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Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. 
Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltrans-
ferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery 
and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in 
mammals; and is H3K4 methylation their key function?
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Background

The mixed lineage leukemia (MLL) gene was originally 
identified in humans due to its association with a common 
breakpoint found in a subset of incurable acute leukemias 
[1–4]. Most MLL gene mutations in leukemia are chromo-
some translocations that truncate the MLL gene and fuse 
it in frame to an ever-increasing number of different part-
ner genes [5]. The role of MLL mutations in leukemia has 
been extensively explored in multiple reviews over the years 
[6–9]. Here, we focus on what is known about the function 
of the wild-type MLL protein and its related family mem-
bers, a perhaps less studied but in some ways even more 
complicated topic.

History

When the human MLL cDNA was first sequenced [2–4], it 
was found to have a striking homology to the Drosophila 
gene trithorax [10]. Trithorax (or trx) is a founding mem-
ber of the trithorax group (trxG) of proteins [11, 12] which 

were originally identified as regulators of Homeotic (or 
Homeobox, Hox) genes in Drosophila, a set of genes that 
are essential for body patterning in multi-cellular organ-
isms [11–15]. TrxG proteins maintain the expression of Hox 
genes and this is antagonized by the repressive activity of the 
Polycomb group (PcG) of proteins [13, 15, 16]. Importantly, 
neither group of regulators is required for initiating Hox gene 
expression, but instead they are required to maintain expres-
sion patterns once they have been established by early acting 
transcription factors [15, 17]. Interestingly, both PcG and 
trxG genes were discovered in parallel with the Hox genes, 
due to the overall importance of this entire system for con-
trolling development of the anterior–posterior axis [11–15]. 
Seminal work in mice showed that mammalian Mll behaves 
like a member of the trxG, in that Mll knockout (KO) mice 
display embryonic lethality and body plan defects (Embry-
onic day 9; E9) caused by altered Hox gene expression pat-
terns [18, 19]. A key aspect of this work is that, similar to 
observations with trx mutants, Hox gene expression patterns 
initiate normally in Mll mutants but only break down at later 
stages of development [18, 19].

The mutually antagonistic nature of PcG and trxG func-
tion was highlighted by the observation that PcG/trxG 
double mutants in both Drosophila [20–22] and mice [23] 
produced embryos that were phenotypically closer to wild 
type than either individual mutation. Further support of 
this model came from work that revealed another class of 
genes, the so-called “enhancers of trithorax and Polycomb” 
(ETPs, [24]). For example, the Drosophila gene Additional 
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sex combs (Asx) is a key member of this group [25] whose 
ETP function may be conserved in mammals [26]. Muta-
tions in ETP genes enhance the activity of both PcG and 
trxG mutations, but alone they display phenotypes closer to 
wild type [25, 27].

Despite the early observations that PcG and trxG proteins 
balanced each other out and were required for maintenance 
but not initiation of gene expression, the genetics alone did 
not reveal any clues to the function of these proteins on a 
molecular level. A key aspect of this came from work on 
the SET domain.

The SET domain and methyltransferase 
activity

SET is an acronym [28] taken from the founder members of 
this family: Suppressor of variegation 3-9 (Su(var)3-9) [28]; 
Enhancer of Zeste (E(z)) [29]; and Trithorax [30]. All three 
are chromatin proteins, with Su(var)3-9 promoting repres-
sive heterochromatin and E(z) and trx being members of the 
PcG and trxG, respectively. What was interesting to the field 
at the time was that these proteins, with apparently quite dif-
ferent functions, all contained a homologous protein domain 
indicating a possible similar activity. Using sequence homol-
ogy, the SET domain was found in over 140 genes in multi-
ple species including plants, bacteria and some viruses [31, 
32]. The recognition that this domain was present in some 
plant N-methyltransferases led to the discovery that the SET 
domain in mammals was a lysine methyltransferase (KMT), 
capable of methylating lysine residues on histones [31].

Methylation had long been known to occur on histone 
proteins [33], including on specific lysine residues in a 
mono-, di- or tri-methyl form (reviewed in: [34–36]). A key 
discovery in understanding the distinct functions of different 
SET domain-containing proteins was that these domains had 
specificity for different lysine residues. For instance, EZH2, 
the mammalian homolog of the PcG protein E(z), specifi-
cally methylates lysine 27 on histone H3 (H3K27) [37] while 
SUV39H1, homolog of heterochromatic protein Su(var)3-9, 
methylates lysine 9 on histone H3 (H3K9) [31]. Interest-
ingly, a viral SET domain-containing protein was identified 
with intrinsic H3K27 methyltransferase capabilities, raising 
the possibility that viral proteins may be able to alter the 
epigenome of the host [38].

Surprisingly, in contrast to SUV39H1 and EZH2, the 
MLL SET domain was initially thought to be functionally 
inactive [31]. However, subsequent work showed that it had 
methyltransferase activity specific for lysine 4 on histone H3 
(H3K4) [39, 40], a modification known to be associated with 
active genes. H3K4 methyltransferase activity was found to 
be targeted directly to Hox genes by the full-length MLL 
protein and this resulted in the activation of their expression 

[39]. Previous work had identified Set1 in Saccharomyces 
cerevisiae as the major H3K4 methyltransferase in yeast 
[41–44], leading some to suggest that Set1 could be the 
yeast homolog of MLL/trx [45, 46]. However, subsequent 
work identified mammalian equivalents of Set1 [47–49], 
suggesting that although MLL and S. cerevisiae Set1 were 
related in their SET domains, the MLL protein had likely 
evolved to also take on other functions. In addition, the dis-
covery of other MLL/trx-like SET domain-containing genes 
in Drosophila such as trithorax-related (trr) [50, 51] and 
Drosophila-Set1 (dSet1) [52, 53] indicated that MLL-like 
genes may represent a specific group in higher organisms 
that had diverged from the original Set1 protein in yeast 
(Fig. 1). This point is discussed in more detail below.

In the original studies that demonstrated MLL H3K4 
methyltransferase activity, neither the purified SET domain 
[39] nor a purified MLL complex [40] was able to deposit 
trimethylation (H3K4me3). However, later work showed 
that a different MLL complex preparation actually had a 
preference for trimethylating H3K4, and this was associated 
with elevated H3K4me3 at Hox genes and stimulation of 
transcription from an in vitro chromatin template [54]. The 
apparently contradictory results were clarified by the obser-
vation that the MLL SET domain requires three cooperating 
proteins for full methyltransferase activity: WDR5, RbBP5 
and ASH2L [55]. These components were not identified in 
the original MLL complex purification [40], but it is now 
known that WDR5, RbBP5 and ASH2L are common com-
ponents of all H3K4me3 SET domain complexes, something 
that is also shared with Set1 in yeast [56].
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Fig. 1   Sequence conservation of MLL family proteins. Evolution-
ary distances between MLL family protein sequences in human (Hs), 
mouse (Mm), Drosophila (Dm), Saccharomyces cerevisiae (Sc) and 
Schizosaccharomyces pombe (Sp), calculated using ClustalW. Hori-
zontal lengths are proportional to sequence similarity distance
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Overall, the major importance of the SET domain work 
was that it provided a possible functional explanation for the 
antagonism of PcG vs trxG proteins. The ability to methyl-
ate specific lysine residues could help promote either gene 
activation (H3K4me3) or repression (H3K27me3), thus it 
was initially thought that the main function of these proteins 
was mostly explained by SET domain activity. Differential 
SET domain function also provides a possible functional 
explanation for the observation that the ETP Asx/ASXL1 is 
required for both trxG and PcG function [25, 26]. Asx has 
been found to interact with both the E(z) and Trx protein 
SET domains, controlling both activation and repression 
by modulating H3K4me3 and H3K27me3 levels at target 
loci [57]. However, the Asx family co-purifies in a complex 
containing the deubiquitinase BAP1 rather than EZH2 or 
MLL in both Drosophila and mammals [58], suggesting that 
further characterization of these interactions is required.

Despite these exciting observations, the fact that deletion 
of the MLL SET domain resulted in viable and fertile mice, 
albeit with developmental skeletal defects and disturbed Hox 
gene expression [59, 60], argued that the SET domain alone 
could not account for the main function of the MLL protein.

The MLL family

There are six members of the “MLL family” in mammals 
[56, 61]. The family is made up of three pairs of highly 
structurally-related proteins, with each pair related to a sin-
gle Drosophila protein (Fig. 1) [56, 62]. There has been 

some confusion about the naming of the individual mem-
bers, especially MLL2/4 [7], but we adopt the convention 
here of referring to the human gene at 19q13 as MLL2/
KMT2B, which fits best with the structural relatedness of 
the proteins (see Figs. 1 and 2) as further described below 
[61]. MLL (MLL1 or KMT2A [1], human chromosome 
11q23) pairs with MLL2 (KMT2B [63, 64], human chro-
mosome 19q13) and these are both most closely related 
to trx itself [2–4, 10, 50, 62]. MLL3 (KMT2C, human 
chromosome 7q36 [65, 66]) pairs with MLL4 (KMT2D, 
human chromosome 12q13 [67, 68]) and these are highly 
related to the trithorax-related (trr) protein [50, 62]. Finally, 
SETD1A (KMT2F human chromosome 16p11 [47]) pairs 
with SETD1B (KMT2G human chromosome 12q24 [49]) 
and these are both closest to the Drosophila Set1 protein 
(dSet1) which in turn is the closest homolog to S. cerevisiae 
Set1 (Fig. 1) [52, 53, 62]. Although MLL5 (KMT2E [69]) 
was originally thought to be a member of the MLL family, 
the lack of intrinsic KMT activity and the observation that 
the MLL5 SET domain is divergent from the rest of the fam-
ily has led to it being reclassified as representing a different 
subgroup of SET domain proteins [70].

The main commonality between the MLL family mem-
bers is that they share a highly related SET domain that is 
capable of methylating H3K4 [39, 47, 71–73]. MLL fam-
ily members also all interact with the complex components 
WDR5, RbBP5, ASH2L and DPY30, which represent a 
core set of proteins required for full KMT activity of the 
SET domain [56, 62]. However, beyond the SET domain, 
different MLL family members display a different protein 
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Fig. 2   Domain structure of mammalian MLL family proteins. The six 
human MLL family proteins are shown, with the approximate posi-
tions and sizes of identified domains. Numbers indicate the length of 
each protein. All contain a C-terminal SET domain which catalyses 
histone H3K4 methylation, as well as a variable number of DNA-
binding and protein–protein interaction domains. RRM: RNA-rec-

ognition motif; PHD: plant homeodomain; FYRN/FYRC: FY-rich 
domain, N-/C-terminal; SET: Su(var)3-9/E(z)/Trithorax domain; 
HMG box: high mobility group box; Taspase cleavage site: recogni-
tion sequence cleaved by the threonine protease Taspase 1 Adapted 
from [56]
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domain architecture ([56, 62] and see Fig. 2). Furthermore, 
despite residing in overlapping protein complexes, in some 
cases individual members can interact with unique sets of 
proteins, although interacting factors and unique domains 
are often shared between each of the partner pairs [7, 56]. 
Thus, although the MLL proteins are a “family” from the 
perspective that they represent an evolutionary and func-
tional expansion of the SET1 system, it is worth considering 
that there are multiple other mammalian H3K4 KMTs (with 
less closely related KMT domains) such as SET7/9 [74] and 
the SMYD family of proteins [75, 76].

Since the cell has multiple ways of directing H3K4 KMT 
activity beyond the MLL family, it is probably more accurate 
to think of the SET domain as providing only a subset of 
each member’s function. This perspective fits with the obser-
vation that loss of the MLL SET domain does not phenocopy 
deletion of the entire gene [59, 77]. Following this logic, 
we would argue that these proteins, which happen to share 
H3K4 KMT activity and a similar evolutionary origin, are 
functionally distinct with unique biological roles in the cell, 
much in the same way an artist and a decorator may both use 
a paintbrush to different ends in their jobs. For this reason, 
the rest of this review will focus on the potentially unique 
roles of these proteins, how the individual proteins may be 
specifically directed towards key targets in the cell, and how 
their KMT activity may contribute to their overall function.

Function of H3K4 methylation

Before discussing MLL family member-specific activi-
ties, it is worth briefly touching on what the general role 
of H3K4 methylation is thought to be. Some of the earli-
est work showed that H3K4 methylation was highly associ-
ated with transcriptionally active Tetrahymena macronuclei 
[78]. This fit with later observations that indicated increased 
H3K4me2/3 was associated with elevated Hox gene expres-
sion as well as increased in vitro transcription on nucleoso-
mal templates [39, 54, 79–81]. Yeast Set1 is recruited by the 
RNA polymerase II (RNA pol II) elongation machinery to 
target H3K4 methylation to actively transcribed genes [82]. 
Early experiments indicated that MLL could also associate 
with elongating RNA pol II [83], but more recent interac-
tome studies with differentially phosphorylated versions of 
the RNA pol II C-terminal domain (CTD) failed to co-purify 
MLL family complex components [84]. Notably, the lack of 
correlation between MLL and RNA pol II binding within 
the gene body [85] also indicates that if this interaction ever 
occurs in vivo it is not sufficient for localisation.

More detailed analyses of the genome-wide distribution 
of H3K4 methylation supported these initial observations 
of a role in gene regulation but also suggested a slightly 
more nuanced pattern of activity based on the precise 

methylation status. H3K4me1 was found to be primarily 
associated with enhancers, and H3K4me2 was more gen-
erally distributed throughout active genes and enrichment 
for H3K4me3 marked active promoters [86–91]. The dis-
covery of multiple protein domains possessing the ability 
to bind directly to methylated lysine residues provided a 
major functional insight into how H3K4me3 could impact 
promoter function. Examples of tandem chromodomains 
[92, 93], Plant HomeoDomain (PHD) zinc finger motifs 
[94] and Tudor domains [95–97], have been identified 
with specificity for H3K4me3, linking a number of pro-
tein activities with this modification. For example, the 
PHD motif is found in multiple proteins [56] thought to 
promote gene activation including nucleosome remodel-
ers [56, 94, 98] and TAF3, a component of the RNA pol II 
pre-initiation complex [56, 79, 99]. Elegant in vitro stud-
ies indicated that TAF3 binding to H3K4me3 substrates 
could stimulate transcription by increasing the stability of 
the pre-initiation complex, allowing for rapid re-initiation 
through multiple rounds of transcription [79]. In contrast 
to the incredible range of proteins that bind to H3K4me3, 
proteins that specifically recognize H3K4me1 have been 
harder to find [56], although recent work suggests that 
the cohesin complex may be stabilized by binding to 
H3K4me1 [100]. However, the specifics of this interac-
tion have yet to be established.

Despite the strong data linking H3K4 methylation to 
both enhancer and promoter function, SET1 KO or H3K4 
point mutations that completely abolish H3K4me2/3 in 
yeast have a relatively mild phenotype [41]. In general, 
global loss of H3K4me3 induces very few transcriptional 
changes in most systems [101–103]. In addition, despite 
the fact that the breadth and height of H3K4me3 peaks 
correlate with higher levels of gene expression [104, 
105], more recent work in mouse embryonic stem (ES) 
cells suggests that even where there are gene expression 
changes, there is very little correlation between the reduc-
tion in H3K4me3 levels and the extent of gene expression 
changes, at least globally [106]. Instead, the requirement 
for H3K4me3 appears to be gene specific, with the depend-
ence on H3K4me3 appearing to be stronger at genes where 
there are potentially fewer “activating signals” maintaining 
expression. In addition, H3K4me1 appears to be dispensa-
ble for enhancer function in ES cells [107] and throughout 
Drosophila development [108]. These and other obser-
vations have led to the question of whether H3K4 meth-
ylation is actually required for promoting transcription or 
enhancer function, whether it has a much more subtle role 
in modulating gene expression, or even if it is simply a 
non-functional marker of past transcription [103]. Given 
the implied significance of the MLL family SET domains, 
this has important potential implications for their function.
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Distinct biological phenotypes of MLL family 
members

MLL/MLL2

As described above, knockouts of the Mll gene in mice 
produced antero-posterior skeletal defects highly remi-
niscent of the Hox gene-mediated body pattern defects 
observed in trx mutant embryos [18, 19, 23]. Since embry-
onic death occurred relatively early, a full analysis of 
hematopoietic defects was not possible, but initial analy-
sis of KO models indicated that MLL likely has a key role 
in normal hematopoietic development, primarily through 
the regulation of Hox genes [109–111]. Inducible Mll KO 
models were produced to more directly address MLL func-
tion in fetal and adult hematopoiesis, and although there 
were some specific differences between the KO models, in 
general MLL was found to be required for normal hemat-
opoietic development [112–114]. These MLL phenotypes 
are contrasted by the observation that deletion of the MLL 
SET domain has very little impact on embryogenesis [59] 
or hematopoiesis [60]. Since loss of MLL has profound 
effects on gene expression, especially of the Hox genes 
[39, 60, 115], gene activation as mediated by MLL may 
require other domains of the protein (discussed below), 
likely by recruiting components of the MLL complex, such 
as MOF-mediated H4K16 acetylation (H4K16ac) [54, 60]. 
Interestingly, however, this work contrasts with what is 
observed in Drosophila where a point mutation in the SET 
domain of trx is sufficient to produce trx-dependent devel-
opmental defects such as homeotic phenotypes [116]. This 
could be due to the fact that there is some redundancy in 
the mammalian system between the different MLL family 
members, at least in terms of H3K4me2/3 deposition.

Despite the fact that MLL and MLL2 are quite sim-
ilar proteins, KOs of Mll2 display a much more severe 
phenotype that result in early embryonic lethality with 
widespread evidence of apoptosis [61]. No body pattern-
ing defects were observed, but this could be due to the 
severity of the early-stage phenotype [61]. Interestingly, 
loss of MLL2 did have an impact on Hox gene expression, 
but mostly members of the HoxB cluster, whereas MLL 
primarily affects HoxA and C cluster genes [39, 61, 83]. 
Another major difference is that an inducible Mll2 KO has 
no effect on adult tissues or on normal blood development 
[117], except perhaps for a highly specific phenotype in 
macrophages [118]. Knockdown of MLL2 in mouse ES 
cells results in a reduction in H3K4me3 levels primarily 
at bivalent genes (whose promoters are marked with both 
H3K4me3 and H3K27me3), suggesting that MLL2 has 
a specific function at these genes [119, 120], although it 
is not clear whether this function is exclusive to MLL2. 

Notably, knockdown of MLL2 does not appear to disrupt 
the transcriptional changes at bivalent genes induced by 
retinoic acid (RA) [119, 120], even though the MLL2-
associated factor AKAP95 is required for RA-mediated 
gene induction in ES cells [81].

MLL3/MLL4

Mutation of trr, the Drosophila homolog of MLL3/4, dis-
plays a vastly different phenotype to trx. Unlike trx, trr 
mutants do not display Hox gene defects or interact with 
either PcG or trxG mutations [50]. Instead, trr acts in retinal 
development and promotes hormone receptor-mediated gene 
activation [51] as well as functioning in the suppression of 
tissue growth [121].

The extent to which MLL3 and MLL4 play different 
roles in the cell is unclear. MLL4 has been shown to be 
only partly independent of MLL3 in adipogenesis and myo-
genesis [122]. Mll3 KO mice die at birth with no obvious 
morphological abnormalities, whereas an Mll4 KO results 
in embryonic lethality around day E9.5 [122], comparable 
to the Mll KO mouse, although whether Mll4 KOs affect 
Hox gene expression patterns has not been studied. Unlike 
MLL2, MLL4 can impact RA-regulated genes [123]. There 
is also an association of MLL3/4 mutations with some 
leukemias [124], and consistent with this both MLL3 and 
MLL4 are required for normal blood stem and progenitor 
cell function [125, 126].

SETD1A/SETD1B

dSet1 is responsible for most of the H3K4me3 in Drosophila 
[52, 127] and as previously mentioned is the closest relative 
to yeast Set1 (Fig. 1). Despite their high level of similar-
ity, both SETD1A and SETD1B are individually required 
for normal mouse embryogenesis and display quite differ-
ent KO phenotypes [128]. Setd1a KO embryos display a 
severe phenotype and die before gastrulation, while Setd1b 
KO embryos survive until E11.5, albeit in a severely growth-
retarded condition [128]. In line with the embryonic pheno-
types, Setd1a KO ES cells stop proliferating and die, while 
ES cells tolerate the loss of Setd1b [128]. Interestingly, only 
Setd1a KO ES cells display a global loss of H3K4 methyla-
tion [128]. Inducible KO models indicate SETD1A has a 
role in B cell development [129] and in erythropoiesis [130], 
but otherwise a Setd1a deletion does not display hematopoi-
etic defects.

Overall, there are profound phenotypic differences 
between MLL family members, even between the highly 
related gene pairs, which make it clear that each protein has 
a unique function in the organism. Since most MLL fam-
ily members are ubiquitously expressed, the most common 
explanation for this is that their H3K4 methyltransferase 
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activity is differentially targeted within the nucleus. There 
is some evidence for this (discussed below), but it cannot 
fully explain the vast differences in phenotype between the 
different family members. Instead, we argue the biological 
data support the idea that each protein has a distinct molecu-
lar function, and that KMT activity is not the sole or even 
the major molecular role of each protein. In particular, while 
KOs of the different MLL family members have profound 
impacts on normal development, this is not always asso-
ciated with changes in H3K4 methylation. Additionally, 
even though it is the only member to have been directly 
tested, it is clear that loss of MLL SET domain activity does 
not accurately phenocopy loss of the entire protein during 
development.

Distinct functional activities of MLL family 
members

MLL3/4 and enhancer function

In common with MLL/MLL2, MLL3/4 were initially found 
to be important for regulating expression of a subset of target 
genes [123]. However, a broader role for these proteins has 
since been identified at gene enhancers, sequences distal to 
target promoters. Given the initial identification of Trx in 
Drosophila, it is perhaps fitting that its homolog Trr was 
first shown to deposit H3K4me1 at enhancers [131] before a 
similar role was identified for MLL3 and MLL4 [122, 132]. 
Consistent with this, in vitro MLL3/4 show a reduced ability 
to trimethylate H3K4, relative to mono- and dimethylation 
[80, 122, 133].

Deletion of MLL4 disrupts levels of many features asso-
ciated with enhancers, including H3K4me1, H3K27ac, 
Mediator, RNA pol II and enhancer transcription (eRNAs) 
[107, 122, 134], and MLL3/4 KOs disrupt CBP/p300 bind-
ing at these loci [135, 136]. A key feature of active enhanc-
ers is their ability to interact with target gene promoters, and 
these contacts appear to be dependent on MLL3/4. Double 
KOs of Mll3/4 in ES cells result in a reduction in short-range 
(< 100 kb) interactions, as measured by Hi-C, correlating 
with MLL3/4-dependent H3K4me1 loci [100]. Higher reso-
lution analysis revealed specific loss of promoter–enhancer 
contacts for Sox2 [100], Nanog and Lefty [135]. Loss of 
MLL3/4 also resulted in reduced Rad21 (a subunit of the 
cohesin complex) localisation to enhancers [100], suggesting 
a potential mechanism for disruption of promoter–enhancer 
interactions.

Taken together, these results argue for a key role for 
MLL3/4 in the establishment or maintenance of enhancers. 
Is MLL3/4 simply required for deposition of H3K4me1, or 
are the non-SET domains important for enhancer function? 
This issue has been addressed using an ES cell line in which 

SET domain point mutations were introduced in the endog-
enous copies of Mll3 and Mll4, depleting global H3K4me1 
levels [100, 107]. Whilst a reduction in cohesin binding at 
enhancers was observed [100], there were minimal effects on 
transcription, either of eRNAs or at target genes [107] and 
similar results were seen for MLL3/4 SET domain deletions 
[108]. Notably, only small reductions in H3K27ac at enhanc-
ers were observed with the point mutants, compared to the 
strong reductions in the double KO line [107]. Thus, the 
primary function of MLL3/4 at enhancers is likely independ-
ent of histone methylation, although how this is achieved 
is, as yet, unclear. It is worth noting, however, that whilst 
H3K4me1 levels were depleted they were not completely 
eliminated, leaving the importance of this histone modifica-
tion in enhancer function still an open question.

MLL family protein complexes

There is not sufficient space in this review to fully explore 
the detailed and diverse compositions of MLL family com-
plexes. However, here we touch on some of the different 
complex components, with a particular focus on MLL, to 
illustrate how differences in complex composition may 
explain some of the phenotypic differences observed among 
family members.

The stable core complexes of MLL and MLL2 are highly 
similar with very little to differentiate them, although each 
protein displays additional protein interactions that may be 
suggestive of different functions of the two proteins. Both 
MLL and MLL2 are targeted for proteolytic cleavage by 
the threonine aspartase Taspase 1 [40, 137–139], generat-
ing 320-kDa N-terminal (MLL-N) and 180-kDa C-terminal 
(MLL-C) fragments, in the case of MLL (Fig. 2). These 
fragments do not dissociate after cleavage, however; the 
FYRN and FYRC domains interact to form a single domain, 
holding the complex together [140]. Interestingly, cleavage 
separates the C-terminal SET domain from the N-terminal 
portion, which contains all of the known binding domains 
of MLL.

As discussed above, the MLL SET domain is functional 
only when in complex with WDR5, RbBP5 and ASH2L 
[55]. In addition, MLL stably interacts with a number of 
other proteins to modulate its localisation and activity. 
The N-terminus of MLL is associated with two key fac-
tors, menin and LEDGF (lens epithelium-derived growth 
factor) [141–145]. Menin is required for the expression 
of MLL target genes, including Hoxa9, Meis1, CDKN1B 
(p27) and CDKN2C (p18) [72, 143, 146] and this inter-
action is necessary for MLL fusion protein-mediated 
leukemogenesis [143, 147]. The interaction with menin 
(although not LEDGF) is shared with the MLL2 protein 
[72], but not with any other members of the MLL fam-
ily. The interaction between MLL and menin generates 
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a binding pocket for LEDGF, thus generating a ternary 
complex [148]. LEDGF promotes transcriptional activa-
tion [149, 150] and is essential for leukemogenesis [144], 
suggesting that a key role of menin may be to bridge the 
interaction between the two proteins. This transcriptional 
coactivator function [149, 150] could be a unique aspect 
of MLL complex activity. At least in some experiments, 
menin and LEDGF do not appear to be required to recruit 
MLL to target genes, with the N-terminal, menin-interact-
ing, region of MLL being dispensable for recruitment of 
MLL constructs to Hoxa9 [151].

MLL has also been observed to interact with transcrip-
tion cofactors, suggesting that a co-localisation of activi-
ties may be important for its function. For example, inter-
actions have been identified between MLL and the lysine 
acetyltransferases (KATs) CBP [152], MOZ [153] and 
MOF [54], the latter of which is known to be important 
for MLL target gene expression, likely via H4K16 acetyla-
tion [54, 60]. Alone among CXXC domains, the domain 
within MLL has also been found to interact with the PAF1 
complex [151, 154], which may provide a bridge to RNA 
pol II itself [155]. This again could be a unique aspect of 
MLL function, since MLL2 does not bind to the PAF1 
complex [151].

Another distinct characteristic of the founder MLL is its 
negative regulation via interaction with repressive factors. 
Several proteins have been observed to immunoprecipitate 
with the CXXC domain region of MLL, originally defined as 
a repression domain due to the effects of these interactions 
on transcription [156]. Binding partners include the PcG 
proteins BMI-1 and HPC2, and the corepressors CtBP and 
HDAC1 [157]. In addition, the third PHD of MLL is bound 
by the cyclophilin CyP33 [158–161], and the extended 
PHD3/bromodomain region interacts with ASB, a substrate 
recognition subunit for the Elongin B/C-Cullin-SOCS box 
protein (ECS) E3 ubiquitin-ligase, targeting the methyltrans-
ferase for proteolysis during hematopoiesis [162].

MLL2 has very few unique known interacting partners, 
other than an interaction with AKAP95 [81]. The MLL3 and 
MLL4 proteins have multiple distinct interacting partners 
including the H3K27me3 demethylase UTX, PA1, PTIP and 
p53 [73, 163, 164]. However, there is very little that dif-
ferentiates MLL3/4. Similarly, the SETD1A/B complexes 
are highly similar [47–49, 80], although the two proteins 
show distinct subnuclear distributions [49], indicating they 
are non-redundant. In addition to its apparently major role 
in promoting H3K4me3 at promoters in mammals, SETD1A 
also has an important non-SET role in regulating the DNA 
damage response [165]. Although unique complex compo-
nents can help explain functional divergence of MLL family 
members, it is still difficult to fully explain why all six MLL 
family members are individually required for organism sur-
vival, producing distinct KO phenotypes.

Recruitment of MLL family members

To some extent, the term recruitment can be misleading, 
as it would seem to imply a deterministic intent in direct-
ing proteins to where they need to go. Single-molecule 
tracking (SMT) experiments of transcription factor (TF) 
binding in E. coli show that free diffusion coupled with 
non-specific DNA-TF interactions directs TFs towards 
their high-affinity binding sites in a process termed facili-
tated diffusion [166]. Weak, non-specific interactions 
likely represent a general way in which DNA-binding fac-
tors are funnelled down an affinity gradient towards their 
high-affinity binding sites [167]. Chromatin proteins tend 
to lack high-affinity DNA-binding domains and are much 
more likely to contain a large number of low-affinity chro-
matin and DNA-binding domains [98, 168]. Interestingly, 
in mammalian SMT experiments, the behavior of chro-
matin-like proteins suggests that they never freely diffuse 
and are instead “trapped” by a large number of low-level 
weak interactions that cause them to slowly “creep” along 
the surface of chromatin [169]. This behavior is consist-
ent with the notion of multivalency (discussed in [168]). 
Multivalent interactions appear to be relatively common 
for chromatin factors, where many of the binding domains 
have only a low affinity for their substrate. Combining the 
affinities of multiple interactions can not only increase the 
strength of binding, but can also create a higher stringency 
for localisation to sites at which multiple epitopes must 
be present. This is thought to be a major way in which 
chromatin proteins search chromatin and then create sta-
ble complexes at specific chromatin sites [98, 106, 151, 
168]. This idea is also consistent with recent work on the 
involvement of chromatin proteins in the self-organizing 
formation of phase-separated condensates that generate 
distinct regulatory domains [170, 171].

A notable characteristic of the MLL family proteins is 
the presence of multiple chromatin-interaction domains 
(Fig. 2), suggesting that a multivalency effect may be 
responsible for their genomic association. All four MLL 
proteins contain multiple PHD fingers [56, 172], but they 
do not show the same interaction specificities. PHD3 of 
MLL preferentially binds H3K4me3 tails [151, 161, 173], 
allowing the KMT to recognize its own product, and this 
appears to be important for MLL localisation at individual 
target genes [151, 161, 173]. MLL also contains an atypi-
cal bromodomain adjacent to PHD3 that does not appear 
to interact with acetylated lysine residues, although it has 
low stability in vitro and a fully intact domain has been 
difficult to work with [161, 174].

MLL and MLL2 contain a CXXC domain [56, 175], 
a protein domain known to recognize non-methylated 
CG-rich DNA (CpG islands) [176–179]. Interestingly, 
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although MLL and MLL2 overall share a highly similar 
domain architecture with Drosophila trx, trx itself does 
not include a CXXC domain [4, 10], likely because of the 
relative lack of CpG islands in Drosophila [180], suggest-
ing some divergence in localisation mechanisms between 
the species. Recognition of unmethylated CpGs is thought 
to be an important localisation mechanism for MLL [151, 
181], and is required for myeloid transformation by the 
MLL–ENL fusion protein [181]. Although SETD1A/B do 
not contain a CXXC domain, they reside in a complex 
with the CXXC domain-containing protein CFP1 [47–49] 
which stabilizes SETD1A/B activity at promoters [106]. 
MLL3 and MLL4, in contrast, do not possess CXXC 
domains, consistent with the fact that while most active 
gene promoters contain a CpG island [182], only a small 
proportion of enhancers are at CpG islands [183].

The MLL CXXC domain binds CpG DNA with a Kd of 
4.3 µM [178], and the PHD3 affinity for H3K4me3 tails is 
similar (Kd 19 µM [173] or 4.3 µM [161]). Individually, 
these low µM interactions are unlikely to provide sufficient 
binding affinity to stabilize MLL binding at target loci, 
suggesting that the combination of the two interactions is 
necessary for an association with chromatin. In support of 
this, in an experiment involving recruitment of MLL-N frag-
ments to the HoxA9 locus in Mll KO MEFs, both the CXXC 
domain- and PHD finger-containing regions of the protein 
were required [151].

These domains cannot be sufficient for precise targeting 
of MLL, however; the same bivalent interaction (binding 
to unmethylated CpG and H3K4me3) is also used by the 
SETD1A/B complexes [106]. These are localized to active 
gene promoters via CFP1, which contains both a PHD and 
CXXC domain [48, 184, 185]. No single ChIP-seq data-
set exists to compare the binding profiles of these different 
KMTs; however, by inference and in some cases by direct 
comparison, MLL, MLL2 and SETD1A/B all show partially 
distinct genomic distributions [85, 106, 120]. This strongly 
argues that despite the common binding motifs, additional 
activities are required to discriminate the binding profiles 
of these different proteins. For example, MLL and MLL2 
contain additional DNA-binding motifs in the form of mul-
tiple HMG-like N-terminal AT hooks [156], which promote 
binding to AT-rich DNA.

The AT hook and menin/LEDGF interaction domains of 
MLL are dispensable for recruitment of MLL-N to HoxA9 
[151], although without a genome-wide analysis it is dif-
ficult to know whether this applies to all MLL-bound loci. 
LEDGF itself contains a PWWP domain with specificity for 
H3K36me2 [186–190]; whilst MLL and LEDGF binding are 
not observed at all sites of H3K36me2, this may provide an 
additional stabilizing interaction for the complex at chroma-
tin. Indeed, MLL binding at several target genes is reduced 
upon knockdown of the H3K36 methyltransferase ASH1L, 

although this has only been specifically observed in MLL 
rearranged leukemias [190].

One additional possibility is that binding of MLL to 
other chromatin proteins, for example, the KATs p300/
CBP, MOF and MOZ, may provide further stabilizing 
interactions at specific loci. Whilst it is possible to argue 
that MLL “recruits” these KATs to target genes, the reverse 
is also plausible; p300/CBP, for example, interact with a 
large number of transcription factors [191]. Indeed, MLL 
has been shown to bind to CBP cooperatively with CREB or 
MYB, suggesting a synergism with additional factors, which 
may enhance specificity [152, 192]. Further, given that the 
KATs themselves contain chromatin-interaction domains 
(for example, bromodomains [191]) a more nuanced model 
would be that together these proteins generate a network of 
relatively low-affinity interactions, stabilizing the complex 
as a whole at chromatin.

A more sequence-specific mechanism for MLL3/4 inter-
action with chromatin has been proposed. Ectopic expres-
sion of CEBPβ or HOXA9 is sufficient to generate novel 
enhancers, including binding of MLL3/4 and deposition of 
H3K4me1 [122, 193], suggesting the potential for transcrip-
tion factor-mediated localisation. However, the mechanism 
behind this process has not yet been elucidated. In addition, 
MLL3/4 also contain multiple chromatin-binding domains, 
so additional stabilizing interactions may be involved. In 
contrast to the H3K4me3-binding MLL PHD3 domain, the 
tandem PHD4-6 region of MLL4 (see Fig. 2) recognizes 
the histone H4 N-terminal tail, dependent on the absence of 
symmetric dimethylation of H4R3 [194]. A further interac-
tion between ePHD6, a fragment containing PHD6 and the 
preceding zinc finger, and histidine 18 of a histone H4 tail 
peptide, has also been demonstrated [195], indicating multi-
ple contacts between MLL4 and histone H4. These interac-
tions are required for the in vitro methyltransferase activ-
ity of MLL4, and mutation of PHD6 disrupts expression 
of MLL4-dependent genes in vivo [195], although it is not 
clear what effect, if any, this has on enhancer localisation. 
Overall, there is no clear and obvious mechanistic explana-
tion for how each MLL family protein could be uniquely and 
specifically localized to gene targets without the inclusion of 
additional recruitment factors.

Conclusions on the role of H3K4 KMT activity 
in MLL family activity

One of the questions we wanted to address is: why are there 
so many MLL KMTs in mammals? Since each protein is 
individually required for normal development, mammals 
have clearly evolved a need for all six MLL family mem-
bers. However, the data are mixed on how important the 
individual KMT activities actually are. As discussed above, 
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differential recruitment mechanisms of the MLL family do 
not seem to address this issue of specificity. Instead, dif-
ferences in protein complex stoichiometry suggest that 
the requirement for each individual KMT could be deter-
mined to some extent by abundance [188]. This fits with 
the observation that SETD1A is the most abundant MLL 
family member [188] and it also appears to be responsible 
for most H3K4me3 in the cell [128]. If this forms part of the 
explanation, there must be some variation in stoichiometry 
across different tissues and/or stages of development; for 
example, MLL2 appears to be the major KMT responsible 
for H3K4me3 levels during oogenesis [196].

MLL KMT activity is not required for normal devel-
opment or hematopoiesis [59, 60], but this contrasts with 
the observation that in Drosophila, point mutations in the 
trx SET domain are sufficient to cause Hox gene-mediated 
developmental defects [116]. Given the duplication of MLL 
family members in mammals, it is possible that some redun-
dancy in H3K4 methyltransferase activity exists, despite 
their unique non-methyltransferase functions, so the effect of 
the MLL SET deletion is masked by the presence of MLL2 
SET domain function [120]. This also argues that at least 
globally, the KMT activity is more crucial for some mem-
bers than for others, and that many of the MLL proteins have 
evolved to have other functions. For example, an important 
role for MLL may be recruitment of MOF and the promotion 
of H4K16ac [54, 60]. Even SETD1A, which appears to be 
the major KMT in mammals, has additional activities not 
related to SET domain catalytic activity [165]. Alongside 
interactions with different protein complex members, it also 
remains possible that the MLL KMTs could have specificity 
for unique non-histone protein targets, such as methylation 
of p53 [197, 198].

One other key question is: how important is H3K4 meth-
ylation for the cell? In the case of MLL3/4, it seems clear 
that the proteins themselves are required for enhancer func-
tion, but MLL3/4-mediated H3K4me1 is not essential [107, 
108]. The evidence is also fairly strong that H3K4me3 is not 
absolutely required for transcriptional activation or enhancer 
function [103], and in fact is not intrinsically required for 
cell survival [41]. The SET domain mutation in Drosophila 
trx suggests that although H3K4me3 may not be important 
for transcription or cell survival per se, it still could have 
a key role in normal development [116]. Similarly, some 
PcG mutations have modest effects on gene regulation in 
ES cells, but these same PcG mutant ES cells are unable to 
properly control gene expression transitions through differ-
entiation [199]. This is consistent with the original obser-
vations of PcG and trxG mutations, where early develop-
ment often proceeded normally, and only at later points did 
development and normal gene regulation begin to break 
down [15, 17]. It has been argued that the role of H3K4me3 
is to reduce transcriptional noise and increase consistency 

between individual cells, rather than dictate the population 
mean gene expression level [103, 200]. As most analyses of 
H3K4me3 look at bulk population averages, these effects 
could have been missed in past experiments. Further, given 
the levels of cellular heterogeneity in a developing organism, 
this issue is likely of particular relevance compared to the 
steady state of cell lines.

One major function of histone marks, such as H3K4me3, 
then, may be to contribute to transcriptional memory, ensur-
ing that active genes retain that state during successive cell 
divisions. Notably, Trx remains associated with DNA during 
S phase, suggesting that it may rapidly methylate nascent 
nucleosomes after deposition [201]. Interestingly, when 
unusual DNA structures disrupt DNA replication, histone 
marks are lost and gene regulation breaks down [202]. This 
fits with the potential role of H3K4 methylation in stabiliz-
ing promoter complex formation [79], especially through the 
cell cycle, thus increasing the probability that proper gene 
expression patterns are maintained. Indeed, histone marks 
are known to influence TF binding immediately following 
DNA replication [203]. In this way, H3K4me3 may provide 
less of an on–off switch than a way to decrease the stochastic 
nature of complex formation, thus ensuring the stability of 
gene expression patterns. This may explain why these marks 
and proteins are so often mutated in cancer, where increased 
stochasticity may make advantageous changes more likely in 
the expression of genes regulating proliferation and differ-
entiation. Importantly, such a model would also explain why 
these systems are only absolutely crucial during the highly 
dynamic processes of multi-cellular organism development.
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