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Abstract 
Background.  Glioblastoma (GBM) remains associated with a dismal prognoses despite standard therapies. While 
population-level survival statistics are established, generating individualized prognosis remains challenging. We 
aim to develop machine learning (ML) models that generate personalized survival predictions for GBM patients to 
enhance prognostication.
Methods.  Adult patients with histologically confirmed IDH-wildtype GBM from the National Cancer Database 
(NCDB) were analyzed. ML models were developed with TabPFN, TabNet, XGBoost, LightGBM, and Random Forest 
algorithms to predict mortality at 6, 12, 18, and 24 months postdiagnosis. SHapley Additive exPlanations (SHAP) 
were employed to enhance the interpretability of the models. Models were primarily evaluated using the area under 
the receiver operating characteristic (AUROC) values, and the top-performing models indicated by the highest 
AUROCs for each outcome were deployed in a web application that was created for individualized predictions.
Results.  A total of 7537 patients were retrieved from the NCDB. Performance evaluation revealed the top-
performing models for each outcome were built using the TabPFN algorithm. The TabPFN models yielded mean 
AUROCs of 0.836, 0.78, 0.732, and 0.724 in predicting 6, 12, 18, and 24 month mortality, respectively.
Conclusions.  This study establishes ML models tailored to individual patients to enhance GBM prognostication. 
Future work should focus on external validation and dynamic updating as new data emerge.

Key Points

- This study developed machine learning models predicting survival outcomes 
postdiagnosis for IDH-wildtype glioblastoma patients.

- Machine learning has the potential to transform cancer prognostication from population 
statistics to patient-tailored predictions.

Glioblastoma (GBM) represents the most prevalent and ag-
gressive form of primary brain tumors in adults.1,2 Despite 
incremental advancements in standard-of-care involving max-
imal safe resection followed by concurrent chemoradiotherapy, 
GBM continues to be associated with a dismal prognosis, with 
a median survival of only 12–18 months postdiagnosis.2–5 As 
new treatments emerge, the overall survival for patients may 
increase. For example, the addition of tumor-treating fields 

(TTF) to maintenance temozolomide chemotherapy has been 
shown to extend median overall survival to 20.9 months.6 The 
complex progression patterns coupled with inadequate re-
sponse to current treatment modalities pose challenges for 
prognostication in GBMs. Therefore, accurately forecasting sur-
vival and anticipating disease trajectory constitutes a key area 
of interest within GBM literature.7 While survival statistics at the 
population level are well-established,1,2 and factors impacting 
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survival like age, molecular markers, the extent of resection, 
and tumor location have been identified,8–13 generating pre-
cise survival predictions at the individual patient level re-
mains an unmet clinical need.7

Existing efforts to generate time-dependent prog-
nostic estimates for GBM patients’ have utilized var-
ious approaches, including Cox proportional hazards 
regression-based nomograms and, more recently, ma-
chine learning (ML) approaches.7 Compared to con-
ventional statistical techniques like Cox regression, 
ML offers several advantages for survival prediction in 
GBM. First, ML methods can process extensive, multi-
faceted, and heterogeneous datasets, uncovering subtle 
patterns and relationships potentially overlooked by tra-
ditional statistical methods.14,15 Second, ML facilitates 
integrating diverse variables spanning clinical, genomic, 
and imaging parameters, enabling a more comprehen-
sive, personalized prognosis forecasting.16,17 Finally, ML 
eliminates the need for rigid assumptions mandated by 
classical models, enabling the identification of nonlinear 
interactions and associations within high-dimensional 
data.14,15 Collectively, these capabilities make ML a po-
tentially more robust methodology compared to con-
ventional statistics for generating individualized survival 
predictions in GBM patients.

In this study, we aim to develop accurate prediction 
models for GBM using ML approaches. While a few prior 
studies have also utilized ML for this purpose, their impli-
cations have been limited to demonstrating feasibility due 
to the lack of practical frameworks for clinicians to derive 
patient-specific predictions, with a few exceptions.7,18,19 In 
our study, we intend to overcome some of the limitations 
of the majority of existing studies that have prevented the 
adoption of developed ML in real-world settings by ex-
ploiting the capabilities of ML to create a web application 
designed to provide interpretable survival predictions for 
patients diagnosed with IDH-wildtype GBM.

Materials and Methods

Ethical Approval

This study was deemed exempt by the Institutional Review 
Board of the Icahn School of Medicine at Mount Sinai. The 

National Cancer Database (NCDB) Participant User Files 
contain national deidentified data for which obtaining con-
sent was not applicable.

Data Source

The data used in this study were obtained from the 2020 
iteration of the NCDB. The NCDB constitutes an extensive, 
prospectively maintained repository jointly developed by 
the Commission on Cancer (CoC) of the American College 
of Surgeons (ACS) and the American Cancer Society.20

Guidelines

Transparent Reporting of Multivariable Prediction Models 
for Individual Prognosis or Diagnosis (TRIPOD)21 and 
Journal of Medical Internet Research (JMIR) Guidelines 
for Developing and Reporting Machine Learning Predictive 
Models in Biomedical Research22 were adhered to.

Study Population

Adult patients aged 18 years and older, with histologically 
confirmed IDH-wildtype GBMs [ICD-O-3 (International 
Classification of Diseases for Oncology, third edition) 
morphology code 9440/3], were identified in the NCDB-
Brain Participant User File (PUF) using Brain Molecular 
Markers data item code 05 [Glioblastoma, IDH-wildtype 
(9440/3)].2 We restricted our study population to only pa-
tients with IDH-wildtype GBM and did not include grade 
4 IDH-mutant astrocytoma as our exploratory anal-
ysis yielded only 100 patients with grade 4 IDH-mutant 
astrocytoma. The study population was limited to diag-
noses made between January 1, 2018 and December 31, 
2019. This limitation was due to the NCDB reporting new 
Brain Molecular Marker and MGMT promoter methyla-
tion data items for diagnoses made after January 1, 2018.2 
Additionally, the 2020 iteration of the PUF, which was the 
latest iteration obtainable from the ACS at the time the 
study was conducted, contained data for diagnoses made 
up to December 31, 2019. Patients with missing data in 
the “Vital Status” and “Last Contact or Death” data items 
were excluded.

Importance of the Study

This study demonstrates the potential of machine 
learning models to transform glioblastoma prognostica-
tion from population statistics to personalized predic-
tions tailored to individual patients. Generating precise, 
patient-specific survival estimates is challenging due 
to glioblastoma’s complexity and heterogeneity. This 
work introduces machine learning models leveraging a 
large dataset to forecast mortality at multiple time points 
postdiagnosis. The top-performing models are presented 

in an accessible web application that provides individual-
ized prognostic calculations. By elucidating data-driven, 
customized prognoses, this study establishes a frame-
work for enhancing personalized care in glioblastoma. 
Precision prognostication can potentially inform patient 
counseling based on an individual’s risk profile rather 
than subjective judgments or generic averages. Overall, 
this work highlights the potential for machine learning to 
advance personalized medicine in neuro-oncology.
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Predictor Variables and Outcomes of Interest

The predictor variables utilized by the ML models com-
prised: (1) demographics: age, sex, race, Hispanic eth-
nicity, insurance status, and Charlson–Deyo score 
(modified version of the Charlson Comorbidity Index that 
considers both the existence of comorbidities a patient 
has as well as the severity of those comorbidities)23; (2) fa-
cility characteristics: facility type (grouped into academic/
research program, community cancer program, and inte-
grated network program) and facility geographic location 
(grouped into 5 geographic regions in the United States: 
Central, Atlantic, Pacific, New England, and Mountain; 
Supplementary Figure 1); (3) diagnostic information: 
maximum tumor dimension and MGMT promoter meth-
ylation status; 4) treatment-related characteristics: the 
extent of resection, radiotherapy, chemotherapy, and 
immunotherapy.

The ML models were trained to predict survival out-
comes at 6-month intervals postdiagnosis at the following 
time points: 6, 12, 18, and 24 months. The data items “Vital 
Status” and “Last Contact or Death” were combined to de-
rive these binary outcomes of interest. For example, to iden-
tify patients who died within 6 months of their diagnosis, we 
searched for cases where the “Vital Status” data item was 
reported as “Dead” and the “Last Contact or Death” data 
item was reported as less than 6 months. These patients 
were assigned a 6-month mortality status of “Yes.” Patients 
with a “Vital Status” listed as “Alive” and a “Last Contact or 
Death” beyond 6 months, or “Vital Status” listed as “Dead” 
but “Last Contact or Death” was more than 6 months, were 
given a 6-month mortality status of “No.” In cases where a 
patient was marked as alive, but their latest follow-up data 
was recorded before the survival time point in question, 
they were excluded from the relevant survival analyses. This 
approach was replicated for survival outcomes at 12, 18, and 
24 months.

Data Preprocessing

A custom dataset was created by filtering the NCDB-Brain 
PUF for the study population and extracting the data items 
used to generate the predictor variables and outcomes of 
interest, as outlined above. The code for the process re-
garding how these variables were derived from the NCDB 
data elements is shared on GitHub (https://github.com/
mertkarabacak/NCDB-GBM/blob/main/Label_Renaming.
ipynb). After constructing this custom dataset, catego-
rical variables were label encoded. To handle missing data 
and prevent potential bias from excluding patients with 
incomplete records, we utilized the k-nearest neighbor 
(kNN) imputation algorithm, which predicts and imputes 
missing values based on the most similar complete data 
points.24 Since kNN imputation operates on continuous 
data, imputed values for the label-encoded categorical 
variables were rounded to the nearest integer. The code 
for these later processes, label encoding and missing 
data imputation is shared on GitHub (https://github.com/
mertkarabacak/NCDB-GBM/blob/main/Preprocessing.
ipynb) as well.

Model Development and Evaluation

The datasets curated for each outcome of interest were 
divided into 3 subsets using a 60:20:20 distribution for 
training, validation, and test sets, respectively. The training 
sets were used to train the ML models, the validation sets 
were utilized for hyperparameter tuning and model calibra-
tion, and the test sets were used to evaluate the models’ 
performance.

Before the initiation of model training, the Synthetic 
Minority Over-sampling Technique (SMOTE) was applied 
to the training sets.25 SMOTE addresses imbalances in 
class distribution within a dataset by generating synthetic 
samples from the minority class, thereby augmenting the 
number of instances in the underrepresented class instead 
of merely replicating existing samples. This technique ef-
fectively enlarges the sample size of the underrepresented 
class, which in turn potentially enhances the performance 
of the ML models.

Five supervised ML algorithms were used to build 
models: TabPFN, TabNet, XGBoost, LightGBM, and 
Random Forest. Supervised ML models are trained on la-
beled datasets with known outcomes. These models can 
then assimilate the patterns in the training data, allowing 
them to make accurate predictions on new, unseen data. 
Each of these algorithms was selected for its unique cap-
abilities that have demonstrated high performance in 
differentiating or categorizing data, handling many vari-
ables concurrently, and flexibility for tuning. TabPFN rep-
resents a class of transformer-based models adept at 
discerning intricate patterns in point cloud data, which 
comprises points organized in a spatial layout.26 TabNet 
is a deep learning architecture providing an interpretable 
framework suited for diverse structured data.27 XGBoost 
and LightGBM are gradient-boosting frameworks re-
nowned for their remarkable performance on classification 
tasks.28,29 The Random Forest algorithm operates by con-
structing an ensemble of decision trees, with the final pre-
diction synthesized from the aggregate consensus across 
the trees.30

Models built with these ML algorithms for each of the 
survival outcomes underwent hyperparameter optimiza-
tion using the Optuna library, with the goal of maximizing 
the area under the receiver operating characteristics curve 
(AUROC) as the optimization metric.31 Optuna is a versatile 
Python library designed to automate and streamline the op-
timization of ML model hyperparameters through a robust 
and flexible framework. To establish a baseline for the op-
timization procedure, the Tree-Structured Parzen Estimator 
Sampler algorithm was employed to generate estimates of 
AUROC. The models fitted with training data and optimized 
hyperparameters were then calibrated using a nonpara-
metric approach called isotonic calibration, which adjusts 
the predicted probabilities to better match the distribution 
of observed labels, with the CalibratedClassifierCV func-
tion from the scikit-learn library.32 Isotonic calibration aims 
to find the optimal monotonic transformation of the pre-
dicted probabilities to yield well-calibrated probability es-
timates.33,34 The code for the model development process 
is shared on GitHub (https://github.com/mertkarabacak/
NCDB-GBM/blob/main/Survival_Modeling.ipynb).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Label_Renaming.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Label_Renaming.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Label_Renaming.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Preprocessing.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Preprocessing.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Preprocessing.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Survival_Modeling.ipynb
https://github.com/mertkarabacak/NCDB-GBM/blob/main/Survival_Modeling.ipynb
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The performance of the calibrated models was evalu-
ated both visually and quantitatively. The visual appraisal 
was conducted using 2 graphs: the receiver operating char-
acteristics (ROC) and precision-recall curves (PRC). ROC 
curves visually showcase the diagnostic ability of binary 
classifiers across various discrimination thresholds by 
graphically depicting the true positive rate plotted against 
the false positive rate. PRCs, on the other hand, graphically 
depict precision and recall.

An important step in our evaluation was determining 
the optimal binary classification threshold based on pre-
dicted probabilities. For this purpose, we identified the 
optimal threshold as the point on the ROC curve corre-
sponding to the maximum value of the Youden Index 
(J = sensitivity + specificity – 1), which is a common metric 
in diagnostic or prognostic test evaluation.35,36 This method 
facilitated a balanced trade-off between sensitivity and 
specificity, potentially optimizing the performance of our 
models.

Upon establishing the optimal threshold using the 
Youden Index, we calculated the binary predictions 
based on predicted probabilities and proceeded with 
the quantitative appraisal of the models’ performance, 
which encompassed metrics such as sensitivity, speci-
ficity, accuracy, area under the PRC (AUPRC), and AUROC. 
Additionally, we assessed the calibration of our models 
employing the Brier score, representing the average 
squared difference between predicted and actual prob-
abilities.34,37 A well-calibrated model will exhibit a Brier 
score close to zero, indicating no difference between the 
predicted and actual probabilities. Confusion matrices 
were also generated to interpret the performance of the 
models by providing a clear snapshot of correct and in-
correct predictions.

Radar charts were plotted to facilitate a comparative as-
sessment of models’ performance across diverse metrics 
for each 1 of the 4 survival outcomes. These charts act as 
a tool for visualizing multidimensional data, where each 
of the 5 axes represents a distinct performance metric. 
The position on each corresponding axis denotes the 
model’s performance in association with a single metric. 
To enhance the interpretability of our models, we ascer-
tained the relative importance of predictor variables util-
izing SHapley Additive exPlanations (SHAP).38 SHAP is 
a method that assigns each feature an importance value 
for a particular prediction. The SHAP values indicate how 
much each feature contributed, either positively or neg-
atively, to the model’s output. SHAP bar plots were gen-
erated, delineating the cumulative impact that discrete 
features exert on the prognostications associated with 
each survival outcome. The length of each bar is a visual 
representation of the mean SHAP value for that feature, 
thereby denoting the impact of that feature’s influence 
on the predicted outcome. Features are displayed in a hi-
erarchical manner, with the most important positioned 
at the top. Additionally, partial dependence plots (PDPs) 
were employed to delineate the influence of discrete vari-
ables on the predictions.39 PDPs illustrate the isolated ef-
fect of a single feature on the model’s predicted output, 
elucidating the degree to which individual features sway 
the predictions.

Web Application

For each of the 4 survival outcomes, we selected 1 “top-
performing” model for deployment to an open-access web 
application. These top models were selected based on their 
AUROC values, a recognized performance metric for ML 
models that are particularly relevant for binary classifica-
tion tasks.40 The AUROC encapsulates a model’s ability to 
distinguish between positive and negative examples across 
the range of classification thresholds. Using AUROC as the 
primary criteria for selecting the top models is justified for 
3 main reasons. First, it is unaffected by class imbalance, 
making it suitable for datasets with skewed class distribu-
tions. Second, it incorporates all possible classification 
thresholds, thereby providing a comprehensive evaluation 
of performance at different thresholds. Finally, it facilitates 
the comparative analysis of different models or algorithms 
by condensing model performance into a single value.

Upon selecting the top models for deployment, we de-
veloped an open-access web application through Hugging 
Face, a platform that enables sharing ML models via web 
interfaces and provides access to their source code. Our 
web application allows users to obtain personalized prob-
abilistic survival predictions for IDH-wildtype GBM patients 
at 6-month intervals postdiagnosis up to 24 months. Users 
can input demographic, clinical, and treatment information 
and receive prognostic estimates at 6, 12, 18, and 24 months 
postdiagnosis. This easy-to-use tool provides clinicians and 
researchers a means to leverage our ML models to get sur-
vival predictions for individual patients based on their char-
acteristics. The user interface and instructions for use are 
demonstrated in Supplementary Video 1. This web applica-
tion and its source code are available at https://huggingface.
co/spaces/MSHS-Neurosurgery-Research/NCDB-GBM.

Descriptive Statistics

For continuous variables with normal distribution, means 
(±standard deviations); for continuous variables without 
normal distribution, medians (interquartile ranges); and 
for categorical variables, proportions (%) were reported.

Results

A total of 7537 IDH-wildtype GBM patients were retrieved 
from the NCDB. The mean age was 65 (±15), and 3050 (40.5 
%) of these patients were females. For the 6-month survival 
analysis, 7293 patients (25.5% with 6-month mortality); for 
the 12-month survival analysis, 7110 patients (46.6% with 
12-month mortality); for the 18-month, 6868 patients (65% 
with 18-month mortality); and for the 24-month survival 
analysis, 6422 patients (78.6% with 24-month mortality) 
were included. The characteristics of the patient population 
before the application of the time point-specific exclusion 
criteria are presented in Table 1.

Figure 1 presents radar charts, each corresponding 
to 1 of the 4 survival outcomes under investigation, 
and Table 2 presents the performance metrics of the 
models built with the 5 ML algorithms for each survival 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NCDB-GBM
https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NCDB-GBM
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Table 1. Patient Characteristics

Variables Mean (±SD), Median (IQR), or n (%)

Age 65.0 (15.0)

Sex Male 4487 (59.5%)

Female 3050 (40.5%)

Race White 6781 (90.0%)

Black 446 (5.9%)

Other 310 (4.1%)

Hispanic ethnicity No 7080 (93.9%)

Yes 457 (6.1%)

Insurance status Medicare 3612 (47.9%)

Private insurance 3028 (40.2%)

Medicaid 557 (7.4%)

Other government 161 (2.1%)

Not insured 179 (2.4%)

Facility type Academic/Research Program 3644 (48.4%)

Community Cancer Program 2422 (32.1%)

Integrated Network Cancer Program 1471 (19.5%)

Facility location Central 2902 (38.5%)

Atlantic 2748 (36.5%)

Pacific 1011 (13.4%)

New England 509 (6.8%)

Mountain 367 (4.9%)

Percent no high school education quartiles <6.3% 2108 (28.0%)

6.3–10.8% 2648 (35.1%)

10.9–17.6% 1764 (23.4%)

>17.6% 1017 (13.5%)

Census median income quartiles <$40 227 884 (11.7%)

$40 227–$50 353 1440 (19.1%)

$50 354–$63 333 2275 (30.2%)

>$63 333 2938 (39.0%)

Rurality Metro 6471 (85.9%)

Urban 953 (12.6%)

Rural 113 (1.5%)

Charlson-deyo score 0 6581 (87.3%)

1 570 (7.6%)

>2 386 (5.1%)

Tumor size 44.0 (21.0)

MGMT methylation Unmethylated 4550 (60.4%)

Methylated 2987 (39.6%)

Extent of resection No resective surgery was performed 2122 (28.2%)

Subtotal resection 2327 (30.9%)

Gross total resection 3088 (41.0%)

Radiotherapy No 1656 (22.0%)

Yes 5881 (78.0%)

Chemotherapy No 1850 (24.6%)

Yes 5687 (75.4%)

Immunotherapy No 7025 (93.2%)

Yes 512 (6.8%)
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outcome. Supplementary Figure 2 shows confusion ma-
trices for the top-performing models per outcome, while 
Supplementary Figures 3–6 display confusion matrices 
for the remaining models. Performance evaluation re-
vealed the top-performing models for each outcome were 
built using the TabPFN algorithm. The TabPFN models 
yielded mean AUROCs of 0.836, 0.78, 0.732, and 0.724 in 
predicting 6, 12, 18, and 24 month mortality, respectively. 
These results demonstrate good discriminatory ability in 
distinguishing patients who had 6-month mortality and fair 
discriminatory ability in distinguishing patients who had 
12, 18, and 24 month mortality from those who did not.41

The ROC curves (Figure 2) illustrate the trade-off be-
tween sensitivity and specificity across probability cutoffs. 
As described in the methods, we determined the optimal 
classification threshold for each model using the Youden 
Index to find the optimal balance of sensitivity and speci-
ficity. The optimum thresholds were 15.07% for 6-, 45.62% 
for 12-, 63.18% for 18-, and 76.83% for 24-month mortality 
for top-performing models. Using these cutoffs to binarize 

the predicted probabilities, these models showed good 
discrimination for 6-month mortality and fair discrimina-
tion for longer-term mortality.

The PRCs (Figure 3) show the trade-off between preci-
sion and recall for different probability cutoffs. Precision 
refers to the proportion of positive predictions that are 
correct, while recall refers to the proportion of actual posi-
tives that are correctly predicted. The AUPRC values reflect 
the ability of the models to minimize false positives. The 
mean AUPRC values for the top-performing models were 
0.647 for 6, 0.74 for 12, 0.809 for 18, and 0.882 for 24 month 
mortality. These results show the models’ capacity to dis-
tinguish true positives improves over longer time horizons.

Figure 4 displays SHAP bar plots for the top models per 
outcome, while Supplementary Figures 7–10 show SHAP 
plots for the other models. For the 6-month top model, 
the variables with the highest absolute SHAP values were 
chemotherapy, radiotherapy, extent of resection, age, and 
MGMT methylation status—indicating they had the big-
gest influence on prediction. Similar interpretations can be 

SensitivityA B

C D

Specificity

Accuracy

AUROC

AUPRC

Sensitivity

Specificity

Accuracy

AUROC

AUPRC

Sensitivity

Specificity

Accuracy

AUROC

AUPRC

Sensitivity

Specificity

Accuracy

AUROC

AUPRC

Figure 1. Algorithms’ radar plots for the outcomes: (A) 6-month, (B) 12-month, (C) 18-month, and (D) 24-month mortality (AUROC, area under the 
receiver operating characteristics curve; AUPRC, area under the precision-recall curve).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
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made for the other outcome models based on their SHAP 
plots. Across the top models, treatment variables, age, and 
MGMT status consistently emerged as the most important 
predictors. Supplementary Figures 11–14 present partial 
dependence plots showing the individual effects of the 9 
variables with the highest SHAP values on the predictions 
from each top model.

Discussion

This study demonstrates the potential of ML models to 
improve prognostication for GBM patients by developing 

models that can predict survival outcomes at multiple time 
points postdiagnosis. A key novelty is the incorporation of 
these models into an accessible web application that pro-
vides healthcare professionals with a practical tool to ob-
tain individualized survival predictions. This study enables 
patient-specific, data-driven risk assessments tailored 
to the individual, unlike conventional practice, which de-
pends on qualitative judgments based on a physician’s lim-
ited experience or generalized population estimates. Such 
subjective assessments often have restricted applicability 
beyond a provider’s experience, while population averages 
may not fit an individual patient’s specific prognosis. By 
leveraging robust ML models trained on thousands of pa-
tients, this study overcomes these limitations to generate 

Table 2. Performance Metrics of the Models

Algorithm Optimum classi-
fication threshold

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

AUPRC (95% 
CI)

AUROC (95% 
CI)

Brier score 
(95% CI)

6-Month 
mortality

TabPFN 15.07% 0.782
(0.761–0.803)

0.74
(0.717–0.763)

0.751
(0.729–0.773)

0.647
(0.622–0.672)

0.836
(0.805–0.853)

0.135
(0.117–0.153)

TabNet 22.22% 0.747
(0.725–0.769)

0.711
(0.688–0.734)

0.72
(0.697–0.743)

0.578
(0.553–0.603)

0.802
(0.773–0.824)

0.147
(0.129–0.165)

XGBoost 30.43% 0.763
(0.741–0.785)

0.7
(0.676–0.724)

0.716
(0.693–0.739)

0.59
(0.565–0.615)

0.792
(0.773–0.825)

0.147
(0.129–0.165)

LightGBM 23.08% 0.792
(0.771–0.813)

0.736
(0.713–0.759)

0.751
(0.729–0.773)

0.642
(0.617–0.667)

0.827
(0.802–0.851)

0.136
(0.118–0.154)

Random 
Forest

20.00% 0.797
(0.776–0.818)

0.726
(0.703–0.749)

0.744
(0.722–0.766)

0.646
(0.621–0.671)

0.819
(0.801–0.842)

0.135
(0.117–0.153)

12-month 
mortality

TabPFN 45.62% 0.758
(0.736–0.78)

0.626
(0.601–0.651)

0.689
(0.665–0.713)

0.74
(0.717–0.763)

0.78
(0.748–0.795)

0.196
(0.175–0.217)

TabNet 51.88% 0.676
(0.652–0.7)

0.688
(0.664–0.712)

0.682
(0.658–0.706)

0.709
(0.685–0.733)

0.748
(0.721–0.771)

0.206
(0.185–0.227)

XGBoost 46.15% 0.651
(0.626–0.676)

0.722
(0.699–0.745)

0.688
(0.664–0.712)

0.712
(0.688–0.736)

0.743
(0.715–0.765)

0.209
(0.188–0.23)

LightGBM 44.77% 0.696
(0.672–0.72)

0.696
(0.672–0.72)

0.696
(0.672–0.72)

0.735
(0.712–0.758)

0.762
(0.749–0.797)

0.195
(0.174–0.216)

Random 
Forest

50.99% 0.67
(0.646–0.694)

0.749
(0.726–0.772)

0.711
(0.687–0.735)

0.74
(0.717–0.763)

0.772
(0.741–0.796)

0.194
(0.173–0.215)

18-Month 
mortality

TabPFN 63.18% 0.662
(0.637–0.687)

0.657
(0.632–0.682)

0.66
(0.635–0.685)

0.809
(0.788–0.83)

0.732
(0.695–0.75)

0.2
(0.179–0.221)

TabNet 65.31% 0.571
(0.545–0.597)

0.665
(0.64–0.69)

0.605
(0.579–0.631)

0.75
(0.727–0.773)

0.641
(0.624–0.684)

0.215
(0.193–0.237)

XGBoost 73.73% 0.631
(0.605–0.657)

0.731
(0.708–0.754)

0.667
(0.642–0.692)

0.817
(0.797–0.837)

0.721
(0.691–0.742)

0.197
(0.176–0.218)

LightGBM 70.00% 0.699
(0.675–0.723)

0.645
(0.62–0.67)

0.68
(0.655–0.705)

0.81
(0.789–0.831)

0.729
(0.697–0.752)

0.198
(0.177–0.219)

Random 
Forest

68.63% 0.645
(0.62–0.67)

0.708
(0.684–0.732)

0.667
(0.642–0.692)

0.814
(0.793–0.835)

0.721
(0.704–0.756)

0.198
(0.177–0.219)

24-Month 
mortality

TabPFN 76.83% 0.667
(0.641–0.693)

0.626
(0.6–0.652)

0.658
(0.632–0.684)

0.882
(0.864–0.9)

0.724
(0.683–0.749)

0.154
(0.134–0.174)

TabNet 81.48% 0.624
(0.598–0.65)

0.597
(0.57–0.624)

0.618
(0.591–0.645)

0.853
(0.834–0.872)

0.646
(0.605–0.677)

0.165
(0.145–0.185)

XGBoost 78.57% 0.728
(0.704–0.752)

0.594
(0.567–0.621)

0.699
(0.674–0.724)

0.877
(0.859–0.895)

0.715
(0.667–0.733)

0.156
(0.136–0.176)

LightGBM 73.33% 0.703
(0.678–0.728)

0.619
(0.592–0.646)

0.685
(0.66–0.71)

0.882
(0.864–0.9)

0.71
(0.672–0.736)

0.15
(0.13–0.17)

Random 
Forest

80.34% 0.755
(0.731–0.779)

0.522
(0.495–0.549)

0.704
(0.679–0.729)

0.88
(0.862–0.898)

0.711
(0.671–0.737)

0.152
(0.132–0.172)

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae096#supplementary-data


 8 Karabacak et al.: Individualized survival predictions for glioblastoma

tailored, quantitative predictions for each patient. Access 
to personalized prognosis estimates can empower clin-
icians to have informed discussions with patients about 
likely outcomes. This approach also has quality assur-
ance applications, where worse-than-predicted outcomes 
could prompt a re-evaluation of protocols. Additionally, 
individualized prognosis assessment allows proper strat-
ification of patients for research purposes and clinical 
trial design. Overall, this study exemplifies the value of 
ML in translating big data into precision, personalized 
prognostication.

In recent years, there has been a burgeoning interest 
in developing prognostic models to forecast survival 
outcomes for individual GBM patients.7 These models 

employ a range of statistical and ML approaches to ana-
lyze multifaceted data and generate patient-specific sur-
vival estimates. However, according to a systematic review 
encompassing prognostic models constructed between 
2010 and 2019, only 3 studies have operationalized their 
models into practical frameworks, such as online predic-
tion tools, which are imperative for enhancing clinical 
utility and accessibility.7 One such translational effort by 
Senders et al. utilized data from 20 821 patients who un-
derwent resection for histopathologically confirmed GBM 
extracted from the Surveillance Epidemiology and End 
Results (SEER) database between 2005 and 2015.19 Fifteen 
statistical and ML models were developed based on 13 
demographic, socioeconomic, clinical, and radiographic 
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Figure 2. Algorithms’ receiver operating characteristics curves for the outcomes: (A) 6-month, (B) 12-month, (C) 18-month, and (D) 24-month 
mortality (AUROC, area under the receiver operating characteristics curve).
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variables to predict overall survival, 1-year survival status, 
and generate individualized survival curves. Among these 
models, the accelerated failure time model demonstrated 
optimal discrimination with a concordance index of 0.70, 
outperforming Cox proportional hazards regression and 
other ML algorithms. Notably, the models developed in 
our current study, which utilized the TabPFN algorithm, 
achieved high discriminatory performance across all sur-
vival outcomes based on mean AUROC values ranging 
from 0.724 to 0.836. While the concordance index and 
AUROC are not directly equivalent metrics, they both pro-
vide an assessment of a model’s discriminatory ability. 
The AUROC values achieved by our TabPFN models sug-
gest comparable or potentially improved prognostic ability 

relative to Senders et al.’s top-performing model, though a 
direct numerical comparison is not straightforward given 
the different model evaluation metrics. Senders et al. de-
ployed their top-performing model via a freely accessible 
web interface to facilitate clinical use. While laudable as 
a pioneering effort in operationalizing an ML-based prog-
nostic model, several limitations temper the clinical ap-
plicability of this study. Notably, the online calculator 
generates survival predictions dependent on adjuvant ra-
diotherapy, chemotherapy, or both, which may engender 
spurious assumptions of causality among users, as causal 
mechanisms were not explicitly analyzed by the authors. 
Additionally, while offering global model interpretations, 
their application lacks local explanations of individual-level 
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Figure 3. Algorithms’ precision–recall curves for the outcomes: (A) 6-month, (B) 12-month, (C) 18-month, and (D) 24-month mortality (AUPRC, 
area under the precision-recall curve).
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Figure 4. The 15 most important features and their mean SHAP values for the TabPFN models predicting: (A) 6-month, (B) 12-month, (C) 18-month, 
and (D) 24-month mortality (SHAP, SHapley Additive exPlanations).
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predictions that contextualize real-world utility. The ab-
sence of model-agnostic methods like SHAP plots that pro-
vide granular, instance-wise interpretability poses a barrier 
to adoption in clinical practice, as it may promote the per-
ception of ML models as inscrutable “black boxes.”

Our study overcomes this latter limitation by integrating 
local explanatory techniques to build trust and transpar-
ency. The SHAP plots in our methodology furnish both 
global and local explanations. While global explanations 
elucidate overall model patterns, local explanations un-
pack the reasoning behind each patient-specific prediction. 
By revealing the rationale applied to each individual, the 
SHAP plots promote trust in model outputs rather than 
depicting them as black boxes. Moreover, they enable clin-
icians to critically evaluate alignment with their expertise. 
Through confirming or challenging predictions contextu-
ally, providers can integrate SHAP-enhanced ML prognos-
tication into real-world settings. It should be mentioned 
here that global SHAP analysis revealed socioeconomic 
determinants of health, including insurance status, facility 
location, and facility type, emerged as significant com-
ponents of our model. These factors are crucial in under-
standing the disparities in healthcare access and outcomes 
among glioblastoma patients. Acknowledging these socio-
economic predictors within our model not only enhances 
the accuracy of our survival predictions but also under-
scores the importance of addressing healthcare inequities 
in neuro-oncology. Future research should continue to ex-
plore these socioeconomic factors to develop more equi-
table healthcare strategies and improve prognostic tools 
for diverse patient populations.

In a more recent study, Kim et al. aimed to develop a 
clinically applicable prediction model predicting overall 
survival and progression-free survival in GBM patients 
treated with concurrent chemoradiotherapy.18 Their anal-
ysis was limited by a small sample size of 467 patients 
from a single institution, compared to our more extensive 
dataset of over 7000 patients from the NCDB. They devel-
oped Cox proportional hazards, random survival forest, 
and survival support vector machine models based on 16 
clinical variables. For both endpoints, the random survival 
forest model outperformed the other 2, yielding mean con-
cordance indices of 0.72 and 0.70 for overall survival and 
progression-free survival, respectively. While not directly 
comparable metrics, as discussed previously when com-
paring our models to those by Senders et al., the AUROC 
values attained by our TabPFN models suggest comparable 
or potentially superior prognostic ability. Moreover, Kim 
et al. relied on 100-fold cross-validation for model assess-
ment, rather than separate test sets like our study. Cross-
validation risks overestimating performance when model 
parameters are optimized, as is often done. Additionally, 
their study lacked local interpretability methods to explain 
individual predictions, another limitation shared with prior 
work. Overall, our analysis addressed key restrictions of 
Kim et al.’s study regarding sample size, model transpar-
ency, and potentially better discrimination.

Similar to the comparable or potentially superior prog-
nostic performance exhibited by our top models relative to 
prior studies, the performance evaluation within our study 
revealed a subtle yet consistent superiority of models built 
using the TabPFN algorithm over other ML algorithms 

across the distinct survival outcomes, as quantified by the 
AUROC metric. The advantage of TabPFN lies in its unique 
meta-learning framework, which facilitates learning from 
a variety of data, thereby enabling the algorithm to quickly 
adapt to new, unseen data.26,42 This characteristic signifi-
cantly bolsters its performance with the structured tabular 
data integral to this study. In contrast, a notable facet of 
TabPFN is its identity as a Prior-Data Fitted Network (PFN).26 
Unlike meta-learning, which is centered around enhancing 
the learning process, PFNs are pretrained on synthetic data 
to approximate Bayesian inference on new data.43 Bayesian 
inference is a statistical method that allows for the quanti-
fication and management of uncertainty, a crucial feature 
in clinical prognosis scenarios.44 The pretraining on syn-
thetic data enables TabPFN to adeptly navigate complex 
patterns within real-world data, showcasing a nuanced 
approach to tabular data handling. This pretraining as-
pect also promotes a seamless transition to new datasets, 
enhancing its adaptability across diverse data scenarios. 
The algorithm’s design minimizes the risk of overfitting 
and negates the need for extensive gradient-based training 
or hyperparameter tuning, aligning well with the primary 
objective of this study—to provide precise, individualized 
survival predictions for GBM patients. The subtle yet con-
sistent superior performance of TabPFN accentuates the 
potential of employing meta-learned algorithms and prior-
data fitted networks in enhancing prognostic performance, 
thus advancing the frontier of ML-driven, personalized 
prognostication in clinical oncology.

Beyond utilizing clinical, demographic, pathologic, or 
imaging data in a tabular format, several approaches 
leveraging modalities such as raw imaging and genomic 
data have been proposed to construct survival models 
for GBM patients. Pease et al. developed an MRI-based 
radiomic approach to discern patients with survival ex-
ceeding 12 months, leveraging preoperative MRI data from 
235 individuals with pathologically confirmed GBMs in The 
Cancer Genome Atlas and an institutional cohort.45 Ensuing 
manual segmentation of tumor volumes, radiomic fea-
tures were extracted, with the 100 most relevant selected 
via the maximum relevance minimum redundancy tech-
nique. Prognostic models were constructed with a support 
vector machine classifier and validated through leave-one-
out cross-validation and on external datasets. Both internal 
and external validations achieved AUROCs surpassing 0.91 
and 0.71, respectively, for predicting 12-month survival. 
However, this study, like many studies following a similar 
methodology, did not sufficiently demonstrate seamless 
integration into clinical practice to enlighten prognosis. 
In contrast, Jia et al. aimed to construct and validate a 
radiomics nomogram for preoperative survival strati-
fication in GBM patients, harnessing radiomic features 
from multiparametric MRI.46 Following feature extraction 
and selection, classifier models were constructed, and a 
radiomics-based nomogram was created using logistic re-
gression. While accessible for clinical utilization, this nom-
ogram necessitates a “Radscore” input. Despite assertions 
it may facilitate preoperative planning and counseling, the 
means by which clinicians could procure this score remain 
ambiguous.

The existing body of literature offering predictive 
models based on genomic data is even more substantial, 
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with numerous studies proposing various gene signa-
tures as prognostic biomarkers for survival outcomes in 
GBM patients.47–52 While these gene signatures may pro-
vide valuable insights into the molecular basis of GBM, 
their clinical applicability is often limited.53 This stems from 
the infrequent incorporation of the genomic profiling tech-
niques used to develop these signatures into the standard 
of care for GBM management. It is more common to rely 
predominantly on traditional histopathological diagnosis 
rather than comprehensive genomic or transcriptomic 
analysis for clinical decision-making. Consequently, many 
proposed gene signature methodologies remain restricted 
to feasibility studies and are rarely adopted in real-world 
clinical practice. Though promising for elucidating the in-
tricate genomic landscape of GBM, translation of these 
techniques into routine use has been modest, with barriers 
including cost, inadequate validation in heterogeneous 
populations, and lack of demonstrated superiority over 
conventional factors. Thus, despite extensive research on 
leveraging genomic data for enhanced prognostication, 
a sizable gap persists between theoretical modeling and 
clinical adoption. Further efforts are needed to demon-
strate the feasibility and practical utility of modern “omics” 
technologies, in order to promote greater assimilation into 
neuro-oncology care.

Survival prediction plays a crucial role in clinical 
 decision-making and enhancing patient counseling for 
those with GBM. Although the current prognosticator pro-
vides a user-friendly interface with potential clinical utility 
for approximating survival, it is designed as a research ap-
plication and, at its current stage, should not be utilized in 
clinical settings to provide recommendations.54 Validation 
of diverse cohorts, including single-institution and 
multicenter data, is vital to confirm the predictive capacity 
of this calculator for GBM patients. It is our aspiration that 
efforts to better delineate survival and prognostication of 
outcomes for GBM patients will not cease here—rather, we 
intend our model to serve as the first step in constructing 
more comprehensive calculators that incorporate other 
clinically relevant factors, such as biomarkers and imaging 
findings specific to this patient population.

This study has certain limitations, primarily stemming 
from the inherent biases of retrospective database ana-
lyses. As a registry database, the accuracy of coding 
and completeness of data capture are potential issues. 
Important clinical details like symptom presentation, sur-
gical considerations, extent of resection determination, 
and adjuvant treatment specifics may be inconsistently re-
ported or omitted entirely. As new treatments emerge to 
hopefully change the prognosis for this grim diagnosis, 
their incorporation into large databases may lag behind 
clinical practice. For example, tumor treating fields (TTF) 
therapy, a relatively new treatment modality, is not cap-
tured in the NCDB. Notably absent in the present anal-
ysis are data items for patients diagnosed in 2018–2019 
that were available for prior years in NCDB, including 
Karnofsky Performance Scale scores, Ki-67 indexing, and 
tumor focality. Other unavailable clinical data like imaging 
findings, resection extent determination methods, and ad-
ditional performance status factors potentially influencing 
the models were also not recorded by NCDB. Information 

is limited to initial management, with subsequent treat-
ments unaccounted for, which may influence observed 
survival durations. The survival outcome was confined to 
overall survival, precluding analysis of progression-free 
survival or malignant transformation rates. Restricting the 
study to only IDH-wildtype GBM grade 4 means results 
may not extend to IDH-mutant astrocytoma grade 4, which 
would be considered a distinct entity in the WHO 2021 clas-
sification.55 While the NCDB captures approximately 70% 
of US cancer cases, it may have selection bias towards 
larger, urban, Commission on Cancer accredited cen-
ters, and thus findings may not fully generalize. External 
validation is needed to evaluate model transportability 
and generalizability across different populations. While 
we performed internal validation by splitting the NCDB 
data into training and test sets, external validation in an 
entirely separate dataset is still needed. This would eval-
uate the model’s transportability and generalizability in 
new populations. Access to an ideal external dataset that 
is significantly different from the NCDB was unfortunately 
unavailable for the current study. However, external vali-
dation in new datasets remains an important future direc-
tion. As a static analysis, dynamic updating of models over 
time as new data accrues was not undertaken, which may 
affect continued accuracy. Prospective validation in dispa-
rate datasets and modeling updates, as evidence emerges, 
are warranted to strengthen conclusions. Finally, the prog-
nostic associations identified should not be interpreted 
as implying causal relationships between variables and 
survival outcomes. Proper experimental studies or causal 
inference methods are required to make causal claims, 
which is not possible within the scope of this retrospective 
database analysis. The models provide prognostic predic-
tions only, and no causal relationships should be inferred.

Conclusions

This study demonstrates the potential of ML models to im-
prove prognostication in IDH-wildtype GBM by developing 
an instrument for generating individualized survival pre-
dictions. Leveraging a large dataset and novel algorithms, 
we created an accessible web application that provides 
individualized prognostic estimates. Our top-performing 
models achieved satisfactory discriminatory perfor-
mance, with mean AUROCs up to 0.836. This approach 
enables data-driven risk assessments tailored to each in-
dividual, overcoming the limitations of previous studies 
relying on subjective judgments or population averages. 
By elucidating prognosis at a granular level, this work 
exemplifies how ML can translate big data into precision 
medicine. Although retrospective database studies have 
intrinsic limitations, this study provides a framework for 
developing robust survival prediction models with modern 
ML techniques. Future efforts may focus on incorporating 
emerging data modalities, validating predictions prospec-
tively, and updating models dynamically as new evidence 
accrues. Overall, our study highlights the potential for ML 
to transform cancer prognostication from the general pop-
ulation level to the individual patient.
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Lay Summary 

Glioblastoma (GBM) is a common form of brain cancer. Most 
patients with GBM eventually die from the disease, and it is 
challenging to predict how long each patient will live after 
being diagnosed. In this study, researchers used data from the 
National Cancer Database, including information about the pa-
tients, their tumors, and their treatments, to create a computer 
model that predicts individual survival times. Their results show 
that these models can estimate the chances of being alive at 6, 
12, 18, and 24 months after surgery with reasonable, but not per-
fect, accuracy.
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