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Introduction: Organs procured following brain stem death (BSD) are the main source of organ

grafts for transplantation. However, BSD is associated with inflammatory responses that may

damage the organ and affect both the quantity and quality of organs available for transplant.

Therefore,weaimed to investigateplasmaandbronchoalveolar lavage (BAL) pro-inflammatory

cytokine profiles and cardiovascular physiology in a clinically relevant 6-h ovinemodel of BSD.

Methods: Twelve healthy female sheep (37e42 Kg) were anaesthetized and mechanically

ventilated prior to undergoing BSD induction and then monitored for 6 h. Plasma and BAL
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endothelin-1 and cytokines (IL-1b, 6, 8 and tumour necrosis factor alpha (TNF-a)) were

assessed by ELISA. Differential white blood cell counts were performed. Cardiac function

during BSD was also examined using echocardiography, and cardiac biomarkers (A-type

natriuretic peptide and troponin I were measured in plasma.

Results: Plasma concentrations big ET-1, IL-6, IL-8, TNF-a and BAL IL-8 were significantly

(p < 0.01) increased over baseline at 6 h post-BSD. Increased numbers of neutrophils were

observed in the whole blood (3.1 � 109 cells/L [95% confidence interval (CI) 2.06e4.14] vs.

6�109cells/L [95%CI3.92e7.97];p<0.01)andBAL(4.5�109cells/L [95%CI0.41e9.41]vs.26 [95%CI

12.29e39.80]; p ¼ 0.03) after 6 h of BSD induction vs baseline. A significant increase in ANP

production (20.28pM[95%CI16.18e24.37] vs. 78.68pM[95%CI 53.16e104.21];p<0.0001)andcTnI

release (0.039 ng/mL vs. 4.26 [95%CI 2.69e5.83] ng/mL; p < 0.0001), associated with a significant

reduction in heart contractile function, were observed between baseline and 6 h.

Conclusions: BSD induced systemic pro-inflammatory responses, characterized by increased

neutrophil infiltration and cytokine production in the circulation and BAL fluid, and

associated with reduced heart contractile function in ovine model of BSD.
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Organ transplantation remains themainstay treatment for

end-stage organ failures. However, the availability of suitable

organs for transplantation is insufficient for this demand

[1e6]. Approximately 50% of donated organs are non-

transplantable [1,2,4,5]. The majority of organs are donated

by patients exposed to brain stem death (BSD) who have suf-

fered irreversible brain injury that subsequently leads to

cessation of brain stem function [1e5]. BSD is also considered

the main cause of pre-transplantation injury. BSD causes

devastating haemodynamic, neurohumoral and immunolog-

ical perturbations, which can result in graft dysfunction of the

donor organ, thus increasing chances of rejection and poor

patient outcomes post-transplantation in the recipient [2,6,7].

BSD is often accompanied by a systemic inflammatory

response, which triggers inflammatory signalling cascades,

increases in expression of transcriptional regulators and

infiltration and activation of immune cells [7e11]. During the

initial phase of BSD, the ischemic brain damage releases in-

flammatory mediators that could induce a systemic
inflammatory response [12]. The catecholamine storm elicited

from BSD [13] also induces a systemic inflammatory response

by either changing the metabolism to anaerobic [14] (meta-

bolic changes after brain death modulate the inflammatory

response) [15] or inducing ischemia in the gut, thereby

releasing cytokines [16,17]. Moreover, neuropeptides released

from central nervous system may also form the link between

BSD and a systemic inflammatory response [18].

Previous human and porcine model studies, have identi-

fied up-regulation of inflammatory mediators such as TNFa,

IL-6 and macrophage inflammatory protein 1-alpha in blood

circulation following the onset of BSD [16,19e21]. These me-

diators further exacerbate the inflammatory response within

tissues, potentially leading to impaired graft function [22,23].

Several studies have shown that elevated IL-8 in bron-

choalveolar lavage (BAL) fluid [24] and lung tissue [25] of brain

dead patients was associated with early graft failure in the

transplant recipient. Neutrophils also appear to be a major

contributor to the pro-inflammatory reaction, tissue injury

and graft dysfunction in the BSD donor [26,27]. BSD also con-

tributes to increased oxidative activity, up-regulation of

oxidative enzymes [28] and generation of chloramine, a

biomarker for protein oxidative damage which has been

positively correlated with IL-6 in patients suffering from BSD

[29]. Previous studies using animal models of BSD and brain-

dead donors have also suggested the importance of ET-1 in

lung allograft survival and rejection [30,31]. Release of ET-1

may contribute to pulmonary inflammation and lung injury

pathogenesis [32,33].

BSD induces changes that compromise cardiac function

and affect the graft response after transplantation [34,35]. The

hyperdynamic cardiac response to BSD causes increased

pulmonary and systemic after-load, leading to biventricular

distension, myocardial cell death and eventual heart failure

[36]. Increased ventricular stretching, by either increased pre-

load or after-load, has been shown to be associated with

increased plasma levels of A-type natriuretic peptide (ANP) in

humans that can cause endothelial activation and subsequent

shedding of individual components of the glycocalyx, and

histologically detectable degradation [37]. Elevated cardiac

troponin I (cTnI) in the serum of heart donors has been linked

https://doi.org/10.1016/j.bj.2021.10.007
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to graft failure after transplant [38,39]. Furthermore, inflam-

matory process induced after BSD may also contribute to

myocardial dysfunction [35].

We recently published the first 24-h ovinemodel capable of

elucidating the role of the endothelin axis in BSD related

pulmonary inflammation [10]. We have shown an early

elevation and then restitution of both ET-1 and big ET-1 con-

centrations in plasma after brain death. Here we further

characterise our ovinemodel of BSD by examining the plasma

and bronchoalveolar lavage (BAL) pro-inflammatory cytokines

profile and cardiovascular changes, at different time courses

that occur during BSD.
Methodology

Animal BSD model

Twelve female merino sheep (37e42 Kg, 2 years old) under-

went BSD procedures for 6 h as previously developed and

described by our group [10]. The animals only had access to

drinking water during the night prior to the experiment.

Following anaesthetic induction, all animals were mechani-

cally ventilated and standard instrumentation procedures

were performed [40]. Briefly, a cranial burr hole was created

midway between the midline and lateral edge of the cranium

followed by the extradural placement of 5.3 mm Foley cath-

eter (Brad BIOCATH, United Kingdom). One hour after

completion of all invasive procedures, BSD was induced by
Fig. 1 Experimental timeline. Once the sheep were brought into t

placement of the central venous line and prior to induction of ana

mechanically ventilated and remaining instrumentation procedu

following completion of instrumentation, after which pre-BSD (P

lavage (BAL) samples were collected. BSD was then induced by infl

was confirmed by standard clinical observations [41]. Once BSD w

taken immediately, and the sheep were monitored in ICU setting

BSD hormone resuscitation 2 h following confirmation of BSD (T2)

as per the sampling schedule listed above. The sheep were huma

samples.
slowly inflating the intracranial catheter with 30 mL saline

over 30 min to increase intracranial pressure (ICP) above the

mean arterial pressure (MAP). Confirmation of BSD was ach-

ieved by continuously negative cerebral perfusion pressure

(defined as MAP-ICP) for greater than 30 min, loss of pupillary

and corneal reflexes and lack of respiratory efforts. All sheep

received hormone resuscitation 2 h following confirmation of

BSD; triiodothyronine (4 mg bolus and 3 mg/h infusion), vaso-

pressin (1 unit bolus followed by 0.5e4.0 U/hr infusion,

adjusted to SVR 800e1200 dyn s.cm-5) and methylpredniso-

lone (15 mg/kg) [10]. Sheep were monitored and hemody-

namically managed for 6 h after BSD confirmation, then

humanely sacrificed with sodium pentobarbitone (162.5 mg/

kg). Fig. 1 below provides a schematic representation of the

experimental timeline. All animal experiments were per-

formed at the Medical Engineering Research Facility

(Queensland University of Technology; QUT) and approved by

the QUT Animal Ethics Research Committee (animal ethics

number 1400000922).

Blood collection and analysis

Whole blood was collected from the facial artery during pro-

cedures (Baseline, pre-BSD, 0, 2, 4 and 6 h post BSD). Blood gas

measurements were detected in fresh whole blood using

ABL800 FLEX analyser (Radiometer, Australia). Full blood

count analysis was performed on EDTA whole blood using

Coulter Act (Australia), and a thin film of blood smear was

prepared for differential white blood cell (WBC) count. The
heatre, a baseline blood sample (B) was taken following

esthesia. Following induction of anaesthesia, the sheep were

res were completed [40]. The sheep were rested for 1 h

B) echocardiography (ECHO), blood, and bronchoalveolar

ation of the catheter slowly over 30 min, at which point BSD

as confirmed (T0), blood samples and ECHO measures were

s for 6 additional hours (T0-T6). The sheep received standard

. Blood, BAL and ECHOmeasures were collected progressively

nely euthanised at T6 following collection of all relevant

https://doi.org/10.1016/j.bj.2021.10.007
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cells were observed using a light microscope (ZEISS, Australia)

under total � 400-magnification power. Whole blood was

centrifuged twice at 3000�g for 15 min (4 �C), platelet poor

plasma samples were aliquoted immediately and stored at

�80 �C until analysis.
BAL fluid collection and analysis

BAL samples were collected using bronchoscopy at baseline,

2- and 6-h post-BSD. Samples were centrifuged at 1500�g for

10 min at room temperature, and the supernatant was

collected and stored at �80 �C until analysis. The total cell

number was estimated using Coulter Counter (Invitrogen,

Australia). Cell suspensions (1 � 106 cells/mL; 100 mL) were

prepared and deposited on cytocentrifuge chambers (Shan-

don, Australia) and centrifuged at 500�g for 5min. Differential

WBC was determined by counting in a circular pattern from

right to left until 200 cells were obtained under total � 400

and � 1000 magnification power (results expressed as a per-

centage of total cell number).
Cytokines

Our group has recently validated the antibodies and devel-

oped ELISA assays for sheep cytokines IL-1b, IL-6, IL-8 [41] and

TNF-a [42]. EDTA plasma and BAL samples were analysed in

duplicate and absorbance was read at 450 nm, with back-

ground correction read at 670 nm. A standard curve was

created and a four-parameter logistic (4- PL) curve fit used to

determine sample and standard concentrations (GraphPad

Prism 8, CA, USA).
Fig. 2 Differential WBC count in BAL ((A) neutrophils, (B) monocy

blood ((E) neutrophils, (F) monocytes/macrophages, (G) lymphocy

baseline (B), pre-BSD (PB), 0, 2, 4 and 6 h. Data are expressed as m

****p < 0.0001 compared to baseline.
Endothelin

Big ET-1 and ET-1 concentrations were measured in EDTA

plasma and BAL samples using commercially available ELISA

kits (Cat # BI-20052 and BI-20082H; United Bioscience, Austria).

Samples were analysed in duplicate and absorbance read at

450 nm with background correction read at 630 nm on a

microplate reader (BMG Labtech, VIC, Australia).
Cardiac biomarkers

ANP wasmeasured in EDTA plasma using radioimmunoassay

with high performance liquid chromatography (PerkinElmer,

New Zealand) according to previously publishedmethods [43].

cTnI was quantified in heparined plasma using a commercial

ELISA kit (Cat# CTNI-9-HSP; Fisher Biotech, Australia). Sam-

ples were analysed in duplicate and read at absorbance

450 nm using a microplate reader (BMG Labtech, VIC,

Australia).
Cardiovascular function

Cardiac function was assessed by direct epicardial two-

dimensional (2D) echocardiography scanning in the right-

lateral decubitus position with a 3 S transducer and a spacer

(Vivid.i, GE Healthcare©, U.S.A). Three-beat ECG-gated loops

in the parasternal short axis (PSAX) were recorded at a frame

rate of 50e80 frames per second (FPS) at the left-ventricular

base, mid-papillary and apical level. Data were stored and

transferred (Transcend® hard disc drive, Taiwan) for offline

analysis on a vendor independent platform using 2D Cardiac
tes/macrophages, (C) lymphocytes and (D) eosinophils) and

tes and (H) eosinophils) during BSD in sheep (n ¼ 12) at time

ean ± 95%CI. *p < 0.05, **p < 0.01, ***p < 0.001 and

https://doi.org/10.1016/j.bj.2021.10.007
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Fig. 3 Plasma IL-6 (A), IL-8 (B), IL-1b (C) and TNF-a (D) in BSD-induced sheep (n ¼ 12) at baseline (B), pre-BSD (PB), 0, 2, 4 and 6 h.

Data are expressed as mean ± 95%CI. ***p < 0.001, ****p < 0.0001 compared to baseline.
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Performance Analysis software (TomTec Imaging Systems,

Munich, Germany). Measurements at baseline and at 6-h were

compared for the end-diastolic area (EDA), end-systolic area

(ESA), fractional area change (FAC), global circumferential

strain (GCS), global radial strain (GRS) and torsion.

Reduced thiols

Serum and BAL reduced thiols concentrations were quantified

with 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) reagent in

triplicate at absorbance 412 nm using a 96-well plate reader

according to the method of Hawkins et al. [44]. Reduced

glutathione (0e0.5 mM) served as an external standard and

datawere expressed relative to the total protein concentration

(nmol/mg protein).

Chloramine

Chloramine is a stable product of protein oxidation and was

quantified according to previously published methods [45].

50 ml of developing reagent (2 mM 3, 30, 5, 50-Tetrame-

thylbenzidine (TMB) in 400 mM acetate buffer, pH 5.4, con-

taining 10% dimethylformamide and 100 mM sodium iodide;

150 ml) was added to 96-well plate wells containing 200 ml of

the serum. Samples were incubated on a plate shaker at

50 rpm for 25 min. The plate was read at absorbance 650 nm
using a 96-well plate reader and results were expressed in

nmols/mg of protein.

Statistics

Normality of distribution was assessed by inspecting the

corresponding histogram, pp-plot and using a

KolmogoroveSmirnov test. Each data set, except the echo-

cardiography, were not normally distributed and therefore

non-parametric Friedman tests followed by post-hoc Dunn's
multiple comparison were used to assess differences over

time. As the echocardiography data was normally distributed,

a paired t-test was used to compare between baseline and 6 h.

All statistical analysis was performed using GraphPad Prism 8

(GraphPad Software, Santiago, USA). A p-value < 0.05 was

considered statistically significant. All data are expressed as

mean ± 95% confidence interval (CI).
Results

WBC counts during BSD in sheep blood and BAL samples

Differential WBC counts were performed on BAL fluid and

blood samples collected prior to BSD and post-BSD. Upon

BSD induction, blood neutrophil counts were consistently

https://doi.org/10.1016/j.bj.2021.10.007
https://doi.org/10.1016/j.bj.2021.10.007


Fig. 4 BAL IL-1b (A), IL-6 (B) and IL-8 (C) in BSD-induced sheep (n ¼ 12) at time baseline (B), pre-BSD (PB), 0, 2, 4 and 6 h. BAL TNF-a

concentration was below the detection limit (data not shownData are expressed as mean ± 95%CI. *p < 0.05, **p < 0.01

compared to baseline.
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increased during the BSD period and significantly elevated at

6 h post-BSD in BAL (Fig. 2A; p ¼ 0.0239) and blood (Fig. 2E;

p ¼ 0.0048, Fig. S1). In contrast, other WBC including mono-

cyte/macrophages, lymphocytes, and eosinophils countswere

unchanged in BAL (Fig. 2B, C & D) and significantly reduced in

whole blood (Fig. 2F, G & H) during BSD.

Differential time-courses of pro-inflammatory cytokine
release during BSD

Plasma IL-6 concentrations were significantly increased in

blood plasma at 6 h following BSD induction compared to

baseline (Fig. 3A; p < 0.0006). Interestingly, plasma concen-

trations of IL-8 were reduced post-BSD when compared to

baseline (Fig. 3B; p < 0.0001). No significant difference in

plasma IL-1b and TNF-a concentrations were found at any

time point (Fig. 3C and D). In BAL, there were no differences

in IL-1b and Il-6 concentrations between time points (Fig. 4A

and B). However, IL-8 concentrations were significantly

increased throughout the observation period of BSD, in

contradistinction to the plasma (Fig. 4C). TNF-a concentra-

tion was below the detection limit and data were not

reported.
Fig. 5 Big ET-1 and ET-1 concentrations in plasma (A and B) and

baseline (B), pre-BSD (PB), 0, 2, 4 and 6 h. Data are expressed as m
BSD increased big ET-1 release in plasma

We investigated biomarkers of endothelial dysfunction in

blood and BAL fluid during BSD (Fig. 5). Circulating plasma

big ET-1 concentrations were progressively increased by

~40% at 4 and 6 h post-BSD (Fig. 5A; p < 0.05). However,

plasma ET-1 concentrations were predominantly un-

changed, with an exception at pre-BSD, 2 and 4 h post-BSD

(Fig. 5B) that was not sustained. No significant change was

observed in BAL concentrations of big ET-1 (Fig. 5C). ET-1

concentration in BAL was below the detection limit and

data was not reported.

Elevated serum levels of cardiac injury biomarkers with
significant change to contractility during BSD

There was a significant rise in the plasma level of ANP at 2

(p ¼ 0.0128) and 6 h (p < 0.0001) after BSD induction (Fig. 6A).

Similarly, the level of cTnI in circulation rose from undetect-

able levels at baseline to significant levels at 2 (p ¼ 0.0066) and

6 h (p < 0.0001) post-BSD (Fig. 6B). Echocardiographs showed a

significant reduction in the mean Global Circumferential

Strain (GCS, Fig. 7A; p¼ 0.0383), Torsion (Fig. 7C; P¼ 0.004) and
BAL (C), respectively, in BSD-induced sheep (n ¼ 12) at time

ean ± 95%CI. *p < 0.05, ***p < 0.001 compared to baseline.

https://doi.org/10.1016/j.bj.2021.10.007
https://doi.org/10.1016/j.bj.2021.10.007


Fig. 6 A-type natriuretic peptide, ANP (A) and Cardiac troponin I, cTnI (B) concentrations in BSD-induced sheep (n ¼ 12) at time

baseline (B), 2 and 6 h. Baseline levels of cTnI were under the detection limit of 0.039 ng/mL. Data are expressed as mean ± 95%

CI. *p < 0.05, **p < 0.01, ****p < 0.0001 compared to baseline.

Fig. 7 Echocardiography data comparing (A) Global Circumferential Strain (GCS) (n ¼ 8), (B) Global Radial Strain (GRS) (n ¼ 6), (C)

Torsion (n ¼ 6), (D) End-Diastolic Area (EDA) (n ¼ 8), (E) End-Systolic Area (ESA) (n ¼ 7) and (F) Fractional Area Change (FAC)

(n ¼ 7) at baseline and 6 h in BSD-induced sheep. Data are expressed as mean ± 95%CI *p < 0.05.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 7 7 6e7 8 7782

https://doi.org/10.1016/j.bj.2021.10.007
https://doi.org/10.1016/j.bj.2021.10.007


b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 7 7 6e7 8 7 783
fractional area change (FAC, Fig. 7F; p ¼ 0.0314) relative to

baseline at 6 h. We also noted a significant increase in end-

systolic area (ESA, Fig. 7E; p ¼ 0.0278). No alteration was

detected in Global Radial Strain (GRS, Fig. 7B; p ¼ 0.5625),

Torsion (Fig. 7C; p ¼ 0.2965)and end-diastolic area (EDA,

Fig. 7D; p ¼ 0.2992) at 6 h post-BSD.

Oxidative stress markers were unchanged upon BSD

We used Chloramine and reduced thiols as biomarkers for

oxidative damage. We found no change to levels of chloramine

and reduced thiol during BSD in the serum and BAL (Table S1).

Effect of instrumentation on inflammation

In order to assess the effects of instrumentation, plasma

samples from one of our previous ovine models of

transfusion-related acute lung injury (TRALI), were analysed

for cytokine production. The in vivo transfusion protocol has

been previously described in detail [46] and used similar

instrumentation protocol. Sheep that received saline infusion

showed a significant increase in IL-6 at 2- and 4-h compared to

baseline (8e15 times higher in BSD, Fig. S2B); however, no

significant differences were noted during the instrumentation

between BSD-induced and saline-infused sheep. This might

indicate that the marked cytokine profiles after BSD (released

early before hormone resuscitation started) were associated

with persistent inflammation throughout the study.
Discussion

Here we extend our investigations of our recently published

24-h-ovine model that elucidated the role of the endothelin

axis in BSD related pulmonary inflammation [10] where we

suggested that poor organ function in BSD is related to a pro-

inflammatory process. We have extended this work to

examine the profile of plasma and BAL pro-inflammatory cy-

tokines, endothelins and cardiovascular changes, at different

time courses that occur during BSD. We demonstrated that

BSD induced a significant increase in neutrophil content, Big

ET-1, pro-inflammatory cytokines IL-6 (in plasma) and IL-8 (in

BAL) concentrations in blood and BAL. Increased levels of

cardiac biomarkers cTnI and ANP indicated cardiac dysfunc-

tion that was associated with significant changes in contrac-

tility. Our study show that BSD is associated with early

systemic and lung inflammatory response and impaired car-

diac function in 6-h-ovine model of BSD.

Pro-inflammatory cytokines

Explosive BSD induction presents tremendous increases in

hemodynamics or catecholamine levels [47], which has been

suggested to be responsible for the inflammatory phenom-

ena occurring after BSD [32]. The association we see between

rapid (<2 h) neutrophil recruitment to the lungs (Fig. 2A) and

elevation of IL-8 in BAL (Fig. 4C) in our ovine model of BSD is

consistent with observations in humans [24]. The increased

circulating blood neutrophils in the ovine model at 6-h post-

BSD (Fig. 2E), the unchanged monocyte/macrophage,
lymphocyte, and eosinophil counts in BAL and their reduc-

tion in whole blood (Fig. 2) are also consistent with previous

findings in our rat model of BSD [30,32]. Our ovine model also

produced a significant and progressive increase in serum IL-6

concentrations for up to 6-h post-BSD (Fig. 3A), consistent

with previous findings, from human and rat brain-dead do-

nors, which showed that serum IL-6 was significantly

elevated [48]. Although IL-1b and TNF-a act early in the in-

flammatory cascade [49], we failed to detect any increase in

serum IL-1b and TNF-a after BSD in this study (Fig. 3C and D).

This discrepancy could have been due to changes in serum

levels of TNF-a and IL-1b post-BSD depend on the rate of BSD

induction [50,51]. Damman and his colleagues, while also

utilizing gradual BSD induction in a rat, showed that the

levels of TNF-a and IL-1b in serum did not change signifi-

cantly over the 4-h in animal models and human brain-dead

donors [48]. Conversely, rapid BSD induction in rodent [51]

and pig [52] studies identified progressive and significant

elevations in serum IL-1b and TNF-a (during the rat study,

the initial spike of serum TNF-a decreased after 1-h post-

BSD). The levels of TNF-a and IL-1b in the lung did not

change over the 6-h of our BSD study (Fig. 4A), consistent

with recent studies from larger, higher level mammals such

as brain-dead pigs, which showed that the levels of TNF-a

and IL-1b expression in the lung did not significantly change

[53,54]. However, previous studies detect significant in-

creases in TNF-a and IL-1b mRNA in lungs rejected for

transplant [55] as well as in rodent [56] and in porcine [19]

BSD models. The divergence in results may be due to organ-

to-organ variations in the expression of these cytokines after

BSD or variations between individuals, which may account

for the organ-specific variation in outcomes after trans-

plantations as shown previously [19,54]. Interestingly, our

model diverges from the rat model of BSD in which the rat

model shows up-regulation of macrophage in both the

injured brain and the peripheral organs up to 4 [30] and 6-h

after induction of brain death [57], whereas no difference

was seen in our ovine model. The divergence may be due to

different BSD models (rat vs. sheep, rodent lungs different to

sheep [58]), ventilation, haemodynamic management/opti-

misation and hormone resuscitation which can ultimately

affect the temporal inflammatory profile [32,57].

Endothelins

A significant elevation of plasma big ET-1 concentrations has

been detected throughout the BSD induction (Fig. 5A), whereas

plasma ET-1 levels were unchanged during BSD (Fig. 5B). The

peak concentrations were seen at 1- and 6-h for ET-1 and big

ET-1, respectively. We have previously shown an initial in-

crease in plasma big ET-1 and ET-1 up to 6 h post-BSD in ovine

BSD model, followed by normalisation over 24 h [10]. Others

have shown that ET-1 peaks as early as 30 min in canine

model of BSD [59]. These findings reflect the possibility of an

early release with rapid clearance of ET-1 [60], implying that

plasma ET-1 could have been cleared before sampling at 2-h

post BSD. While the concentrations of ET-1 and big ET-1

were low in BAL fluid, ET-1 levels trended to increase with

the progression of BSD (Fig. 5D). Our data is consistent with

previous findings that showed unchanged expression levels of

https://doi.org/10.1016/j.bj.2021.10.007
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ET-1 in lung samples obtained from pig BSD model [53].

However, Salama et al. have shown that the ET-1 mRNA

overexpression in donor's lung tissue (whose primary insult

was trauma) contributes to primary graft dysfunction devel-

opment [61]. The differences observed across studies may be

due to the shorter half-life of ET-1 (rapid clearing by the ET

receptor in the lungs), and the ability to potentiate

catecholamine-mediated vasoconstriction may complicate

delineation of this pathway profile in brain death [62]. This

clearing effect could also explain the low concentrations of

ET-1 in BAL fluid observed in our study. It has been shown that

ET-1 contributes to oxidative damage, through activated

neutrophils, in severe brain injury and BSD [63e65]. However,

unchanged levels of chloramine and reduced thiol concen-

trations were observed in our early-phase of BSD model,

which could possibly be due to a slower acute oxidative

damage process in this BSDmodel. A clear picture for the role

of the endothelin axis in BSD remains to be elucidated and

requires further attention, since conflicting data shows

opposing changes in both serum and lung tissue.
Cardiac damage as a consequence of BSD

Echocardiographs revealed that BSD caused a significant

reduction in the myocardial strain in the circumferential axis

(Fig. 7A) as well as chamber dilation with increased end-

systolic area measurements (Fig. 7E). Contractile function

significantly declined post-BSD as seen by a reduction in the

fractional area change (Fig. 7F). Our data is consistent with

recent findings, using a rat model of BSD, that show similar

elevation in end-diastolic pressure over the 6-h of their study

[66]. Our data also demonstrates a significant elevation in both

plasma ANP and cTnI concentrations after BSD induction

(Fig. 6), in agreement with previous studies in brain-dead pa-

tients [38,67] and animalmodels of BSD [39,68]. Interestingly, a

previous BSD study in pigs identified a reduction in ANP over

time. The authors raised the possible hypothesis that intact

brain function is required for ANP release [39]. The differences

in the results we observed may be due to different BSD

models, since acute brain death induction was used in their

study. Further studies are required to delineate changes in

ANP after BSD prior to its use as a prognostic tool for donor

heart selection.

Pro-inflammatory cytokines, TNF a, IL-6 and IL-1b, have

been implicated in developing heart failure [69]. Interestingly,

Plenz et al. have shown that donor heart dysfunction early

after transplantation has been associated with mRNA

expression of IL-6 [70]. Moreover, Skrabal et al. have detected

an increase in IL-6 mRNA in the hearts of BD animals, but not

in other donor organs such as lung and kidney [19]. Although

we did not measure IL-6 expression in the heart, it is quite

possible that the elevated IL-6 in the circulation plays a role in

cardiac dysfunction in our study.
Study limitations

Several important limitations have been observed in the cur-

rent study, with lack of control being the major limitation.
However, our TRALI ovine model indicates that the marked

cytokine profiles after BSD were associated with persistent

inflammation throughout the study. In addition, a previous

study by our group has shown that instrumentation does not

cause significant effect on endothelial axis and cardiac injury

biomarkers (myoglobin and creatine kinase MB isoenzyme)

[10]. Another limitation was no direct evidence indicate that

any of the biochemical inflammatory changes are responsible

for changes seen in cardiac and pulmonary function. How-

ever, pharmacological interference with the pro-

inflammatory response may represent a useful option for

the treatment of damaged lung grafts [71]. Furthermore,

sampling times may have missed very early release of ET-1,

therefore, early sampling in future studies is recommended.

Moreover, further investigation of cytokine expression

(mRNA) in donor organs tissues will better characterise pro-

inflammatory response after BSD. Finally, ANP and cTnI

were chosen for cardiac injury assessment in this study but

the correlation between cTnI levels and recipient outcome

remains controversial [72]. A recent study recommended in-

clusion of creatine kinase (CK), a heart injury biomarker, in the

assessment of donor hearts for transplantation [73].
Conclusion

In our ovine model of BSD, we conclude that BSD induced

systemic pro-inflammatory responses, characterized by

increased neutrophil infiltration and cytokine production in

the circulation and BAL fluid. Deleterious effects occurred on

both pulmonary endothelial and cardiac functions. These

pathophysiological changes could lead to graft dysfunction in

the donor organ. These findings have potential clinical im-

plications in developing specific strategies to intervene

neutrophil/ET-1 mediated inflammation in BSD donor prior to

organ transplantation.
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