 ml/kg of SMI equated to 1 × the human
equivalent dose. The above administration manner was
descripted in Figure 1.
Frontiers in Pharmacology | www.frontiersin.org 3
Echocardiography Evaluation of Left
Ventricular Function
Left ventricular function was evaluated by transthoracic
echocardiography and a Vevo 2100 ultra-high resolution small
animal ultrasound imaging system (Fujifilm VisualSonics,
Toronto, ON, Canada) at the end of the experiment.
Anesthesia was performed by inhalation of isoflurane (1%
oxygen plus 5% isoflurane for induction and 1% oxygen plus
2% isoflurane for maintenance). Left ventricular end-systolic and
end-diastolic diameters, including left ventricular volume systole
(LV Vol,s), left ventricular ejection fraction (EF %) and fractional
shortening (FS %) were measured.
Survival Rate of Mice
Mortality of mice was recorded every day. Rate of survival was
traced at the end of the experiment, which was expressed as (total
FIGURE 1 | Administration manner in vivo and in vitro.
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number of experimental animals-number of dead animals)/total
number of experimental animals*100%.

Measurement of Markers of Myocardial
Injury
At the end of the experiment, mice were anaesthetized with
tribromoethanol solution (2%, 0.1 mL/10 g body weight, i.p.).
When mice were unconscious, blood was sampled from orbital
veil to examine the level of creatine kinase (CK) and creatine
kinase-MB (CK-MB) by an automatic biochemical analyzer
(Thermo Fisher Scientific).

Histopathological Examination
After anesthetized mice were euthanized by cervical dislocation,
heart was collected immediately. Left ventricle was routinely
fixed and embedded in paraffin according to a standard protocol.
The tissue was sectioned and then stained with hematoxylin-
eosin (H&E) for histopathological analysis.

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP Nick End Labeling
(TUNEL) Staining
TUNEL staining assay was performed following instructions of
in situ apoptosis detection kit (Roche, Mannheim, Germany). A
fluorescence microscope (Zeiss, Waltham, MA) was used for
obtaining images from three random areas of three sections per
mouse. The apoptosis index was expressed as the percentage of
the number of TUNEL-positively stained nuclei to the number of
4,6-diamidino-2-phenylindole (DAPI)-stained nuclei.

Wheat Germ Agglutinin (WGA) Staining
Mean cardiomyocyte cross-sectional area was detected in
deparaffinized sections stained with fluorescein isothiocyanate
(FITC)-labeled WGA (1:100, Invitrogen, Grand Island, NY).
Nuclei were counterstained with DAPI. Images were acquired
using the fluorescence microscope and analyzed by ImageJ 1.47v
software (Wayne Rasband, Maryland, USA).

Cell Culture and Treatment
Rat embryonic ventricular myocardial cell line H9c2 was
purchased from the American Type Cell Culture (ATCC,
Manassas, VA). Cells were cultured as previously described (Li
et al., 2017). Briefly, H9c2 cardiomyocytes were cultured in
DMEM medium with the addition of 10% fetal bovine serum
and 1% penicillin/streptomycin at 37°C in a humidified
incubator containing 5% CO2. SMI was diluted with DMEM
medium. DOX was dissolved in DMSO at a stock concentration
of 25 mM. To verify cardioprotective effect of SMI, cells were
pretreated with SMI (0.5%, 0.125%, 0.032%, 0.004%) for 8 h.
Afterward, DOX (1 mM) was added for another 16 h. For
detection of apoptosis and mitochondrial function, cells were
pretreated with SMI (0.5%, 0.125%) for 8 h prior to DOX
treatment (1 mM, 16 h). For inhibitor experiments, cells were
pretreated with PI3K inhibitor (LY294002, 10 mM, 1 h) and
AMPK inhibitor (compound C, 10 mM, 0.5 h) respectively,
Frontiers in Pharmacology | www.frontiersin.org 4
before DOX treatment (Figure 1) (Park et al., 2014; Li
et al., 2017).

Cell Viability Assay
Cell viability was determined using a CCK8 assay. Cells were
incubated with CCK8 solution (Dojindo, Kumamoto, Japan) at
37°C for 3 h at the end of the treatment. Absorbance was
measured at 450 nm using a microplate reader (Tecan,
Sunrise, Austria).

Hoechst 33342 Staining
Cells were incubated with 10 mg/ml of Hoechst 33342 (Sigma, St.
Louis, MO) dye for 15 min at 37°C. Images were obtained using a
fluorescence microscope (Zeiss, Waltham, MA).

Annexin-V/PI Staining
Cells were harvested and stained with FITC-conjugated Annexin
V and PI using FITC Annexin V Apoptosis Detection Kit (BD,
CA, USA). The rate of apoptosis was analyzed using a flow
cytometer (BD, NJ, USA).

Measurement of Mitochondrial Membrane
Potential (DYm)
Cells were incubated with JC-1 (Beyotime Biotechnology,
Shanghai, China) according to the instruction. Images were
obtained using a fluorescence microscope (Zeiss, Waltham,
MA). Fluorescence intensity was detected by a fluorescence
microplate reader (Molecular Devices, San Jose, CA) (emission
at 515 and 585 nm; excitation at 529 and 590 nm).

Measurement of Mitochondrial Superoxide
Cells were incubated in Hank’s buffer with MitoSOX Red (5 mM)
at 37°C for 10 min and then with the mitochondrion-selective
probe MitoTracker Green (200 nm) for 15 min. Images were
taken with a fluorescence microscope (Zeiss, Waltham, MA).
Fluorescence intensity was calculated using ImageJ 1.47v
software (Wayne Rasband, Maryland, USA).

Analysis of Mitochondrial Respiration
Mitochondrial oxygen consumption rate (OCR) was determined
using Seahorse XFe24 Analyzer (Seahorse Biosciences, North
Billerica, MA). Cells were seeded at a density of 8,000/well into
24 wells of Seahorse XF24 cell culture microplates. After
treatment, medium was changed 1 h before the start of the
extracellular flux assay to assay medium. Cells were sequentially
treated with oligomycin (1 mM), carbonyl cyanide p-tri-
fluoromethocyphenylhydrazone (FCCP, 2 mM), rotenone (0.5
mM), and antimycin A (0.5 mM). OCR was calculated using
Seahorse software.

Mitochondrial Fission Analysis
In H9c2, mitochondria were labeled by MitoTracker Deep Red.
Images were obtained with the confocal microscope (Zeiss LSM
700, Waltham, MA). Image J 14.1o software was used for
calculating the aspect ratio (AR) and form factor (FF) to
June 2020 | Volume 11 | Article 815

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Li et al. Shenmai Injection Protects the Heart
evaluate mitochondrial morphology according to the previous
study (Bai et al., 2013). In brief, the fluorescent images were
converted to binary images. Mitochondrial particles were
determined for length, width, perimeter, and area. AR was
calculated as the ratio of the major to minor axes of the ellipse
to assess the length of the mitochondria. FF was used for
determining the degree of mitochondrial branching, and
calculated as the following equation: FF = Perimeter2/4p ×
area. Ten cells were imaged and analyzed from three
confocal dishes.
Western Blotting Assay
The whole protein of the left ventricle or H9c2 cells was extracted
from three samples in each group. Equal amounts of protein
were separated via sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE), transferred to polyvinylidene
difluoride membranes (Millipore, MA, USA), and probed with
specific antibodies. The bands were assessed using an
electrochemiluminescence (ECL) system.

Statistical Analysis
Data were expressed as means ± standard deviation (SD). The
differences among groups were analyzed with one-way analysis
of variance (ANOVA) followed by LSDMethod and Dunnett’s C
test. The differences of survival rates among groups were
analyzed with Logrank Test. P < 0.05 was considered
statistically significant.
Frontiers in Pharmacology | www.frontiersin.org 5
RESULTS

SMI Improves DOX-Induced Cardiac Injury
in Mice
C56BL/6 mice were administrated with DOX for 12 w with 24
mg/kg body weight accumulative dosage to mimic DOX-induced
chronic myocardial damage. DRZ was utilized as a positive
control. As shown in Figure 2A, no mice in the control group
died. At 14 w, the survival rate of mice in the DOX injury group,
DRZ and SMI treatment group was 40%, 90%, and 80%,
respectively. Over the course of 14 w, survival rate of mice
treated with DOX was significantly lower than that of normal
mice (P < 0.01). However, this decreased survival rate of mice by
DOX was significantly inhibited by SMI and DRZ treatment (P <
0.01). Elevated levels of CK and CK-MB in serum indicate the
loss of cardiomyocyte structural integrity. As depicted in Figures
2B, C, both CK and CK-MB levels were markedly increased by
the DOX (P <0.01, P <0.05). However, there were significantly
decreased CK and CK-MB levels in serum of SMI and DRZ
treatment group compared to DOX injury group (P < 0.01).

To visually detect myocardial injury, H&E and WGA staining
were performed for the histopathological examination. As shown
in Figure 2D, DOX administration caused disorganization of
myofibrillar arrays and infiltration of immune cells, which were
restored by SMI. Consistently, myocardium in the DOX group
presented increased intercellular space and membrane
disappearance (Figure 2E). However, shape of myocardium in
SMI treatment group was close to that in control group.
A B C

D

E

FIGURE 2 | Effect of SMI on DOX-induced cardiac injury in mice. (A) Survival curves (n = 12 for the control group, n = 20 for the other groups). (B, C) The levels of
CK and CK-MB in serum (n = 12 for the control group, n = 8 for the DOX injury group, n = 16 for the SMI treatment group, n = 18 for the DRZ treatment group).
(D) HE staining of myocardial sections. Immune cells are marked with short arrows. (E) WGA staining of myocardial sections (n = 3). Ventricular cardiomyocyte
cross-sectional area measurements (right). The value represents the mean ± SD. *P < 0.05, **P < 0.01 vs. control group, ##P < 0.01 vs. DOX injury group.
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SMI Improves DOX-Induced Cardiac
Dysfunction in Mice
As depicted in Figure 3 , echocardiographic analysis
demonstrated that EF and FS were much lower in DOX-
injured mice than in normal mice (P < 0.01). However, the
decreased EF and FS was markedly rescued by SMI treatment
(P < 0.01, P < 0.05). Consistently, the increased LV by DOX was
largely attenuated by SMI treatment (P < 0.01). EF, FS, and LV
levels were comparable between DOX-injured mice and DRZ-
treated mice, which was inconsistent with results of CK and CK-
MB detection. ECG was performed at 12th week after DOX
injury, while serum enzymatic indicators were detected after 2
weeks of recovery. Therefore, the inconsistency indicated that the
cardiac protective effect of DRZ was more obvious
after convalescence.
SMI Reverses the Changes in DOX-
Induced Apoptosis in Mice and H9c2 Cell
The anti-apoptosis effect of SMI in DOX-treated mice was
measured by TUNEL. Consistent with earlier studies (Ma et al.,
2017), DOX caused a significant increase in TUNEL-positive cells
(P < 0.05, Figure 4A). The number of TUNEL-positive cells was
decreased to 14.92 ± 1.85% and 9.96 ± 1.52% (P < 0.01) when mice
were treated with SMI or DRZ. Level of cleaved-Caspase3 and ratio
of Bax to Bcl-2 were markedly higher in DOX-injured heart
homogenates than in the counterparts (P < 0.01, P < 0.05, Figure
4B), whereas these increased level and ratio were significantly
suppressed by SMI treatment (P < 0.01, P < 0.05).

In H9c2 cardiomyocytes, we used CCK8, Hoechst 33342,
Annexin V/PI, and immunoblotting of apoptosis-related factors
to determine the protective effects of SMI on DOX-induced
cardiomyocyte damage and apoptosis. Compared with untreated
Frontiers in Pharmacology | www.frontiersin.org 6
cells, there was a significantly reduced cell viability when cells
were incubated with SMI (10%) (P < 0.05). However, no
significant difference appeared when cells were incubated with
the lower concentrations of SMI (0.5%, 0.05%) (Figure 4C),
which indicated that SMI (0.5%, 0.05%) had no toxicity on H9c2
cells. Therefore, the maximum dose of SMI for subsequent
experiments did not exceed 0.5%.

Then, we further examined the protective effects of SMI
against cell injury and apoptosis. As depicted in Figure 4D,
DOX induced a significant decrease in cell viability (P < 0.01),
which was alleviated by SMI in a dose-dependent manner.
Hoechst 33342 staining assay indicated that DOX injury led to
apoptosis in H9c2 cells, presenting with condensed nuclei
(Figure 4E). However, SMI (0.5%, 0.25%) restored the nuclei
to their normal morphology. Early-stage apoptosis was evaluated
by Annexin V/PI staining. Consistently, the ratio of Annexin V-
positive cells to PI negative cells was significantly increased by
DOX (P < 0.01, Figure 4F). There was a significantly reduced
ratio in cells of SMI treatment group (P < 0.01, Figure 4F). As
shown in Figure 4G, levels of cleaved-Caspase3 and ratio of Bax
to Bcl-2 were significantly increased by DOX treatment (P <
0.01), which were attenuated by SMI treatment in a dose-
dependent manner (P < 0.05, P < 0.01).
SMI Suppresses DOX-Induced
Mitochondrial Superoxide Formation in
H9c2 Cell
Cells were dual-labeled with MitoSox Red and MitoTracker
Green, which labels superoxide anion in mitochondria and
mitochondria regardless of the polarization state. As shown in
Figure 5A, SMI (0.25%, 0.5%) significantly attenuated the
increase in mitochondrial superoxide anion (red) induced by
DOX treatment.
A

B C D

FIGURE 3 | SMI improves DOX-induced cardiac dysfunction in mice. (A) Representative M-mode echocardiograms. (B–D) Left ventricular volume systole (LV Vol,s),
left ventricular ejection fraction (EF %) and fractional shortening (FS %) were evaluated. The values represent the mean ± SD, with n = 12 for the control group, n = 8
for the DOX injury group, n = 16 for the SMI 2.5 ml/kg treatment group, n = 18 for the DRZ treatment group. *P < 0.05, **P < 0.01 vs. control group, #P < 0.05,
##P < 0.01 vs. DOX injury group.
June 2020 | Volume 11 | Article 815

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Li et al. Shenmai Injection Protects the Heart

F

A

B

C D

E

F

G

FIGURE 4 | Continued
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FIGURE 4 | SMI reverses the changes in DOX-induced apoptosis in mice by TUNEL assay, and in H9c2 cell by CCK8 assay, Hoechst 33342 and Annexin V/PI
staining. (A) TUNEL staining of myocardial sections. Representative images are shown. Nuclei of apoptosis cells are marked with white arrows. (B) Western blot
analysis of Bcl-2, Bax, cleaved-Caspase-3 in cardiac homogenates prepared from mice. (C) CCK8 assay for detecting the viable effect of SMI on normal cells. Cells
were treated with SMI (10%, 0.5%, 0.05%) for 8 h. (D) CCK8 assay for detecting the protective effect of SMI on DOX-injured cells. Cells were pretreated with SMI
(0.5%, 0.125%, 0.032%, 0.004%) for 8 h prior to DOX treatment (1 mM, 16 h). (E–G) Cells were pretreated with SMI-H (0.5%) and SMI-L (0.25%) for 8 h, and then
stimulated with DOX (1 mM) for 16 h. (E) Representative images of Hoechst33342 positive cells. Damaged nuclei are marked with white arrows. (F) Annexin V/PI

staining for apoptosis detection. (G) Western blot analysis of Bcl-2, Bax, cleaved-Caspase-3 in H9c2 cells. The values represent the mean ± SD (n = 3). *P < 0.05,

**P < 0.01 vs. control group, #P < 0.05, ##P < 0.01 vs. DOX injury group.
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SMI Attenuates DOX-Induced
Mitochondrial Integrity Injury in H9c2 Cell
To investigate the mitochondrial membrane potential, we
utilized JC-1 probe. As shown in Figure 5B, DOX treatment
led to a significant increase in the ratio of green to red
fluorescence intensity, indicating a significant reduction of
mitochondrial membrane potential. As expected, SMI
pretreatment markedly suppressed this increased ratio,
suggesting that SMI could rescue DOX-induced loss of
mitochondrial membrane potential.

SMI Modulates DOX-Induced
Mitochondrial Respiratory Dysfunction in
H9c2 Cell
To further investigate the mechanism responsible for the
protective effects of SMI, we assessed mitochondrial respiration
using a Seahorse Bioscience extracellular flux analyzer. DOX
Frontiers in Pharmacology | www.frontiersin.org 8
significantly reduced the basal respiration, maximal respiration,
spare respiratory capacity, and ATP production to 60%, 67%,
77%, and 48% of those in the control group (P < 0.01, Figures
6A, B, C, D, E). There was no change of proton leak (Figures 6F)
and a markedly increased level of non mitochondrial oxygen
consumption (Figures 6G) in DOX-injured H9c2 cells. To our
surprise, these four parameters for the SMI pretreatment were
significantly lower than those of the DOX injury group, which
indicated that mitochondrial respiration was inhibited by the
SMI in DOX-injured H9c2 cells.

SMI Activates PI3K/Akt Signaling Pathway
in DOX-Injured Mice and H9c2 Cell
PI3K/Akt signaling pathway participates in inhibiting of DOX-
induced myocardial damage. To investigate whether
pretreatment with SMI activated PI3K/Akt signaling pathway
in DOX-injured mice myocardium, we assessed levels of PI3K, p-
A

B

FIGURE 5 | SMI suppresses DOX-induced mitochondrial superoxide formation and mitochondrial integrity injury in H9c2 cell. Cells were pretreated with SMI-H
(0.5%) and SMI-L (0.25%) for 8 h, then stimulated with DOX (1 mM) for 16 h. (A) Representative images of mitochondria, mitochondrial superoxide, and merges.
Quantitation of MitoSOX by fluorescence intensity. (B) Representative images of cells with JC-1 staining. Quantitation of mitochondrial membrane potential by ratio of
green to red fluorescence intensity. The values represent the mean ± SD (n = 3). **P < 0.01 vs. control group, ##P < 0.01 vs. DOX injury group.
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Akt, and p-GSK-3b using Western blot. As depicted in Figure
7A, levels of PI3K, p-Akt, and p-GSK-3b were significantly
suppressed in DOX-treated mice (P < 0.05, P < 0.01), whereas
these decreased levels were significantly reversed by SMI
treatment (P < 0.01).

To further verify whether PI3K/Akt signaling pathway
contributed to SMI cardioprotective effect, we utilized a PI3K-
specific inhibitor LY294002 in H9c2 cells. As shown in Figures
7B, C, LY294002 markedly diminished the anti-apoptotic effect
of SMI, presenting increased number of condensed nuclei and
ratio of Annexin V positive to PI negative cells. In the
meanwhile, LY294002 markedly suppressed regulating effects
of SMI on fluorescent intensity of MitoSOX and mitochondrial
membrane potential (Figures 7D, E, P < 0.05).

SMI Alleviates DOX-Induced Mitochondrial
Fragmentation in H9c2 Cell
To determine the impact of SMI on DOX-induced mitochondrial
fragmentation, we examined the mitochondrial shape. As shown
in Figure 8A , normal cells presented elongated and
interconnected mitochondria, while much shorter and smaller
Frontiers in Pharmacology | www.frontiersin.org 9
mitochondria were widespread in DOX-injured cells. However,
shape of mitochondria in SMI pretreatment group was close to
that in normal group. Then, AR and FF were used for further
quantitative evaluation of mitochondria shape. As depicted in
Figure 7A, AR and FF value were much lower in DOX-injured
cells than in normal cells, while the decreased AR and FF value was
largely rescued by SMI pretreatment.

Mitochondrial fragmentation is attributed to an imbalance
between fission and fusion. Thus, we further examined whether
SMI had an effect on the levels of mitochondrial dynamics
proteins. As shown in Figure 8B, the levels of fusion-related
protein, including MFN1 and MFN2, were generally unchanged
by DOX, while ratio of long form of OPA1 (L-OPA1) to short
OPA1 (S-OPA1) was significantly reduced by DOX (Figure 7B,
P < 0.01). There was a significantly increased ratio of L-OPA1 to
S-OPA1 in cells of SMI pretreatment group compared to DOX
treatment group (P < 0.05). Levels of fission-related protein were
shown in Figure 8B. DOX led to significantly increased
phosphorylation of DRP1 at Ser616 (P < 0.01), together with a
decreased DRP1 Ser637 phosphorylation (P < 0.01). Levels of
FIS1 were unchanged in DOX-injured cells. There was no
A

B C D

E F G

FIGURE 6 | SMI modulates DOX-induced mitochondrial respiratory dysfunction in H9c2 cell. Cells were pretreated with SMI (0.5%) for 8 h, then stimulated with
DOX (1 mM) for 16 h. (A) OCR in H9c2 cells was monitored using a Seahorse metabolic analyzer, following the addition of oligomycin (O), FCCP and rotenone/
antimycin (R + A). (B–G) Basal respiration, maximal respiration, spare respiratory capacity, ATP production, proton leak, and non-mitochondrial oxygen consumption
were quantified. The values represent the mean ± SD (n = 3). **P < 0.01 vs. control group, #P < 0.05, ##P < 0.01 vs. DOX injury group.
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significant change of DRP1 Ser616 in DOX-injured cells after
SMI treatment, but significantly increased phosphorylation of
DRP1 at Ser637 (P < 0.05).
Frontiers in Pharmacology | www.frontiersin.org 10
AMPK promotes the phosphorylation of DRP1 at Ser637,
which could inhibit DRP1 oligomerization to suppress fission.
Compared to that in control group, decreased phosphorylation
A

B

C

D

E

FIGURE 7 | SMI activates PI3K/Akt signaling pathway in DOX-injured mice and H9c2 cell. (A) Western blot analysis of PI3K, phosphorylated Akt at Ser473 (p-Akt)
and phosphorylated GSK-3b at Ser9 (p-GSK-3b) in cardiac homogenates prepared from mice. (B–E) Cells were pretreated with SMI (0.5%) for 8 h, LY294002 (10
mM) for 1 h, then stimulated with DOX (1 mM) for 16 h. (B) Hoechst 33342 staining. Damaged nuclei are marked with white arrows. (C) Representative images of
Annexin V/PI staining and quantitative data of the ratio of Annexin-V positive cells to PI negative cells. (D) Representative images of mitochondria, mitochondrial
superoxide and merges. Bar diagram showing the MitoSOX fluorescence intensity. (E) Representative images of cells with JC-1 staining. Quantitative data of the
ratio of green to red fluorescence intensity (right). The values represent the mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. control group, ##P < 0.01 vs. DOX injury
group, $P < 0.05, $$P < 0.01 vs. SMI treatment group, &&P < 0.01 vs. DOX+LY294002 treatment group.
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level of AMPK (Thr172) was detected in DOX-treated cells (P <
0.05, Figure 8C), while SMI significantly alleviated this decrease
(P < 0.01). To further confirm SMI activated DRP1
phosphorylation at Ser637 by AMPK activation, we used
AMPK inhibitor compound C. As depicted in Figure 8D,
Frontiers in Pharmacology | www.frontiersin.org 11
compound C significantly inhibited SMI’s effect on DPR1
phosphorylation at Ser637 (P < 0.01). Taken together, our
results demonstrated that SMI suppressed DOX-induced
mitochondrial fragmentation, which might be associated with
AMPK activation.
A

B

C D

FIGURE 8 | SMI alleviates DOX-induced mitochondrial fragmentation in H9c2 cell. (A, B) Cells were pretreated with SMI (0.5%) for 8 h, then stimulated with DOX (1
mM) for 16 h. (A) Mitochondria was labeled with MitoTracker Deep Red. Representative confocal microscopy image is shown. Scale bar: 25 mm. Quantification of
mitochondrial fission with Aspect Ratio and Form Factor. (B) The relative protein expression of L-OPA1/S-OPA1, MFN1, MFN2, phosphorylated DRP1 at Ser616 and
Ser 637, DRP1, and FIS1. (C) The relative protein expression of phosphorylated AMPK at Thr172 and AMPK. (D) Cells were pretreated with SMI (0.5%) for 8 h,
compound C (10 mM) for 0.5 h, then stimulated with DOX (1 mM) for 16 h. The relative protein expression of phosphorylated DRP1 at Ser616, DRP1. The values
represent the mean ± SD. (n = 3). *P < 0.05, **P < 0.01 vs. control group, #P < 0.05, ##P < 0.01 vs. DOX injury group, $$P < 0.01 vs. SMI treatment group.
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DISCUSSION

DOX-induced cardiac dysfunction is attributable to elevated
oxidative stress and mitochondrial dysfunction. SMI is
commonly used in the treatment of CVD and is often
combined with DOX in clinic to increase its anti-tumor effects
and reduce cardiotoxicity. Although experimental evidences
have shown that SMI protected myocardium against DOX via
scavenging free radical and relieving calcium overload (Wang
and Ma, 2001; Chen L. et al., 2003; Liu et al., 2009), it is not clear
if the protective effect is associated with maintaining
mitochondrial homeostasis. The present study confirmed the
cardioprotective effect of SMI on DOX-induced myocardial
injury both in vivo and in vitro. Our findings further suggested
that its protective mechanism might be attributed to activating
AMPK and PI3K/Akt signaling pathway, so that regulated
mitochondrial oxidative stress and dynamics, and thereby
inhibited apoptosis.

Myocardial injury caused by DOX includes both acute and
chronic injuries. Chronic cardiotoxicity of DOX is more
common than acute one in clinic (Kalyanaraman, 2020). It
manifests progressive myocardial dysfunction after DOX
administration and presents development of left ventricular
systolic dysfunction (Menna et al., 2008). With the continuous
dosage accumulation, the histopathological hallmarks appear,
including cytoplasmic vacuolization with the myocytes,
myofibrillar disarray and mitochondria swelling (Ferrans et al.,
1997). In addition, cardiomyocyte hypertrophy appears to some
extent (Mouli et al., 2015; Huang X. et al., 2019). DRZ is a well-
recognized cardioprotective agent for the treatment of
anthracycline-induced cardiotoxicity. It has been reported to
alleviate DOX cardiotoxicity through replacing the iron in the
iron-DOX complex (Trajković et al., 2007). In the current study,
both SMI and DRZ exhibited strong cardioprotective effects on
chronic injured myocardium by DOX, with promotion of
survival, improvement of left ventricular function, suppression
of pathological injury and alleviation of cardiac hypertrophy.
Moreover, since SMI used in the present study was the same
batch as our previous study, its quality control could be referred
to the previous one (Yu et al., 2019).

Oxidative stress is a vital factor in the progression of DOX
damage and mitochondrial dyshomeostasis in cardiac cells. DOX
can be transformed to semiquinone, and then reacted with
oxygen to create superoxide anions. In the meanwhile, DOX
chelates free iron to form an iron-DOX complex, thereby leading
to ROS generation (Cappetta et al., 2017). DOX accumulates in
the mitochondria and damages the mitochondria electron chain,
which finally leading to enhanced production of ROS (Du et al.,
2019). Therefore, DOX-induced ROS accumulation is a major
reason for cardiotoxicity. Consistent with these findings, our
results suggested that DOX dramatical ly promoted
mitochondrial O2

−· production, which was attenuated by
SMI pretreatment.

Oxidative stress damages mitochondrial membrane
permeability which leads to myocardial dysfunction. In the
presence of excessive ROS leakage, mitochondrial inner
Frontiers in Pharmacology | www.frontiersin.org 12
membrane anion channel can be activated. Simultaneously, it
contributes to mPTP opening (Li et al., 2017), which facilitates
decrease of mitochondrial membrane potential. These changes
trigger apoptosis through the mitochondria-dependent pathway
(Huang K. Q. et al., 2019). In our study, both in vivo and in vitro
studies have demonstrated that DOX induces apoptosis, which
could be relieved by SMI treatment, due to alleviation of
mitochondrial depolarization and decreased mitochondrial
membrane potential.

Mitochondria are the main site for ROS production
(Townsend et al., 2007). When DOX accumulates, ROS are
generated by diminishing the redox cycle at complex I of the
electron transport chain (ETC), resulting in the blockage of ATP
synthesis (Alexieva et al., 2014; Wen et al., 2019). Consistent with
previous studies, our data showed that DOX treatment triggered
an elevated ROS production and a declined ATP generation,
which might be due to ETC damage. Nevertheless, an interesting
finding of our research was that SMI significantly suppressed
ATP production in DOX-treated H9c2 cardiomyocytes, although
it exhibited protective effect on mitochondrial membrane
potential as well as inhibitive effect on oxidative stress. Of
note, during the mitochondrial oxidative phosphorylation, with
the production of ATP, 1–2% of the O2 consumed by
mitochondria receives electron leaked by the components of
the mitochondrial ETC and gets converted into ROS (Chen Q.
et al., 2003; Tremblay and Delbes, 2018). In addition, a previous
study has found that Ginseng or ginsenosides may present
neuroprotective activity by reducing formation of ROS and
ATP through suppressing the ATP synthase activity (Kong
et al., 2018). Accordingly, a possible explanation for the
suppression of ATP production is that SMI might inhibit
mitochondrial oxidative phosphorylation thereby suppressing
ROS formation.

Several evidences support a protective role of PI3K/Akt
signaling pathway in DOX-induced cardiac dysfunction (Shaw
and Cantley, 2006; Hu et al., 2019). The activation of PI3K/Akt
signaling pathway could suppress cardiomyocyte apoptosis in
DOX-injured cardiomyocyte. GSK-3b phosphorylation prompts
cell resist mPTP opening and subsequently apoptosis (Nishihara
et al., 2007). The present study found that SMI increased PI3K
protein expression and promoted Akt and GSK-3b
phosphorylation in DOX-injured cardiomyocyte. Once a PI3K-
specific inhibitor added, this anti-apoptosis effect of SMI was
reversed. Moreover, the PI3K-specific inhibitor markedly
suppressed the SMI-medicated mitochondrial O2

−• and
mitochondrial membrane potential, suggesting that SMI
regulated the mPTP opening through activating PI3K/Akt/
GSK-3b.

Mitochondrial fusion and fission processes preserve the
functional integrity of mitochondria. Both inhibition of
mitochondrial fusion protein and promotion of mitochondrial
fission protein result in mitochondrial fragmentation, which
facilitates mitochondrial dependent apoptosis (Frank et al.,
2001; Qi et al., 2018). Mitochondrial fission mainly triggered
by DRP1 recruitment from the cytosol to the OMM, which
regulated by DRP1 phosphorylation at both Ser616 and Ser637.
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DRP1 Ser616 phosphorylation induces DRP1 translocation to
mitochondria with the help of FIS1 (Toyoma et al., 2016; Qiu
et al., 2019). We found that DOX induced excessive
mitochondrial fragmentation and increased DRP1 Ser616
phosphorylation, but no changes of FIS1 level. To our surprise,
although SMI inhibited excessive mitochondria fragmentation, it
had no obvious effect on the increased DRP1 phosphorylation at
Ser616. In particular, AMPK promotes DRP1 phosphorylation at
the other site, Ser637. Phosphorylated DRP1 at Ser637 inhibits
DRP1 oligomerization and suppresses mitochondrial fission
(Hall et al., 2014). Accordingly, we further investigated
phosphorylation level of DRP1 at Ser637 and regulating effect
of AMPK. Our data revealed that DOX markedly reduced DRP1
Ser637 phosphorylation and AMPK phosphorylation, which was
largely restored by SMI treatment. This effect of SMI disappeared
when AMPK inhibitor was added to cells. Therefore, it is
probably that SMI suppressed excessive fragmentation via
activating AMPK and promoting DRP1 Ser637 phosphorylation.
Notably, despite AMPK could be activated by low ADP : ATP.
(Davies et al., 1995; Sanders et al., 2007), our data showed that
DOX decreased both ATP product ion and AMPK
phosphorylation, which in accordance with previous studies
(Gratia et al., 2012; Wang et al., 2012).

Inhibition of fusion leads to mitochondrial fragmentation.
MFN1 and MFN2 modulate mitochondrial fusion for the OMM,
while OPA1 for the IMM. OPA1 has two forms: L-OPA1 and S-
OPA1. The L-OPA1 (92kDa) regulates IMM fusion; while S-
Frontiers in Pharmacology | www.frontiersin.org 13
OPA1 (86kDa), less active forms of OPA, occurs to inhibit fusion
(Duvezin-Caubet et al., 2006; Ehses et al., 2009). The loss of
mitochondrial membrane potential reduced OPA1 activity,
thereby disrupting in mitochondrial fusion (Hall et al., 2014).
Our data demonstrated no DOX-induced changes in MFN1 and
MFN2 protein expression, but a decrease in ratio of L-OPA1 to
S-OPA1. Taken together, SMI alleviated the inhibition of
mitochondrial fusion caused by DOX probably via increasing
OPA1 activity.
CONCLUSIONS

Both in in vivo and in vitro model of DOX-induced
cardiomyopathy and cardiomyocyte apoptosis, we demonstrated
that SMI could alleviate DOX-induced cardiotoxicity, improve
cardiac function, and maintain mitochondrial homeostasis
through activation of AMPK and PI3K/Akt/GSK-3b signaling
pathway (Figure 9). Further work will be necessary to define
how SMI ingredients coordinately regulate signaling pathway to
prevent DOX-induced cardiotoxicity.
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