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ABSTRACT Microbial carbon degradation and methanogenesis in wetland soils
generate a large proportion of atmospheric methane, a highly potent greenhouse
gas. Despite their potential to mitigate greenhouse gas emissions, knowledge about
methane-consuming methanotrophs is often limited to lower-resolution single-gene
surveys that fail to capture the taxonomic and metabolic diversity of these microor-
ganisms in soils. Here our objective was to use genome-enabled approaches to in-
vestigate methanotroph membership, distribution, and in situ activity across spatial
and seasonal gradients in a freshwater wetland near Lake Erie. 16S rRNA gene analy-
ses demonstrated that members of the methanotrophic Methylococcales were domi-
nant, with the dominance largely driven by the relative abundance of four taxa, and
enriched in oxic surface soils. Three methanotroph genomes from assembled soil
metagenomes were assigned to the genus Methylobacter and represented the most
abundant methanotrophs across the wetland. Paired metatranscriptomes confirmed
that these Old Woman Creek (OWC) Methylobacter members accounted for nearly all
the aerobic methanotrophic activity across two seasons. In addition to having the
capacity to couple methane oxidation to aerobic respiration, these new genomes
encoded denitrification potential that may sustain energy generation in soils with
lower dissolved oxygen concentrations. We further show that Methylobacter mem-
bers that were closely related to the OWC members were present in many other
high-methane-emitting freshwater and soil sites, suggesting that this lineage could
participate in methane consumption in analogous ecosystems. This work contributes
to the growing body of research suggesting that Methylobacter may represent criti-
cal mediators of methane fluxes in freshwater saturated sediments and soils world-
wide.

IMPORTANCE Here we used soil metagenomics and metatranscriptomics to uncover
novel members within the genus Methylobacter. We denote these closely related ge-
nomes as members of the lineage OWC Methylobacter. Despite the incredibly high
microbial diversity in soils, here we present findings that unexpectedly showed that
methane cycling was primarily mediated by a single genus for both methane pro-
duction (“Candidatus Methanothrix paradoxum”) and methane consumption (OWC
Methylobacter). Metatranscriptomic analyses revealed that decreased methanotrophic
activity rather than increased methanogenic activity possibly contributed to the
greater methane emissions that we had previously observed in summer months,
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findings important for biogeochemical methane models. Although members of this
Methylococcales order have been cultivated for decades, multi-omic approaches con-
tinue to illuminate the methanotroph phylogenetic and metabolic diversity harbored
in terrestrial and marine ecosystems.

KEYWORDS denitrification, metagenomics, metatranscriptomics, methane,
methanotrophs, soil microbiology

Wetlands contribute nearly one-third of the naturally derived methane emissions
globally, releasing 150 to 250 terragrams of this greenhouse gas per year (1–4).

Historically, it was thought that methane was exclusively produced in anoxic horizons
of wetland soils by strictly anaerobic methanogenic archaea and was subsequently
consumed in oxic zones by aerobic methanotrophic bacteria, with any excess uncon-
sumed methane potentially emitted to the atmosphere (5). These assumptions about
microbial methane cycling are incorporated into biogeochemical models that estimate
global terrestrial methane budgets (1, 6). However, recent reports of aerobic methan-
otrophy occurring in hypoxic to anoxic conditions (7–14) and of methanogenesis in oxic
soils (15–17) are challenging these historical assumptions. Controlling and accurately
forecasting greenhouse gas emissions require more in-depth knowledge of the factors
that control natural methane production, consumption, and emission across ecosys-
tems.

To begin to profile biological methane cycling in freshwater wetland soils, we
selected the Old Woman Creek (OWC) National Estuarine Research Reserve as our
model field site. This 571-acre freshwater wetland borders Lake Erie, near Huron, OH,
USA, and has been shown to consistently emit methane (16, 18). During a 5-month
period (June through October) in 2015, this wetland emitted approximately 129 million
grams of methane and was a net carbon source for the atmosphere during the summer
months (18). Previously, it was demonstrated that 40% to 90% of the methane from this
wetland was produced in surface soils with oxygenated porewaters by a single meth-
anogen species, “Ca. Methanothrix paradoxum” (16). While a taxonomic survey sug-
gested that gammaproteobacterial methanotrophs, i.e., Methylococcales, were domi-
nant members throughout the wetland (19), the identity and activity of these
methanotrophic microorganisms were not defined along relevant temporal and spatial
wetland gradients.

Here we aimed to determine the effects of soil depth, land cover, and season on
methanotrophic microorganism distribution and activity in the freshwater wetland.
These findings have uncovered genomic information for dominant and highly active
methanotrophs within the genus Methylobacter, a genus that is present and active in
numerous freshwater and marine sediments and in soils (14, 20–23). Given the distri-
bution of this lineage across this wetland, including deeper soils with low dissolved
oxygen (DO) concentrations, we analyzed these genomes for potential and active
metabolic pathways that could support methane oxidation under hypoxic conditions.
Our findings contribute to a growing body of evidence that indicates that the members
of the OWC Methylobacter lineage are cosmopolitan and active across many freshwater
and terrestrial ecosystems.

RESULTS AND DISCUSSION
Soil sampling and methane consumption potential. To understand the impact of

seasonality on methanotroph distribution and activity, we sampled soils at four sea-
sonal time points in 2014 to 2015, with sampling occurring in November 2014 repre-
senting autumn, February 2015 representing winter, May 2015 representing spring, and
August 2015 representing summer. To resolve the impacts of land cover on metha-
notroph distribution and activity, soils were selected from three land covers (“Plant,”
dominated by Typha vegetation; “Mud,” periodically exposed mud flats; “Water,” per-
manently submerged open-water channel sediments) in a transect with locations that
were equidistant from Lake Erie (Fig. 1A). At each seasonal time point, from each of the
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2-m2 land cover plots, three cores were collected for paired 16S rRNA gene analyses.
For these analyses, we focused on surface (0 to 5 cm depth) and deep (23 to 35 cm
depth) soils (n � 66 samples), as these depths were previously demonstrated to have
the most distinct bacterial and archaeal communities (19).

During the fall and summer samplings, we conducted chamber measurements,
which showed that all of the studied land covers were net methane emitting (16). As
a prior study demonstrated (18), eddy-covariance tower measurements showed that
the greatest overall methane flux occurred during the summer months of June to
September, with the greatest flux peak occurring in August. Compared to the methane
emission data, the in situ soil methane and dissolved oxygen (DO) concentrations did
not differ by season or land cover. However, the levels of both methane and DO
decreased with depth across all of the land cover sites (16). The surface soils examined
in August had three times more in situ methane (6.56 � 0.83 versus 2.12 � 0.47 �g
CH4-C/g) and six times more DO (79.7 � 11 versus 12.7 � 7 �M) than the corresponding
deep soils (Fig. 1B; see also Data Set S1 in the supplemental material).

To assess the capacity for aerobic methanotrophy in our soils emitting the highest
concentrations of methane, August soils were amended with methane and oxygen to
measure aerobic methane consumption rates. Methane consumption in surface soils
began 3 days sooner than in deep soils and continued at significantly greater rates
(Fig. 1C; see also Data Set S1). Methane consumption rates in surface soils were not
strongly impacted by land covers (ecological sites) but were likely strongly impacted by
in situ methane and DO concentrations that varied with soil depth (Fig. 1B) (16). These
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FIG 1 Overview of OWC field site and methane dynamics. (A) Old Woman Creek (OWC) National Estuarine Research
Reserve is a 571-acre, NOAA-operated temperate freshwater wetland near Lake Erie in Ohio. Soils were sampled from an
ecological transect composed of the following land cover types: Typha vegetated (Plant, green), periodically flooded mud
flat (Mud, orange), and continually saturated water channel (Water, blue). We selected two soil depths as representative
oxic and anoxic soil zones (0 to 5 cm, Surface; 23 to 35 cm, Deep). (B) Soil in situ methane concentration variation by depth
and land cover type over the four sampled seasons (November 2014 through August 2015). Different months are
represented as different shades of gray or are colored by land cover and depth to match the curves shown in panel C. (C)
Aerobic methane consumption potential curves of surface and deep soil incubations. Points and curves are colored by the
land cover type and depth in the soil column, matching the samples highlighted in panel B.
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findings hint that methanotroph activity is likely constrained along centimeters of soil
depth rather than in the distinct land covers across meters of lateral distance.

Members of the Methylococcales are the dominant methanotrophs in wetland
soils. The members of the Methylococcales, methanotrophs within the Gammaproteo-
bacteria, represented the fifth most abundant taxonomic order in all soils collected over
four seasons, across three land covers, and at two depths (Fig. 2A). The dominance of
this order was largely driven by the relative abundances of four operational taxonomic
units (OTUs), which were each among the top 20 most abundant taxa of 5,662 total
sampled OTUs (Fig. 2A). Here we denote these dominant methanotroph OTUs by their
relative ranks in the microbial community as follows: OTU4 (GQ390219), OTU7
(ABSN01001726), OTU15 (AB5049656), and OTU17 (ABSP01000657). On the basis of the
similarity of the 16S rRNA genes (V4 region), these four OTUs were most closely related
to an unknown Crenothrix species (OTU15), Methylobacter tundripaludum (OTU4), and
unassigned Methylobacter species (OTU7 and OTU17). On the basis of these partial
sequences, OTU7 and OTU17 shared only �97% identity with the closest isolated
Methylobacter representatives M. tundripaludum and Methylobacter psychrophilus. This
value is below the recently proposed species cutoff level (98%) for comparison of the
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FIG 2 Relative abundances of dominant methanotrophic taxa. (A) Stacked bar chart of the 10 most
abundant microbial orders in all soil samples (n � 66). The total number of OTUs in each order is noted
above the stacked bar chart, and the relative ranks of the 20 most abundant OTUs are indicated. Four
dominant Methylococcales OTUs are highlighted with shades of red. The inset shows fold enrichment of
the dominant OTUs in surface soils over deep soils, with significant differences (analysis of variance with
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V4 regions within members of the Methylococcaceae (24); however, we note that
caution must be used in interpreting phylogenetic relationships with a single and,
especially, partial marker genes.

On average, these four OTUs were each significantly more abundant than all of the
OTUs of other known methane-oxidizing taxa (Fig. 2B). Corroborating the methane
consumption potential patterns (Fig. 1C), these four OTUs were up to 4-fold more
abundant in surface soils than in deeper soils (Fig. 2A, inset) but were not significantly
different between land covers or seasons (see Fig. S1A in the supplemental material).
Furthermore, the relative abundances of three of these OTUs (OTU7, OTU15, and
OTU17) were positively correlated to DO concentrations in the soils (P � 0.02) (Fig. S1B).
Our findings, along with prior publications from studies of this wetland using data
sampled more than a year earlier than here (19), imply that members of the Methylo-
coccales are the dominant methanotrophs in surface soils and likely represent critical
components of microbial methane cycling in this wetland.

Discovery and phylogenetic placement of new Methylococcales genomes. To
better ascertain the metabolic potential of these dominant Methylococcales species in
the surface soils, metagenomic sequencing was performed on one representative
surface (0 to 5 cm depth) soil from each land cover category (plant, mud, and water) at
two time points representing plant senescence in late fall (November 2014) and peak
primary productivity (August 2015) (n � 6). While we observed no significant differ-
ences in methanotroph 16S rRNA gene relative abundances across these gradients, we
hypothesized that metagenomics may capture species- or strain-level variations occur-
ring along spatial or seasonal gradients that were not made apparent by 16S rRNA gene
sequencing. Additionally, by sequencing metagenomes across various seasons and
sites, we expected to increase the likelihood of sampling near-complete genomes from
these complex soils, a feature necessary to support our metatranscriptomic analyses.

Metagenomic sequencing yielded 304 Gbp of Illumina HiSeq data. De novo assembly
of these metagenomes resulted in approximately 3.8 Gbp of genomic information
contained in scaffolds greater than 5 kb in size. Using a combination of automated
binning and manual binning (see Text S1 in the supplemental material), we recovered
four genomic bins likely belonging to methanotrophic bacteria, as determined by the
presence of key methanotrophy functional genes and genes with taxonomic affiliation
to members of the Methylococcales. In accordance with our 16S rRNA gene data (Fig. 2),
we did not recover bins for other bacterial or archaeal methanotrophs.

The reconstructed methanotroph genomes were estimated to be up to 97% com-
plete (65%, 74%, 81%, and 97%), all with overages of less than 4% (Data Set S1). All of
these genomes were from the November metagenomes and would be classified as
medium quality using the recently proposed Genomic Standards Consortium bench-
marks (25). The August metagenomic sequencing did not yield methanotroph ge-
nomes that were greater than 50% complete but did yield other complete genomes,
demonstrating that differences in community structure impacted genome recovery.

We recovered three closely related genomes from the different land covers (includ-
ing genomes NSM2-1 [mud], NSO1-1 [water], and NSP1-1 [plant]), which we conclude
are likely members of the same species (discussed below). From one of these genome
bins (NSP1-1 scaffold_2426), we recovered a single 404-bp 16S rRNA gene fragment.
This gene fragment was 100% identical to all three near-full-length EMIRGE (�900-bp)
(26) sequences generated from unassembled reads from the same November metag-
enomes where these genomes were recovered (Data Set S1).

Comparison of these near-full-length sequences and the 16S rRNA gene sequences
from other Methylococcales genomes showed that our recovered metagenome 16S
rRNA sequences were closely related strains (�99.8% identity; see Data Set S1) within
the genus Methylobacter. We, and others (11, 14, 27–30) have noted that the genus
Methylobacter is not monophyletic and instead contains two (possibly genus-resolved)
clades (Fig. S2). Clade 1 contained Methylobacter species M. whittenburyi, M. marinus, M.
luteus, and M. BBA5.1, while clade 2 contained Methylobacter tundripaludum and M.
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psychrophilus species. A phylogenetic analysis of our three near-full-length represen-
tative OWC Methylobacter sequences reconstructed using EMIRGE grouped these ge-
nomes with the clade 2 Methylobacter genus but were divergent from M. tundripaludum
or M. psychrophilus sequences (Fig. S2).

Additional phylogenetic analyses using single and concatenated housekeeping
genes, as well as single functional genes, confirmed the placement of our genomes
within clade 2 and yet also showed that the OWC genomes were divergent from the
currently isolated species (M. tundripaludum and M. psychrophilus). For instance, a
concatenated phylogenetic tree composed of 14 ribosomal proteins and 7 universally
conserved single-copy marker genes that were present in our Methylococcales genomes
and in 53 other sequenced Methylococcales genomes (Fig. 3A) revealed that three of
these OWC genomes formed a well-supported lineage that was most closely related to
but likely divergent from M. tundripaludum. The results from our pmoA gene (Fig. S3),
methanol dehydrogenase (Fig. S4), and whole-genome-wide nucleotide and amino
acid comparisons (Text S1) also support the characterization of our genomes as
members of Methylobacter clade 2 and, potentially, as a separate species-level lineage
within this genus. We conservatively refer to these genomes at the genus level,
denoting that the members of the OWC Methylobacter represent a lineage of Methy-
lobacter clade 2.

A fourth recovered Methylococcales genome (NSP1-2) was phylogenetically distinct
from the three OWC Methylobacter genomes (NSM2-1, NSO1-1, and NSP1-1) (Fig. 3).
This more divergent genome, which lacked a 16S rRNA gene recovered from the
genome bin, lacked confident taxonomic assignment using our concatenated marker
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gene phylogenies (Fig. 3A) and pmoA phylogenies (Fig. S3; see also Text S1). But this
genome appeared most closely related to Crenothrix sp. D3 by the use of multiple
phylogenetic markers, including concatenated and single-copy marker genes (Fig. 3A;
see also Fig. S3 and Text S1). Given this lack of taxonomic congruency and the inability
to link to our 16S rRNA gene amplicon data, we focus our primary analyses in the
manuscript on the OWC Methylobacter clade 2 lineage genomes (NSM2-1, NSO1-1, and
NSP1-1).

The discovery of phylogenetic novelty is consistent with recent sampling of the
uncultivated diversity within the Methylococcales over the past few years. Much of this
new insight can be attributed to the reconstruction of genomes from metagenomes
obtained from diverse environments (Fig. 3A). This includes the recovery of genomes
representing Methylothermaceae sp. B42 genome from deep-sea hydrothermal vents
(12), the OPU3 genome from marine oxygen minimum zones (10), Crenothrix sp. D3
genome from lacustrine waters (11), and Upland Soil Cluster � from Antarctic cryosols
(31). Although Methylococcales species have been cultivated for decades, genomes
reconstructed from metagenomes continue to illuminate the methanotroph genome
diversity present across terrestrial and marine ecosystems.

OWC Methylobacter and the NSP1-2 genomes encode mechanisms to puta-
tively withstand oxygen limitation. All four of our Methylococcales genomes have the
essential genes for methane oxidation, including genes encoding particulate methane
monooxygenase (pmo) (Fig. 3B) and the methanopterin-linked C1 transfer pathway and
formate dehydrogenase and the genes necessary for the carbon assimilation via the
ribulose monophosphate pathway (RuMP) cycle (Data Set S1). Despite the prevalence
of phylogenetic marker genes in the NSO1-1 genome (indicated by its inferred 81%
completion), we noted that many core metabolic genes were not recovered in this
genome bin. Because we cannot easily distinguish ineffective binning in this
metagenome-reconstructed genome from the absence of genes, we do not include a
summary of the metabolic potential for this genome in Fig. 3, but the metabolic data
for this genome were inventoried (Data Set S1).

Our four genomes encode canonical methane oxidation, aerobic electron transport
chain components, and formaldehyde metabolism conserved in other Methylococcales
(Data Set S1). We failed to detect a soluble methane monooxygenase gene (smo) in any
of our four genomes; OWC Methylobacter genomes likely have the sequence-divergent
pmo gene (pxm) (Fig. 3B; see also Data Set S1). Our reconstructed genomes contained
xoxF5-type methanol dehydrogenases, but we failed to detect the traditional mxaF-
type methanol dehydrogenase gene in our genome bins (Fig. 3B; see also Fig. S4) or in
any of the unbinned scaffolds in our metagenomic data. Consistent with our findings,
the lack of mxaF has been reported in methylotrophic microorganisms found in a
variety of habitats (10, 32–38). However, we recognize that caution must be used for
inferring metabolic capacity on the basis of the absence of genes in genomes derived
from metagenomic reconstruction. We also recovered high-affinity cytochrome bd
ubiquinol oxidase (cyd) and Na(�) translocating NADH-quinone oxidoreductase (nqr)
genes. The functions of some of these genes in methane oxidation are still uncertain,
but they may mediate responses to fluctuating oxygen conditions (cyd) (9, 39, 40), alter
metal requirements or interactions with other community members (xoxF) (32, 33, 41),
or provide alternative routes for ATP generation via a sodium motive force (nqr) (12, 42).

On the basis of recent expansions of the metabolic capacity of Methylococcales
genomes (43, 44), we inventoried the denitrification potential in our genomes and
across the order (Fig. 3C; see also Data Set S1). Our analyses expanded upon research
by Padilla et al. indicating that inventoried nitrate reduction potential in 26 members
of this order (10). Here we included 31 additional genomes, with a focus on Methylo-
bacter members, and also included a survey of methane monooxygenase and methanol
dehydrogenase diversity in this order (Fig. 3B; see also Data Set S1). Few of these
features appear strongly phylogenetically conserved at the genus level, but major
functional differences among Methylomicrobium and Methylobacter groups were ob-
served. For example, Methylomicrobium species most similar to Methylosarcina pos-
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sessed pxm whereas the other Methylomicrobium species did not (Fig. 3A), and clade 2
but not clade 1 Methylobacter species have the capacity for dissimilatory nitrate
reduction (Fig. 3C; see also Fig. S5 and Data Set S1). In addition to clade 2 Methylobacter
species, our analyses revealed the presence of dissimilatory nitrate reduction pathways
in over one-third of the sequenced Methylococcales genomes (23/57 analyzed) (Fig. 3C;
see also Data Set S1). Furthermore, nearly two-thirds of these genomes contained a
form of dissimilatory nitrite reduction and nitric oxide reductase (40/57 with nirK or nirS
and 41/57 with norB; see Data Set S1). Both of the metabolically more complete OWC
Methylobacter genomes (NSM2-1 and NSP1-1) and the divergent genome (NSP1-2)
contained key functional genes for dissimilatory reduction of nitrate (narG), nitrite
(nirK), and nitric oxide (norB) (Data Set S1).

While some of the recent discoveries of denitrification pathways encoded by
Methylococcales have noted that the narG genes were most phylogenetically related to
other bacterial lineages (10, 12), our OWC Methylobacter narG genes formed a mono-
phyletic clade with sequences with other Methylococcales genomes (Fig. S5C). More-
over, the OWC Methylobacter narG sequences contained the necessary residues for
substrate and cofactor binding (Fig. S5A) (45) and were structurally homologous to the
NarG used for denitrification by Escherichia coli (Fig. S5B). The net impact of this
nitrogen-based metabolism is uncertain, as our analyses showed that all of the ge-
nomes in our study, and others within this family, lack the capacity to reduce nitrous
oxide (nosZ). Thus, this proposed denitrification activity could potentially generate
nitrous oxide, emitting a more potent greenhouse gas than carbon dioxide or methane
(46). While expression of Methylococcales denitrification pathways has been observed
under laboratory conditions (7–9) and in hypoxic marine systems (10), field-scale
studies determining the extent and climatic tradeoffs of this process in terrestrial
systems are currently not known.

Given the detection of OWC Methylobacter OTUs (OTU7 and OTU17) in deeper
hypoxic or anoxic soils (Fig. 2A, inset) (19), we examined our genomes for other
mechanisms that would enable greater tolerance of low oxygen and methane concen-
trations. Prior publications have reported microaerobic fermentation by Methylomicro-
bium buryatense, another member of the Methylococcaceae. In this fermentative me-
tabolism, transformation of formaldehyde through the RuMP and glycolysis to produce
pyruvate ultimately leads to mixed acid fermentation products and ATP (11, 47, 48).
Similar metabolic capabilities were detected in OWC Methylobacter genomes and
NSP1-2 (Text S1; see also Data Set S1). However, we acknowledge that it is challenging
to infer facultative fermentative metabolism from genomes corresponding to respira-
tory capacities. In a second example, bidirectional [NiFe] hydrogenase (hox) genes were
harbored in these genomes, suggesting that hydrogen may be used as an electron
donor, as previously reported for more distantly related methanotrophs (49, 50). Lastly,
we found hemerythrin genes in our genomes that could be involved in responding to
variations in oxygen concentrations or in shuttling oxygen directly to the particulate
methane monooxygenase enzyme complex (Text S1) (51–56). In support of the idea of
these roles, it was recently shown that the presence of Methylomicrobium buryatense
increased the expression of hox and hemerythrin genes in response to oxygen starva-
tion (48). From our work and that of others performed across a range of ecosystems,
there is increasing evidence that members of the aerobic Methylococcales encode
multiple mechanisms to sense and maintain methane consumption during oxygen
limitation. We posit that this versatile genetic repertoire involved in responses to
changes in oxygen concentrations may contribute to the cosmopolitan distribution of
these taxa observed under various redox conditions.

OWC Methylobacter genomes are the most active methanotrophs in the oxic
wetland soils. To examine methanotrophic activity among the land covers during
different seasons, metatranscriptomic sequencing was performed on triplicate surface
soils from the plant and mud land covers in November and August (n � 12), yielding
462 Gbp of data (16). OWC Methylobacter genomes’ pmo genes were among the top 3%
most highly transcribed genes in the soils (Fig. 4A) and accounted for nearly 98% of the
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pmoA transcripts (Fig. 4B). The remaining �2% of the pmoA transcripts were assigned
to the divergent NSP1-2 genome (Fig. S6A). Ribosomal protein gene transcript abun-
dances confirmed that OWC Methylobacter methanotrophs were some of the most
active microorganisms within the surface soil community (Fig. 4B) and that the high
transcript abundances were not an artifact of pmoA transcript stability. In summary, our
data identified members of the OWC Methylobacter lineage as the most active metha-
notrophs in these surface soils.

Transcripts for pathways downstream of methane oxidation, e.g., pathways corre-
sponding to methanol dehydrogenase and assimilatory and dissimilatory formaldehyde
metabolisms, glycolysis/gluconeogenesis, and aerobic respiration, were also detected
for the OWC Methylobacter genomes (Fig. 4B). Genes that were notably absent in our
metatranscriptomic analyses included genes corresponding to pathways supporting
methane oxidation under hypoxic conditions, despite detectable transcripts for a
variety of anaerobic metabolic pathways employed by other microorganisms. For
example, we did not detect transcripts for OWC Methylobacter-catalyzed denitrification
(Fig. 4B), the high-affinity terminal oxidase (cyd), putative microaerobic fermentation to
lactate or ethanol, or hemerythrin by OWC Methylobacter in these oxic surface soils
(Data Set S2). It is possible that the dissolved oxygen levels in the surface soils
(79.7 � 11.3 �M) precluded the need for oxygen-conserving metabolisms. Ongoing
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Methylobacter Are Dominant and Active in Wetland Soils ®

November/December 2018 Volume 9 Issue 6 e00815-18 mbio.asm.org 9

https://mbio.asm.org


transcript measurements along finely resolved depths will better evaluate the potential
activity of these oxygen-conserving mechanisms employed by OWC Methylobacter in
these soils.

A quantitative analysis of the pmoA genes recovered in our genomes across wetland
gradients revealed a putative seasonal response. While the transcript abundances of
OWC Methylobacter pmoA genes did not significantly differ between plant and mud
land covers in a season, we detected an approximately 4.5-fold decrease in relative
transcript abundances from November to August (Fig. S6B). A similar trend was
observed for most OWC Methylobacter genes (Data Set S2), suggesting that overall
methanotrophic metabolism, and not just that of pmoA transcripts, was reduced in
August. We confirmed that this decrease in inferred activity in August occurred after
normalization and thus was not due to seasonal variations in metatranscriptomic
sequencing (16). We additionally verified that the decrease in August was not due to a
shift in the active methane-oxidizing bacteria by mapping these metatranscriptomes to
a database containing 99 pmoA genes from sequenced genomes (53 Methylococcales,
30 Rhizobiales, 13 Methylacidiphilum, and 3 “Candidatus Methylomirabilis” genomes,
not shown). We entertain the idea that perhaps the OWC Methylobacter methanotrophs
are cold adapted, similarly to what has been reported for other related Methylobacter
clade 2 members (14, 21, 29, 57–67). In contrast to the methanotroph activity primarily
exhibited by OWC Methylobacter, levels of transcripts of normalized methyl coenzyme
A reductase (associated with mcrA, the functional marker for methanogenesis) from the
dominant methanogens did not significantly change between November and August
(Fig. S6C) (16). This transcript pattern provides evidence that reduced methanotrophic
activity, rather than increased methanogenic activity, may contribute to the increased
methane emissions reported in summer months (18). Consequently, this diminished
methanotroph activity may also contribute to the �2.3-fold-greater in situ methane
concentrations observed in August surface soils (Fig. 1B).

We previously reported that methane is produced in bulk oxygenated surface soils
and that the production is largely mediated by a single methanogen species, “Ca.
Methanothrix paradoxum” (16). Here we show that OWC Methylobacter OTUs (OTU7
and OTU17) and the OTU representing the methanogen “Ca. Methanothrix paradoxum”
(CU916150) significantly co-occurred in both the mud land cover and plant land covers
(P � 0.02). In the mud land cover, where a disproportionately large quantity of methane
is released (18), transcript abundances of OWC Methylobacter pmoA and “Ca. Metha-
nothrix paradoxum” mcrA genes were also highly correlated (P � 0.02). This suggests
that these two dominant methane-cycling microorganisms may form a mutualistic
relationship, where the methanogenesis by “Ca. Methanothrix paradoxum” that we
presume occurs in anoxic microsites (16) subsequently feeds methane oxidation by
OWC Methylobacter in peripheral oxygenated zones. Methane oxidation leads to further
local oxygen scavenging, providing a positive-feedback loop to sustain anaerobic
methanogenesis in anoxic microsites within bulk-oxygenated surface soils. Further-
more, dominance by a single methanogen species and a single methanotroph species
has been observed in other Northern latitude hydric soils such as thawing permafrost
(14, 66–68). Therefore, despite the extremely high richness and strain diversity present
in soils, parameterizing microbial methane cycling on the ecosystem scale may be
simplified to correspond to several tractable microorganisms.

OWC Methylobacter species are present in other methane-emitting, hydric soil
ecosystems. In an effort to distinguish the global distribution of the OWC Methylobac-
ter lineage from that of other closely related Methylobacter clade 2 members (M.
tundripaludum and M. psychrophilus), we mined publicly available soil and freshwater
metagenomic, metatranscriptomic, and clone library databases using pmoA genes from
OWC Methylobacter. We identified 218 of the sequences most closely and significantly
affiliated with OWC Methylobacter but not with other clade 2 Methylobacter members
among 71 different sequencing data sets (Fig. S7; see also Data Set S1). Samples
containing members closely related to OWC Methylobacter were from nine different
freshwater and soil locations throughout the United States, Canada, Europe, Russia,
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China, and Japan (Fig. 5; see also Fig. S7 and Data Set S1). OWC Methylobacter pmoA
genes were also detected in seven metatranscriptomic studies, suggesting that mem-
bers of this clade may be active methanotrophs in other ecosystems (Fig. 5; see also
Fig. S7 and Data Set S1). These closely related OWC Methylobacter genes were found in
samples that included Lake Washington sediments where methylotrophic metabolism
has been extensively investigated (20, 69) and samples from prairie potholes in North
Dakota that showed some of the highest recorded levels of methane fluxes (70) (Data
Set S1). Notably, both of the dominant methane-cycling microorganisms present in the
OWC soils, “Ca. Methanothrix paradoxum” and OWC Methylobacter, were present and
active in a restored wetland in the San Joaquin Delta in California (16, 71) (Data Set S1),
signifying that these two lineages may operate together in other hydric soil systems.

Summary. Microorganisms inhabiting permafrost, wetlands, and soils in the North-
ern hemisphere are predicted to be critical for terrestrial-atmospheric methane ex-
change (6, 14). Here we reconstructed three genomes belonging to the genus Methy-
lobacter. From paired metagenomics and metatranscriptomics data, we infer that this
OWC Methylobacter lineage represents some of the most abundant and active micro-
organisms across spatial, depth, and seasonal soil gradients. We demonstrated that the
level of transcripts indicative of methane consumption activity had decreased 4.5-fold
in our summer samples, potentially contributing to the site-wide increase in the levels
of methane surface soil concentrations and emission during this time. Genes and
transcripts affiliated with OWC Methylobacter were detected in other methane-emitting
hydric soils and sediments from North America, Europe, Russia, and Asia. Our results
indicate that members of clade 2 Methylobacter may be important, cosmopolitan
methanotrophs present and active across many ecosystems.

MATERIALS AND METHODS
Field sample collection. Old Woman Creek National Estuarine Research Reserve (41°22=N 82°30=W)

is located at the southern edge of Lake Erie. The 571-acre freshwater wetland co-operated by the
National Oceanic and Atmospheric Administration (NOAA) and the Ohio Department of Natural Re-
sources is one of 28 coastal sentinel research sites. We collected soils and greenhouse gas emissions
during November 2014 (fall), February 2015 (winter), May 2015 (spring), and August 2015 (summer).
Greenhouse gasses were collected and analyzed as previously described (16, 18). Four or more soil cores
were extracted using a modified Mooring system corer from �2 m2 of soil at three distinct land covers
(18, 72–74): emergent vegetated Typha (plant), periodically flooded mud flat (mud), and permanently
submerged channel sediments (water). In February, six samples from the water channel could not be
collected due to frozen, unstable conditions; hence, the total number soil samples analyzed here was 66
and not 72. Cores were stored on ice in the field until hydraulic extrusion and subsampling were
performed (�2 h). DO was measured along the vertical profile in 5-cm increments using an oxygen
dipping probe (DP-Pst3) received with a standalone fiber optics Fibox 4 meter (Presens) (16).

Soils were subsectioned into two depths, 0 to 5 cm (surface) and 23 to 35 cm (deep) below the soil
surface, and the samples were allocated into sterile WhirlPak bags for biological and geochemical
measurements. Soils used for geochemical measurements were stored at 4°C, and soils used for DNA
extraction and RNA extraction were stored at �20°C and �80°C, respectively. The methods used to
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quantify soil and pore water geochemistry were previously described in detail by Angle et al. (16). In situ
methane concentrations were measured using a Shimadzu GC-2014 chromatograph.

Methane consumption potential. Analyses of the aerobic methane consumption potentials of
August soils were conducted using a modified version of an experiment previously described by Chan
and Parkin (75). Soils from the surface of each land cover and deep soils from the mud land cover
collected in August were selected. Soils (5 g) were added to amber vials (35 ml) and were sparged with
N2 gas immediately. Autoclaved MilliQ (5 ml) was added to improve homogeneity. The headspace of the
vials was flushed with 120 ml of air that had been filtered using a 0.2-�m-pore-size filter, and then 2.5 ml
(�10% of the headspace) was removed and replaced with methane. One additional processed surface
soil from the mud land cover was autoclaved three times for 20 min each time to serve as a killed control
and to account for nonbiological soil methane oxidation. Additionally, one vial containing only 10 ml of
sterile MilliQ water was used as a negative control. Methane in the headspace was sampled daily for 1
week and then every other day for the following week. The headspace volume (5 ml) was injected into
a Shimadzu GC-2014 chromatograph, and the volume was replaced with a methane-air mixture (ap-
proximately 10:90). Consumption rates were calculated from empirically determined linear portions of
each curve (see Data Set S1 in the supplemental material).

Extraction of nucleic acids and preparation of sequencing data for analyses. 16S rRNA gene
analyses were performed on surface and deep soils from triplicate cores from each land cover (plant,
mud, and water) over four seasons (November, February, May, and August) (n � 66). The V4 regions of
the 16S rRNA genes were sequenced at Argonne National Laboratory’s Next Generation Sequencing
Facility to generate 2-by-251-bp paired-end reads using a single lane of an Illumina MiSeq system (76).
Reads were processed using QIIME to generate OTUs and calculate relative abundances (77). To identify
the most abundant taxonomic groups (Fig. 2A), the relative abundances of each OTU were averaged over
all samples, and the results were then summed according to the unique bacterial and archaeal orders
detected. Fold enrichments on each wetland ecological gradient were calculated by comparing the mean
relative abundances of the individual OTUs between land covers or seasons.

For metagenomics, we selected surface soils from a single representative core from each of the three
land covers (plant, mud, and water) in two seasons (November and August) (n � 6). For metatranscrip-
tomics, we performed RNA extractions from each triplicate core and from two land covers (plant and
mud) in both seasons (n � 12). The nucleic acid extraction protocol was explained previously (16). Briefly,
DNA was extracted from each soil sample using MoBio PowerSoil DNA isolation kits, while RNA was
extracted using MoBio Powersoil total RNA isolation kits, both performed following the instructions of
the manufacturer. DNA was removed from RNA samples using a DNase Max kit (MoBio), and the results
were verified by the use of SuperScript III first-strand synthesis (Invitrogen) and PCR.

Genomic DNA was prepared using a TruSeq Rapid Exome Library Prep kit (Kapa Biosystems), and
metagenomes were sequenced at The Ohio State University (November) and the Joint Genome Institute
(August) using an Illumina HiSeq system. The methods were described previously (16, 77), but briefly,
reads for each metagenome were individually assembled de novo using IDBA-UD (78), while gene calling
and identification were performed by bidirectional querying of multiple databases (79). Scaffolds of �2
kbp in length were binned by tetranucleotide frequencies using emergent self-organizing maps (ESOM)
(79, 80) and were further manually curated by GC, coverage, and taxonomic affiliation (see Text S1 in the
supplemental material). Completion of each genome was estimated by analysis of the presence of 31
conserved bacterial genes that generally occur in single copy within microbial genomes by the use of
Amphora2 (81). Unassembled reads were used to reconstruct near-full-length 16S rRNA gene sequences
using EMIRGE (26).

RNA was prepared at JGI using a TruSeq Stranded Total RNA LT Sample Prep kit (Kapa Biosystems),
which includes rRNA depletion and cDNA synthesis steps, and was sequenced using an Illumina HiSeq
system to generate 2-by-150-bp paired-end reads. Those reads were quality checked and trimmed in the
same manner as the metagenomic reads. Reads were mapped to a database containing genes on
assembled scaffolds that were �1 kbp from all six metagenomes using Bowtie2 (82), allowing a
maximum of 3 mismatches (16). Transcript abundances were corrected for multimapping and normalized
by gene length and library size by the use of Cufflinks (83), resulting in units of fragments per kilobase
per million mapped reads (FPKM). Separate read mapping to a database of 99 pmoA genes, from
sequenced genome representatives of Methylococcales, Rhizobiales, Methylacidiphilum, and “Ca. Methy-
lomirabilis” retrieved from the Integrated Microbial Genomes and Metagenomes website (IMG/M) or
NCBI (see below), was performed in the same manner.

Phylogenetic analyses of the genomes and marker genes of methanotroph genomes. Publically
available Methylococcales genomes were mined in September of 2017 from the Integrated Microbial
Genomes and Metagenomes website (IMG/M [https://img.jgi.doe.gov/]) (84). These genomes were
supplemented with that of Crenothrix sp. D3 (taxonomy identifier [ID] 1880899) (11) obtained via the
National Center for Biotechnology Information (NCBI [https://www.ncbi.nlm.nih.gov/]) and with OPU3
extracted from the supplemental material provided by Padilla et al. (10). Nitrosococcus species were used
as a phylogenetic root because they are members of the Gammaproteobacteria and their hallmark
ammonia monooxygenase (amo) gene shares evolutionary history with pmo (40), allowing the same root
microorganisms to be used in all phylogenetic analyses, except analyses of methanol dehydrogenase.
Genes were identified in these genomes using BLASTp with an E value threshold of 1e�20, and the
resulting sequences were manually curated to remove false positives by analysis of operon architectures,
sequence alignment, and FastTree topologies (85). Genes on unbinned contigs were assigned to OWC
Methylobacter or NSP1-2 genomes for transcriptomic analyses by determinations of shared identity levels
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of �95% over a minimum of 1,000 bp. The affiliations of the genes of interest on these contigs were
additionally verified by alignment with the matching genes in the genomes.

For each analysis, genes were aligned using MUSCLE 3.8.31 (86) and were manually curated in
Geneious 7.1.9 (87) to remove end gaps and to adjust poorly aligned regions or sequences prior to
concatenation performed using Geneious. Maximum likelihood phylogenetic trees were generated using
RAxML 8.3.1 (88) with 100 bootstraps.

Methylococcales 16S rRNA gene sequences were retrieved from SILVA (https://www.arb-silva.de/)
small-subunit (SSU) 128 RefNR (89) and were supplemented with genes in sequenced genomes in IMG/M.
This reference database was dereplicated manually by keeping only those sequences present in genomes
of isolates or reconstructed from metagenomes and eliminating multicopy rRNA genes (except those of
Crenothrix polyspora). The 16S rRNA gene phylogeny was generated using the GAMMAGTR substitution
model.

We sought to confirm the identities of the pmo and pxm genes present in our methanotroph
genomes by analysis of branching patterns in addition to conserved operon architecture (40). Operon
architectures were visualized on IMG/M using the “Gene Neighborhoods” tool or by scanning the gene
orders for OPU3 and Crenothrix sp. D3. The phylogenies of pmoA, pmoB, and pmoC were aligned
individually using the respective amo genes as outgroups. Unbinned pmo and pxm genes were assigned
to OWC Methylobacter or NSP1-2 by a combination of overall shared identities and phylogenetic
groupings (Data Set S1). Nucleotide phylogeny data were generated using the GAMMAGTR model with
Jukes-Cantor correction (28), and the amino acid phylogeny was constructed using the PROTGAMM
AWAG substitution (11).

For concatenated phylogenetic analyses using universally conserved single-copy genes (90) and
ribosomal protein genes (91), all protein sequences were individually aligned and curated and then
concatenated into a single alignment using Geneious. The genes used are described in Data Set S1. All
of the genes were present in approximately single copy in all four of our reconstructed genomes, and
reference genomes were included only if they were missing a maximum of one gene. The resulting tree
(Fig. 3A) was generated using the PROTCATLG model (77, 91). However, we note that the topology of this
tree was maintained regardless of the gene concatenation order, the addition or subtraction of genes
and genomes, the substitution model, and similarity to the results of single-gene analyses (i.e. ribosomal
protein S3; not shown).

In order to determine the type(s) of methanol dehydrogenase encoded by OWC Methylobacter and
NSP1-2, we compared their methanol dehydrogenase amino acid sequences to those published in
Taubert et al. (92). We included additional Methylococcales species in order to inventory the methanol
dehydrogenase types in this order, as this has not been previously reported (32, 41, 93). The phylogeny
(see Fig. S4 in the supplemental material) was generated using the substitution model determined by
ProTest (94). Unbinned portions of the metagenomes were mined for mxaF-type and xoxF-type methanol
dehydrogenases (except those that were associated with fewer than 300 amino acids, which were
removed) via BLAST and annotation searches and aligned using MUSCLE software, and the types and
phylogenetic associations were analyzed using FastTree 2.1.5 (data not shown) (85).

We analyzed the phylogenetic position of narG encoded in our genomes by putting these genes in
the context of known denitrifying taxa, other Methylococcales, other methanotrophs, and genes of
distant taxa retrieved from NCBI that were similar to the divergent narG gene identified in some
Methylococcales species. The phylogeny was generated using the substitution model determined by
ProTest. We computationally examined the substrate and cofactor binding residues (45) of inferred
peptide sequences to provide additional support for the possible activity of these genes. The putative
structures of OWC Methylobacter and NSP1-2 narG were submitted to SWISS-MODEL (https://swissmodel
.expasy.org/) (95) for comparison to model NarG encoded by E. coli (PDB code 1q16.1.A).

Identification of Methylococcaceae OWC pmoA sequences in public data sets. Soil (subset of the
terrestrial set) and freshwater (subset of the aquatic set) habitat metagenomes and metatranscriptomes
publicly available on IMG/M were searched (February 2017) for genes similar to OWC Methylobacter and
NSP1-2 pmoA genes using the BLASTp function with an E value cutoff of 1e�20. We also mined previous
publications emphasizing the importance of M. tundripaludum-like pmoA sequences in environmental
methane cycling and environmental sequences similar to OWC Methylobacter or NSP1-2 genes available
on NCBI. These included data from Tveit et al. (14), Liebner et al. (29), Martineau et al. (62), and Samad
and Bertilsson (96), which are available as Short Read Archives on NCBI under the following accession
numbers: SRA SRR524822 and SRR524823, PopSet 159135051, PopSet 300679917, and PopSet
498541747, respectively. Hits that were fewer than 130 amino acids or 400 nucleotides in length (�50%
the total length) were removed from further analyses.

The combination of these filtered databases totaled 2,941 genes and 2,889 peptides from environ-
mental sequence databases. These sequences were aligned to full-length OWC Methylobacter sequences
(NSM2-1 and NSP1-1), NSP1-2, and reference Methylococcales sequences using MUSCLE 3.8.31. A maxi-
mum likelihood phylogenetic tree of the reference sequences was generated using RAxML 8.3.1 with 100
bootstraps for both nucleotide and amino acid alignments and GTRGAMMA and GAMMAWAG (11),
respectively. Environmental sequences were computationally assigned to nodes using pplacer (97), and
the specific position of the placement was determined by identifying the node with the greatest log
likelihood. Hits that were placed specifically onto NSM2-1, NSP1-1, or NSP1-2 in at least the nucleotide
or amino acid analysis were considered to be affiliated with the OWC Methylobacter or NSP1-2 and not
with neighboring members. To generate Fig. S7, only the hits following these criteria were reanalyzed
with pplacer using the same reference tree, and the resuts were appended to their branch placements
with guppy (97). The initial assignments of the hits obtained using pplacer are available in Data Set S1.
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Statistical analyses and visualization. Statistical analyses and data visualizations, including phy-
logenies, were performed in R 3.3.2, while the methanol dehydrogenase tree was visualized using the
interactive Tree Of Life method (iTOL [http://itol.embl.de/]) (98). Significant differences were detected by
analysis of variance with post hoc correction for multiple comparisons using Tukey’s honest significant
difference tests and were defined as an adjusted P value of less than 0.05 computed using the “stats”
package (aov with TukeyHSD). Correlations were significant (and are reported here) only in cases in which
the R value was less than �0.5 or exceeded �0.5, and a P value of less than 0.05 as calculated by the
use of the “Hmisc” package (rcorr). Relationships among relative abundance, gene expression, and
geochemical gradient variables were calculated and visualized by fitting to a simple linear model using
quantile regression as part of the “stats” package (lm). The positions of environmental sequences
assigned to our genomes were extracted using the “ggtree” package (get.placements).

Metagenomic and metatranscriptomic pipelines. The commands used for metagenomic and
metatranscriptomic computations can be accessed via respective repositories on our GitHub page
(https://github.com/TheWrightonLab/).

Accession number(s). Methanotroph genomes generated here are available on NCBI under the
following accession numbers (Data Set S1): SAMN05908750 (NSM2-1), SAMN05908751 (NSO1-1),
SAMN05908747 (NSP1-1), SAMN05908748 (NSP1-2). Metagenomes and metatranscriptomes can be
accessed via NCBI under the following BioSample numbers: SAMN06267298 (November 2014 plant
metagenome), SAMN05892948 (November 2014 water metagenome), SAMN05892929 (November 2014
plant metagenome), SAMN06267290 (August 2015 mud metagenome), SAMN06267291 (August 2015
water metagenome), and SAMN06267292 (August 2015 plant metagenome), and SAMN06267298,
SAMN06267299, SAMN06267300, SAMN06267301, SAMN06267302, SAMN06267303, SAMN06267304,
SAMN06267305, SAMN06267306, SAMN06267307, SAMN06267308, and SAMN06267309 (November
2014 and August 2015 metatranscriptomes). 16S rRNA gene amplicon sequencing data can be retrieved
from NCBI under BioProject PRJNA338276.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00815-18.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, EPS file, 0.9 MB.
FIG S2, EPS file, 1.3 MB.
FIG S3, EPS file, 1.3 MB.
FIG S4, EPS file, 1.3 MB.
FIG S5, PDF file, 0.4 MB.
FIG S6, EPS file, 1 MB.
FIG S7, EPS file, 1.3 MB.
DATASET S1, XLSX file, 2 MB.
DATASET S2, XLSX file, 2.4 MB.
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