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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal malignancy, with an average 5-year survival rate of
9% (Siegel RL, Miller KD, Jemal A. Ca Cancer J Clin. 2019;69(1):7-34). The steady increase in mortality rate indicates
limited efficacy of the conventional regimen. The heterogeneity of PDAC calls for personalized treatment in clinical
practice, which requires the construction of a preclinical system for generating patient-derived models. Currently,
the lack of high-quality preclinical models results in ineffective translation of novel targeted therapeutics. This
review summarizes applications of commonly used models, discusses major difficulties in PDAC model construction
and provides recommendations for integrating workflows for precision medicine.

Keywords: Pancreatic cancer, Preclinical model, Precision medicine

Background
Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer-related mortality in the United
States. With the lowest 5-year relative survival rate
among all cancer types and a contemporaneously in-
creasing incidence rate [1], PDAC is predicted to be-
come the second leading cancer killer by 2030 [2]. The
poor prognosis of PDAC is attributed to the difficulty of
early diagnosis, high rate of metastasis and resistance to
chemotherapy. Molecular pathology studies identify
KRAS activation in most PDAC patients, which is con-
sidered a key driver mutation of tumor progression.
Other recurrent somatic mutations lead to the inactiva-
tion of TP53, SMAD4, and CDKN2A [3]. The frequency

of these aberrations increases in higher grade pancreatic
intraepithelial neoplasm (PanIN) lesions, indicating a
stepwise accumulation of genetic alterations [4]. Multio-
mic profiling has enabled the classification of PDAC into
subgroups with distinct tumor behavior, supporting the
concept of patient stratification in the practice of preci-
sion medicine. Nonetheless, the low efficacy of targeted
PDAC therapy suggests the significance of verification
studies for patient-derived models.
Despite advancements in knowledge concerning the

molecular mechanisms of PDAC tumorigenesis and pro-
gression, few preclinical discoveries have been successfully
translated to clinical practice, suggesting insufficient re-
capitulation of critical tumor attributes in existing models
[5]. Compared with other types of tumors, PDAC features
a high level of inter- [3] and intratumoral [6, 7] heterogen-
eity that shapes the genomic landscape and affects thera-
peutic response. In addition, the tumor microenvironment
(TME) of PDAC is characterized by extensive deposition
of stromal components and strong immunosuppression
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[8]. These issues are usually underrepresented in model
construction. Moreover, subclonal divergence from the
primary tumor is introduced through serial passages [9],
which is an indispensable process for in vitro culture and
xenograft models (Fig. 1). Former studies have analyzed
the strengths and weaknesses of individual models, while

the appropriate integration of currently available models is
required for the development of more reliable therapeutic
strategies against PDAC. Therefore, this review summa-
rizes the application of in vitro and in vivo preclinical
models of PDAC and delineates their roles in each stage
of precision medicine.

Fig. 1 Difficulties in the preclinical modeling of PDAC. Figure was produced using Servier Medical Art (http://smart.servier.com/). a When
establishing a preclinical model library, intertumoral heterogeneity at the multiomic level highlights the significance of cohort size, while
intratumoral heterogeneity in temporal (subclonal evolution) and spatial (primary tumor and metastasis) dimension requires multiple sampling
from individuals. b Complex tumor-stroma interactions and phenotypical heterogeneity of stromal components are major barriers to the
recapitulation of the TME. Low immunogenicity and the immunosuppressive sanctuary of PDAC are also difficult for preclinical modeling. c Serial
passaging of preclinical models enables the selection of malignant subclones of tumor cells, raising doubts on the application of cells from later
passages. (10), (11), (12) and (13) denote reference [10–13], respectively. PDAC, pancreatic ductal adenocarcinoma; TME, tumor microenvironment;
CAF, cancer-associated fibroblast; PSC, pancreatic stellate cell; TAM, tumor-associated macrophage; MDSC, myeloid-derived suppressor cell
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Difficulties in the preclinical modeling of PDAC
Inter- and intratumoral heterogeneity
Major forms of intertumoral genetic heterogeneity in-
clude the genome-wide mutation landscape, transcrip-
tomic characteristics, and epigenetic regulation patterns.
It is estimated that > 90% of PDAC cases present with a
KRAS mutation, while TP53, SMAD4 and CDKN2A in-
activation is presented by > 50% of PDAC cases [14].
Other recurrently mutated genes, including numerous
druggable targets, are observed in only ~ 10% of cases
[15]. These clinically relevant, infrequently mutated
genes constitute a major aspect of intertumoral genetic
heterogeneity, which leads to discordance between the
results of clinical trials and basic research and encour-
ages subtyping of PDAC through multiomics [10–13]
(Fig. 1). Some of the identified subtypes have added in-
structive value to clinical practice. For example, whole-
genome sequencing was used to classify PDAC into four
groups (the stable subtype, locally rearranged subtype,
scattered subtype and unstable subtype) according to the
frequency and distribution of structural variations [14].
Genomic instability was discovered to be a putative bio-
marker of platinum-based chemotherapy and poly ADP-
ribose polymerase (PARP) inhibitors. In addition, a re-
cent multiomic analysis of 150 PDAC specimens con-
ducted by the Cancer Genome Atlas (TCGA) Research
Network [3] confirmed two tumor-specific subtypes:
basal-like/squamous and classical/pancreatic progenitor.
The latter was associated with better prognosis [12] and
higher sensitivity to erlotinib [11] in earlier studies.
Moreover, Wartenberg et al. [13] identified three subsets
of PDAC with different levels of immune cell infiltration.
Subsequent retrospective analysis of clinical data re-
vealed longer overall survival (OS) and progression-free
survival (PFS) for patients in the ‘immune-rich’ category
than for patients in the ‘immune-exhausted’ category.
However, these classification systems should still be
evaluated before their extensive application. Most im-
portantly, the sample sizes in these studies were insuffi-
cient to reflect the entire landscape of intertumoral
heterogeneity [16].
It is widely accepted that any kind of treatment poses

selective pressure on tumor cells, resulting in the domin-
ance of resistant clones [7], which contributes to a wors-
ened prognosis for patients. The de novo formation of
these clones reflects the temporal dimension of intratu-
moral heterogeneity. Its spatial dimension is further clas-
sified into three subtypes: heterogeneity within a
primary tumor, in metastasis initiating cells of the pri-
mary tumor, or within a metastatic lesion [6] (Fig. 1). To
genetically resolve the evolutionary pattern of PDAC,
systemic sequencing results were compared between
metastatic and primary lesions [17]. The results showed
that all the examined lesions shared identical mutations

in driver genes. Moreover, high consistency among pas-
senger mutations was found in metastatic cells. These
findings indicated that major mutational events and
chromosomal rearrangements in PDAC cells occurred
early in primary lesions and followed a sequential trajec-
tory leading to local invasion and metastasis. This step-
by-step progression theory was recently challenged, as
chromothripsis-induced copy number changes were
shown to be profound transforming events during rapid
changes in oncogenic and tumor suppressor gene ex-
pression [18]. Both linear and branched genetic phyl-
ogeny were identified in a genetically engineered mouse
model (GEMM) [19]. Nonetheless, the unique distribu-
tion of theranostic mutations among primary and meta-
static lesions does not weaken the significance of
multiple samples used in preclinical model construction.
For instance, multiple forms of KRAS mutations were
discovered in the same PDAC sample [3], while epigen-
etic heterogeneity among intratumoral subclones was
still under research. In addition, subgroups of malignant
cells with distinct proliferative and migratory potentials
were identified through single-cell RNA sequencing [20].
In translational research of targeted therapy, intertu-

moral heterogeneity sets the lower limit of sample size,
while intratumoral heterogeneity undermines reliability
of isolated sampling in individual patient [7]. Therefore,
it is important to guarantee sufficient coverage of variant
genotypes and intratumoral subclones of PDAC when
building a preclinical model.

Recapitulation of the tumor microenvironment
PDAC tumor cells constitute 10–30% of the tumor vol-
ume. The remaining 80% are cancer-associated fibro-
blasts (CAFs), extracellular matrix (ECM) and
immunosuppressive cells, which are closely related to
the progression of cancer cells [21].
Fibroblasts are the principal regulator of desmoplasia

formation [22]. In tumorigenesis, quiescent pancreatic
stellate cells (PSCs) are activated by stimuli from prein-
vasive lesions. This initial wound-healing response
evolves into comprehensive remodeling of the tumor
microenvironment involving intricate tumor-stroma
cross talk and the deposition of ECM components, ul-
timately establishing an immunosuppressive and che-
moresistant sanctuary for PDAC cells (Fig. 1). However,
fibroblasts pose great difficulty in establishing preclinical
models, especially xenograft models, because of the in-
volvement of host-derived fibroblasts. A study of a colo-
rectal cancer (CRC) patient-derived xenograft (PDX)
model [23] showed that the human stroma of tumor xe-
nografts was entirely replaced by murine tissues during
the second passage. GEMMs are the most widely used
models to decipher and manipulate the regulatory mech-
anisms of TME [24] due to their endogenous stromal
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components. Apart from the discordant species origin of
the tumor and stroma, the heterogeneity of the fibroblasts
is another obstacle to TME modeling (Fig. 1). Noticeably,
the expression of activation markers classifies CAFs into
subtypes with distinct secretome and cellular behavior
[25]. For instance, the tumor-promoting alpha smooth
muscle actin (αSMA)-negative/fibroblast activation pro-
tein (FAP)-positive CAF population expresses higher
levels of chemoresistance-mediating interleukin-6 (IL-6),
[26] and immunosuppression-mediating CXC chemokine
receptor 2 (CXCR2) ligands [27] than the tumor-
suppressing αSMA+/FAP− CAF population. Mechanistic-
ally, the αSMA+ population contributes to high interstitial
pressure [22], which inhibits drug transportation and im-
mune cell infiltration. In addition to the refined
characterization and subtyping of tumor cells, more efforts
need to be focused on the heterogeneity of fibroblasts.
Retrospective analyses of clinical data [28, 29] revealed
that an extensive stroma was correlated with poor sur-
vival, but stroma depletion therapy led to divergent out-
comes, either improving [30] or worsening [31, 32] the
prognosis. The fibroblast profiling of individual patients
may provide crucial clues for accurate stroma manipula-
tion through immunologic strategies, including the use of
chimeric antigen receptor T (CAR T) cells [33].
Immune compartments are among the most promising

TME targets in anticancer research. The resistance of
PDAC to mono-immunotherapy has led to the construc-
tion of a preclinical model for combination therapy
screening [34]. Nonetheless, each in vivo PDAC model
has specific limitations in the recapitulation of low
PDAC immunogenicity and the immunosuppressive
TME. Among xenograft models, syngeneic cell line
transplantation into immunocompetent mice and the
construction of ‘humanized mice’ [35] maintain the
functional immune system of the host. These models
can be exploited to study how exogenous PDAC adapts
to host immune pressure [36] but fail to represent the
induction of immune privilege during tumor develop-
ment. GEMMs are acknowledged as better for predicting
immunotherapy response due to their autochthonous tu-
mors and extensively integrated immunosuppressive
mechanisms. For instance, the depletion of Tregs in
orthotopic xenograft models enhances the antitumor ef-
fect of CD8+ T cells [37] but has a minor influence on
CD8+ T cell recruitment in GEMMs [38]. However, the
low mutation burden of GEMMs leads to deficiency of
neoantigen expression [39], which is the main T cell tar-
get in long-term survivors of PDAC [40].
In translational medicine, cases of failure in stroma-

targeted therapy are exploited to decipher resistance
mechanisms and identify biological markers. This
process calls for the accumulation of preclinical evi-
dence and advances in PDAC modeling technology.

Consistency during passaging
For all kinds of preclinical models, passaging is an inevit-
able process that confers selective pressure on the tumor
culture, leading to functional deviation from the primary
tumor. For instance, later passages of the PDX cells tend
to be more proliferative, aggressive, and easier to
metastasize [41]. These changes are deeply rooted in the
subtle drift of the genetic landscape. Dynamic changes
causing various genomic instabilities are documented dur-
ing PDX passaging [9], including copy number alteration
(CNA), which is associated with tumor progression [42].
Monitoring 1110 PDX models across 24 tumor types [43]
revealed model-acquired an average of 12.3% CNA in the
genome within four passages. Clonal selection, but not
genomic instability, was suggested to be the source of this
CNA dynamic. Coleman et al. [44] compared the prote-
omic patterns of primary and passage 1 PDX of PDAC
cells based on liquid chromatography-mass spectrometry
(LC-MS)/mass spectrometry (MS) data, and the results
showed that 143 human-specific proteins were differen-
tially expressed. It was remarkable that most of these al-
terations were enriched in pathways related to tumor
proliferation, invasion, angiogenesis and stemness [45].
The extent of genetic drift greatly depends on the selec-
tion power of the culture environment. For example,
patient-derived cell lines (PDCLs) of PDAC preserve
oncogenic mutations and their overall transcriptional pro-
file through as many as 40 passages when cultured with
collagen matrix in vitro [46].
Genetic drift leads to subclonal dynamics. Subclones con-

sist of cells with similar proliferation rates. Nguyen et al. [47]
used DNA barcoding to reveal different growth patterns of
each subclone during passaging, which corresponded to a
gain or loss of dominance. Noticeably, there was no estab-
lished correlation between genetic and functional subclones,
as high-coverage whole-genome sequencing of CRC xeno-
grafts [48] indicated that tumor clone-initiating cells were
genetically heterogeneous. From an evolutionary perspective,
systemic selection generates dominant subclones during pas-
saging, with the mutation profile of the entire tumor grad-
ually converging at specific subclones [49]. Selection pressure
is established not only because of intratumoral competition
for maximum expansion speed but also because of adapta-
tion to the culture environment. In addition, selection bias
randomly resets the subclone constitution between succes-
sive passages [9] (Fig. 1). Poor genetic and functional
consistency of PDAC models stress the significance of using
early passages in preclinical studies.

Characterization and application of common PDAC
models
Cell lines
Cell lines are homogeneous and easy to propagate and
therefore suitable for high-throughput bioinformatics
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studies (Table 1). For example, proteomic analysis and
subsequent immunoprecipitation–mass spectrometry
(IP–MS) assay of the MIA PaCa2 cell line [50] revealed
that the leukaemia inhibitory factor (LIF) receptor was a
therapeutic target of tumor-stroma interactions. In
addition, cell lines also provide great convenience for
genetic manipulation (Table 1). For instance, McDonald
et al. [51] discovered the key regulatory role of carbonic
anhydrase 9 (CA9) in the adaptation of PDAC cells to
hypoxic environments by knocking down or chemically
inhibiting CA9 in GEMM-derived cell lines. Besides, the
transplantation of cell lines into immunodeficient mice
enables in vivo verification of target-specific interven-
tions. Although subcutaneous transplantation is easier to
scale and reproduce, the orthotopic model shares more
genetic and metabolic similarities with naturally growing
tumor [52]. Moreover, direct or indirect in vitro co-
culture of PDAC cells with representative stromal cells
offers a glimpse of complex tumor-stroma cross-talk
(Table 1). For example, culture of PSCs with PDAC cells
[53] suggested PDAC-derived galectin-3 promote PSC
secretion of proinflammatory factors. Similar method-
ology was applied to identify a panel of TME regulators
[54–56]. However, 2D co-culture is incomplete in mod-
eling tumor heterogeneity, structure, intercellular con-
tact, or gene expression. Function of identified

mediators still needs validation in PDO [57] or PDX [58]
models.
Poor consistency between passages undermines the

predictive power of the cell line model in clinical
practice (Table 1). For example, the deviation of
genome-wide CNAs [43] and variations in the DNA
methylation pattern [59] were both found in newly
established PDAC cell lines, indicating in vitro culture
as a possible driving force in genetic and epigenetic
aberrations. However, collectively assembled cell lines
are qualified to model basic tumor behavior. Accord-
ing to parallel sequencing results of 41 PDAC cell
lines in Cancer Cell Line Encyclopedia (CCLE) [60],
chromosomal copy number, gene expression patterns
and point mutation frequencies of cell lines were
strongly correlated with primary PDAC, as indicated
by Tumorscape, Expression Project for Oncology
(expO) and Catalogue of Somatic Mutations in Can-
cer (COSMIC) data sets, respectively. In addition,
transcriptional profile-defined classical and quasime-
senchymal subtypes were identified in cultured cell
lines [11], with subtype-specific KRAS dependence
and drug response maintained. As an important part
of the intratumoral heterogeneity of PDAC, cancer
stem cells (CSCs) were also identified in human
PDAC cell lines through real-time imaging [61].

Table 1 Characteristics of common preclinical models of PDAC

Cell lines Organoids PDX GEMM

Intertumoral
heterogeneity

Between tumor cell lines
(database available)

Between sampled
cases

Between sampled cases –

Intratumoral
heterogeneity

– Depend on
sampling region

Depend on sampling region +++

Tumor-stroma
interaction

+ (Co-culture) ++ (Co-culture) ++ +++

Consistency
during passages

+ ++ +++ +++

Expansion +++ +++ ++ +

Genetic
manipulation

+++ +++ + (Before transplantation) ++

High
throughput
screening

+++ + (Costly) + (Costly) –

Success rate of
initiation

++ ++ ++ +++

Cost $ $$ $$ $$$

Time 1 month or less 1–2 months More than 6months More than 6 months

Other strengths Standardized across
laboratories

Cultured from
diverse cells or
tissue

Mirror patient response to targeted therapy Model all stages of tumor
progression

Other
weaknesses

Finite number of widely-
available cell lines

Lack high quality
clinical trials

Lack infiltrating immune cells, Loss of original
stroma, Only represent resectable lesion

Mouse genomic
background different from
human

PDX patient-derived xenograft, GEMM genetically engineered mouse model
+++ denotes good; ++, medium; +, limited; −, not suitable
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Organoids
Construction of organoids requires 3D culture of
resected tumor specimens, biopsy samples or even pluri-
potent stem cells [62]. Organoids can be propagated,
passaged and cryopreserved. The integrated culture
medium formula for murine and human PDAC was sug-
gested by Clever and Tuveson laboratories [63], who
orthotopically transplanted PDAC organoids to im-
munocompromised mice to generate PanIN-like prein-
vasive lesions, creating a promising model of tumor
progression.
Organoids and cell lines have shared advantages and

applications. They both allow high-throughput drug
screening (HTDS) (Table 1), especially after large-scale
production of homogenous organoids, which can be car-
ried out economically [64, 65]. Compared to cell lines,
organoids show greater similarity with primary tumors
(Table 1). For example, systemic sequencing discovered
a strong correlation between organoids and tumors of
origin in individual-specific mutations [66]. Concordant
expression shifts in cancer-related pathways were also
documented. To test the clinical relevance of organoids,
a patient-derived organoid (PDO) library [67] was estab-
lished with tumor samples derived from 66 PDAC pa-
tients receiving chemotherapy. Patient prognoses
revealed high consistency with the drug response of the
corresponding organoids. Longitudinal sampling from a
single patient successfully predicted his acquisition of
chemoresistance during disease progression. Even subtle
intratumoral heterogeneity was faithfully recapitulated,
as single cell-derived organoids of the same CRC patient
showed distinct drug sensitivity due to scattered sam-
pling [68]. In a direct comparison of drug response be-
tween patient-derived ovarian cancer cell lines and the
corresponding organoids [69], fewer organoid cells died
after 72 h of drug administration but showed higher
levels of cell death after drug removal, suggesting better
recapitulation of chemoresistance and drug-scavenging
effects. These studies indicate that the genotype-
phenotype relationship is better preserved in 3D culture
[70]. Organoids bridge the gap between cell lines and a
PDX model in terms of the identification of main targets
from a complex mutational landscape and aberrant epi-
genetic regulation [71, 72]. The application of organoids
is further suggested due to the construction of PDO bio-
banks that can integrate preclinical modeling with gen-
etic information and clinical background [62]. Besides,
co-cultured organoids promote study of tumor-stroma
interactions (Table 1). Öhlund et al. [25] reconstructed
desmoplastic stroma and reestablished heterogeneous
CAFs in co-cultures of murine PSCs and PDAC orga-
noids. In addition, co-culture of peripheral blood lym-
phocytes [73] enriched the infiltration of reactive T cells
in the TME of CRC and non-small cell lung cancer

(NSCLC) organoids. This platform enabled the predic-
tion of an immunotherapy response and produced highly
selective T cells for adoptive T cell transfer.

Patient-derived xenografts
Fu et al. [74] devised the first PDX model of pancreatic
cancer by transplanting histologically intact pancreatic
cancer specimens from five patients into athymic nude
mice. Kim et al. [75] improved the protocol by changing
the host to immunodeficient nonobese diabetic/severe
combined immunodeficiency (NOD/SCID) mice, which
increased tumor-forming efficiency.
Due to the high time and resource costs in their con-

struction [75] (Table 1), PDX models are mostly used for
guiding personal treatment. The concept of a co-clinical
model trial [76] underlines parallel treatment of patient
and xenograft mice, which is supported by the solid
consistency of clinical outcomes (Table 1). Apart from
precision medicine, the PDX platform can be adopted in
novel translational anticancer research, as it allows simula-
tion of versatile tumor phenotypes, including local inva-
sion, metastasis and drug resistance. For instance, a
switchable CAR T-cell system [77] was shown to induce
remission in a PDX model of a stage IV PDAC patient
with equal efficacy and lowered off-target rate compared
to conventional CAR T cell therapy. The TME of the PDX
model features tumor and stromal cells of different species
of origin. Respective multiomic sequencing elucidated the
mechanism of mutual adaptation [78]. In addition, HTDS
on a large-scale PDX cohort was used to identify
prognosis-associated biomarkers and facilitate the efficacy
of targeted therapy [79].
There are still many limitations of PDX models (Table

1). First, the sampling process of patient tumor speci-
mens, especially fine-needle biopsies, leads to poor rep-
resentations of intratumoral heterogeneity. Second, PDX
models lack infiltrating immune cells in the TME. The
humanized mouse model [80] partially reconstructed the
host immune system by introducing patient-derived
CD34+ hematopoietic stem cells (HSCs). Currently,
more efforts are devoted to developing novel GEMM-
expressing cytokines for HSC activation [81]. Third,
stroma replacement with host components results in
genetic and functional drift from the primary tumor
[82]. Later passages were found to be more sensitive to
pharmacological treatment [9]. Fourth, PDX models are
difficult to genetically manipulate. Molecular interven-
tions need to be conducted in patient-derived tumor
cells before transplantation.

Genetically engineered mouse models
The first GEMMs, known as KC mice [83], presented
with the conditional expression of KrasG12D in epithelial
cells of pancreatic lineage. They mimicked PDAC tumor
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progression from PanIN to local invasive lesions. To
promote malignancy of the pretumor lesions, concomi-
tant KrasG12D and Trp53R172H mutations were intro-
duced in KPC mice [84], which reconstructed the whole
spectrum of tumor progression. For example, KPC mice
< 10 weeks, 10–12 weeks, > 12 weeks old were enrolled
in chemoprevention (preventing PanIN formation), early
(preventing PanIN progression) and late interventional
(circumventing metastasis) studies, respectively [85]. In
addition, KPC mice recapitulated the autologous TME
and showed great potential in stroma-targeted therapy
development (Table 1). For instance, Pegvorhyaluroni-
dase alfa (PEGPH20) [86], an enzymatic agent of hyalur-
onic acid (HA), restored interstitial fluid pressure and
re-expanded the microvasculature in the PDAC TME.
The combination of PEGPH20 and gemcitabine signifi-
cantly promoted tumor regression and overall survival of
the KPC mice. A phase II clinical trial [87] corroborated
the efficacy of PEGPH20 in promoting the PFS of meta-
static PDAC patients. Currently, most GEMMs were in-
oculated with targeted mutations through
bacteriophage-derived Cre recombinase prior to or sim-
ultaneous to PDAC initiation, resulting in a disturbance
to the natural tumorigenesis process. A recently devised
dual recombinase system (DRS) [88] allowed the sequen-
tial expression of KrasG12D and target mutations in pan-
creatic cells. This model could be exploited to dissect
the genetic events of tumorigenesis in a stage-specific
manner and to validate therapeutic targets in both
PanIN and invasive PDAC. For example, the chromatin
remodeler Brahma related gene 1 (Brg1) was critical for
PanIN and PDAC formation in the DRS [89], as shown
by induced Brg1 deletion leading to widespread apop-
tosis of PanIN cells. Introducing more driver mutations
to a DRS may broaden its application to therapies target-
ing malignant PDAC.
Despite their broad applications, GEMMs have several

limitations. The selection of driver mutations leads to
the loss of PDAC intertumoral heterogeneity. Deviation
of the human and mouse genomes also requires careful
interpretation of preclinical study results. The generation
of GEMMs is time- and resource-consuming, making it
unsuitable for high-throughput sequencing or drug
screening (Table 1). Moreover, the use of GEMMs does
not guarantee that the primary tumor burden or extent
of the metastasis is consistent among the enrolled mice
[85], as multiple factors may lead to bias in therapeutic
outcomes and survival.

Choice of PDAC models in preclinical studies and
precision medicine
Target screening in basic cancer research
Basic cancer research focuses on genotypical and pheno-
typical manifestations of PDAC cells. The concept of

forward genetics predominates this stage with respect to
studying the molecular mechanism of distinct clinical
phenomena. High-throughput sequencing is generally
needed to dissect the aberrant pathways and ultimately
identify target molecules of interest. Therefore, these
studies require the use of clonal and possibly expandable
models. Specific choices are made according to classifi-
cation of tumor stage. Namely, organoids and patient-
derived induced pluripotent stem cells (iPSCs) are widely
used in modeling tumorigenesis, while established cell
lines are more commonly exploited to recapitulate
tumor progression (Fig. 2).
PDO allows modeling of various stages of PDAC [62],

either through culturing tumor samples of different ma-
lignancy stages or the introduction of driving mutations
into normal tissue-derived organoids [90]. Comparison
between organoids of different malignant stages eluci-
dates key regulators in tumor progression. For example,
Roe et al. [91] compared organoids of primary tumors
and metastatic lesions from the same KPC mice and dis-
covered large-scale activation of enhancers associated
with foregut endoderm development in the metastatic
organoids. Besides, Seino et al. [90] analyzed transcrip-
tomic data of 39 PDAC PDOs and found a correlation
between higher Wnt independency and increasing meta-
plasia. Apart from organoids, iPSCs could also generate
diverse histological components from PanIN-like lesions
to invasive PDAC through injection into immunodefi-
cient mice. Compared with organoids, the iPSC-based
model is more powerful for dissecting the role of onco-
genic mutations in cell lineage determination and
tumorigenesis. iPSCs can also be 3D cultured to model
histological layers and progenitor cell migration at vari-
ous stages of tumorigenesis. For example, secreted pro-
teins in conditioned medium from iPSC-derived PDAC
organoid cultures provided clues of candidate bio-
markers for the early detection of PDAC [91]. The great-
est advantage of organoids and iPSCs is their possible
use for large-scale expansion, deep sequencing and gen-
etic manipulation.
Despite the inability to model early tumor develop-

ment, established cell lines provide a practical and af-
fordable platform to dissect the molecular mechanism
behind phenotypical variances concerning growth rate,
metastatic tendency, stroma formation upon transplant-
ation and drug resistance. For instance, a comparison of
the expression profile between chemosensitive and che-
moresistant PDAC cell lines [92] revealed differential ex-
pression of epithelial-to-mesenchymal transition (EMT)-
related genes, a finding that was confirmed by real-time
PCR. Similar methods were exploited to elucidate key
mRNAs involved in cancer stem cell regulation [93].
Currently, more target searching strategies are being de-
veloped to excavate these genetic resources. For
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example, a genome-wide screen for proliferation-
dependent genes in 216 cancer cell lines [94] was carried
out using a lentivirally delivered shRNA library. More-
over, a genomic data-based algorithm [95] was proposed
for use in discovering synthetic lethality of specific genes
in cancer cell lines.
Identification of target molecule is one of the most

challenging steps in translational cancer research. A
large collection of homogeneous and expandable models
is favored in this process so as to overcome heterogen-
eity of pancreatic cancer. Compared to cell lines, PDOs
and iPSCs are more resource-demanding, but excel in
consistency with primary tumor. Most importantly, they
are all suitable for genetic manipulation and in vitro
verification of potential target, while in vivo phenotypical
assay could be based on xenograft model or GEMM.

Biomarker identification in pharmacogenomic studies
In order to explore the translational value of a druggable
target, HTDS is usually carried out which mimics
physiological drug delivery and allows repeatable analysis
of key tumor phenotypes. Cell lines, organoids and organ
chips are most commonly exploited in HTDS (Fig. 2).
The concept of pharmacogenomic database [96] links
multiomic sequencing and drug response data of pre-
clinical platform. Integrated analysis enables

computational prediction of treatment efficacy based on
the genetic and epigenetic signatures of individual
patients.
Cell line panels have been acknowledged as a mature

platform to assess the clinical utility of investigational
anti-cancer drugs and to discover predictive biomarkers.
Databases such as CCLE [60] and Genomics of Drug
Sensitivity in Cancer (GDSC) [97] use endpoints includ-
ing genomic, transcriptomic, metabolomic and prote-
omic aberrations to build pharmacogenomic algorithms.
Short-term cell line culture could supplement the data-
base to enhance the depth of the sequencing and in-
crease the genomic consistency with naturally growing
tumors [98]. A comprehensive framework [99] is devel-
oped to guarantee the credibility of the cell lines and
rule out misidentified genes or cross-contamination
based on single nucleotide polymorphism (SNP) geno-
typing, short tandem repeats (STR) profiling and cross-
species PCR. Moreover, pooled screening of cancer cell
line mixtures [100] was developed to analyze the growth
rate of each labeled cell line in xenografts, thereby enab-
ling in vivo drug sensitivity studies. However, lack of 3D
tissue structure in cell line cultures may result in biased
predictions of drug response. Recently PDAC organoid-
based HTDS [65] was conducted through combination
of cell-repellent surface and bioprinting technology. An-
other novel 3D culture system [101] yielded cancer

Fig. 2 Choices of preclinical models for use in preclinical studies and precision medicine of PDAC. Figure was produced using Servier Medical Art
(http://smart.servier.com/). Clonal and expandable models are used in basic researches to decipher the molecular mechanism of distinct tumor
behavior. Cell line or organoid-based co-culture of PDAC with TME components could be exploited in study of tumor-stoma interaction. As a
core target of translational research, the prediction of genotype-drug response mainly relies on model-specific high-throughput sequencing and
drug screening. Recently, more focus has been directed to personalized therapy development based on patient-derived cell lines, organoids and
xenografts. 3D models excel 2D cell culture in structural and physiological consistency with naturally growing tumor and will play a more
important role in precision medicine of PDAC. Of all the preclinical models, use of early passages could minimize genetic and functional drift
away from the primary tumor. PDAC, pancreatic ductal adenocarcinoma; CAF, cancer-associated fibroblast; TIL, tumor infiltrating lymphocyte; iPSC,
induced pluripotent stem cell; GEMM, genetically engineered mouse model; PDCL, patient-derived cell line; PDO, patient-derived organoid; PDX,
patient-derived xenograft
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tissue-originated spheroids from incompletely dissoci-
ated tumor fragments. The high recovery and purifica-
tion rate of tumor cells as well as better maintenance of
intercellular interaction made these spheroids compat-
ible with HTDS. Future development of HTDS platform
focuses on multicellular architecture, tissue interfaces
and mechanical forces involved in tumor growth. In
microfluidic organs-on-chips [102], cells could survive
for months with nutrient sources delivered through
endothelium-lined vascular structures. This system can
be exploited to model cell migration, mimic the concen-
tration gradient of chemicals, dissect stroma-related
pharmacological mechanisms and recapitulate novel
pharmacokinetic processes. Moreover, construction of
body-on-chip model through combination of organ
chips may facilitate the study of metastasis-related tumor
behavior.
Multiomic profiling and HTDS are two main steps of

pharmacogenomic study, with the final aim of predicting
efficacy of targeted therapy in individual patient. HTDS
requires not only genetic or phenotypical, but structural
and even physiological consistency between preclinical
models and naturally growing tumors. Cell line-based
platform has built systemic algorithm in biomarker iden-
tification, which provides a solid foundation for the
prosperity of 3D modeling in pharmacogenomic
research.

Personalized drug screen
Genotype-drug response prediction is the mainstream of
precision medicine practices. However, it is still likely
that mutation profiles of individual tumor provide incor-
rect guidance for treatment. For instance, basic research
of PDAC linked deficient levels of the chromatin remod-
eling BRG1-associated factors (BAF) with sensitivity to
an enhancer of zeste homolog 2 (EZH2) inhibitor [103].
However, the cell lines derived from a wild-type patient
manifested higher sensitivity to EZH2 inhibition than
cell lines harboring mutations in chromatin remodelers
[104]. Genetic drift in preclinical models is the most
possible reason, which underscores the significance of
personalized drug screen on patient-derived preclinical
models (Fig. 2).
PDCL-based drug screening leads to the discovery of

exceptional responses to certain agents that are negli-
gible in established cell lines and thus not strongly pre-
dicted. For example, few PDAC patients demonstrate
sensitivity to mitogen-activated protein kinase kinase
(MEK) inhibitors administered as single-agent therapy
[105], but one PDCL [104] demonstrated significant sup-
pression of the cell cycle and induced apoptosis upon
MEK inhibitor administration. This sensitivity was con-
firmed in the PDX model, which showed suppressed
tumor growth. Another exclusive strength of PDCL-

based drug screening lies in combination therapy de-
signs. This screening could be carried out on a micro-
fluidics platform [34] based on patient biopsy sample-
derived live tumor cells without the need for intermedi-
ate culturing, which shortened the time span of model
construction and enabled the control of possible genetic
drift. The drug response predicted on this platform was
very consistent with the results from the xenograft stud-
ies and clinical outcomes. Despite relatively high cost,
PDX and ex vivo models provide more reliable results in
individual drug screening. The rationality of the ‘one
animal per model per treatment’ approach was proven
by a retrospective analysis of 2138 PDX mice receiving
440 treatment plans [79]. For each therapy, 95% of the
individual response results were consistent with the col-
lective outcomes. In addition, a similar distribution of
results was found in this ‘PDX encyclopedia’ and pa-
tients in independent phase II clinical trials. Consistency
between PDX models and patients at both the popula-
tion and individual levels indicate a promising applica-
tion of PDX models to targeted drug development and
precision medicine, respectively. Although large-scale
PDX screening is sometimes impractical for researchers,
ex vivo culture systems can serve as qualified surrogates.
A personalized tumor ecosystem [106] was engineered
by culturing explant tumor slices together with matched
tumor matrix proteins and autologous serum from the
patient. This system captured more details of intratu-
moral heterogeneity, including clonal diversity of the
tumor cells and tumor-stroma spatial distribution, than
other in vitro preclinical models.
In comparison to conventional patient subgrouping

strategies, verification of the treatment efficacy in per-
sonalized preclinical model lowers the possibility of gen-
etic drift and resultant pitfalls in targeted therapy. This
process will carry more weight in the evolving rationale
for the use of precision medicine.

Conclusion
The last decade witnessed tremendous advancements in
the knowledge of PDAC tumor progression and novel
tumor-stroma interactions. Nonetheless, there has been
no significant improvement in the prognosis for PDAC
patients. Countless failures of targeted therapy in phase
I/II clinical trials reflect the problems with preclinical
models. Poor recapitulation of drug responses and ther-
apy resistance calls for precision modeling both in sys-
temic platform confluence and individual model
construction. In summary, the heterogeneity of PDAC
requires multiple temporally and spatially obtained sam-
ples from a large cohort in any translational research.
Use of early cell passages for preclinical models could
minimize genetic and functional drift away from the pri-
mary tumor. In an integrated workflow of precision
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medicine, target molecules are first identified through
bioinformatics studies based on cell lines, iPSCs or orga-
noids. Functional verification is then conducted through
genetic engineering or chemical manipulation. The roles
of candidate genes as potential biomarkers are estab-
lished after cell line, organoid or organ chip-based high-
throughput drug screening and careful evaluation of
clinical relevance. Efficacy verification of the patient-
derived model is still required after genomic subtyping.
The appropriate choice of an existing model in these
stages narrows the systemic error of patient outcome
prediction (Fig. 2).
However, the errors of PDAC modeling in precision

medicine can only be absolutely circumvented by the
creation of a primarily humanized platform. Through
interdisciplinary collaboration, iPSCs and regenerative
biomaterial technology have shown great potential in
tissue-engineered mouse models [107], where spatial and
functional interactions of patient-derived tumor cells
and tissue compartments are closely recapitulated. The
predictive potential of these innovative models should be
tested with computational integration of clinical data at
different points of model development [107]. If there is
inconsistency regarding genetic profiles, histopathology,
tumor progression profile or therapy response, the
model needs to be redesigned and re-evaluated. The
evolution of preclinical models will contribute to rapid
translation of preclinical results.
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