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Introduction: While oral glucose ingestion typically leads to a decrease in circulating
glucagon levels, a substantial number of persons display stable or rising glucagon
concentrations when assessed by radioimmunoassay (RIA). However, these assays
show cross-reactivity to other proglucagon cleavage products. Recently, more specific
assays became available, therefore we systematically assessed glucagon and other
proglucagon cleavage products and their relation to metabolic health.

Research Design andMethods:We used samples from 52 oral glucose tolerance tests
(OGTT) that were randomly selected from persons with different categories of glucose
tolerance in an extensively phenotyped study cohort.

Results: Glucagon concentrations quantified with RIA were non-suppressed at 2 hours of
the OGTT in 36% of the samples. Non-suppressors showed lower fasting glucagon levels
compared to suppressors (p=0.011). Similar to RIA measurements, ELISA-derived fasting
glucagon was lower in non-suppressors (p<0.001). Glucagon 1-61 as well as glicentin and
GLP-1 kinetics were significantly different between suppressors and non-suppressors
(p=0.004, p=0.002, p=0.008 respectively) with higher concentrations of all three hormones
in non-suppressors. Levels of insulin, C-peptide, and free fatty acids were comparable
between groups. Non-suppressors were leaner and had lower plasma glucose
concentrations (p=0.03 and p=0.047, respectively). Despite comparable liver fat content
and insulin sensitivity (p≥0.3), they had lower 2-hour post-challenge glucose (p=0.01).

Conclusions: Glucagon 1-61, glicentin and GLP-1 partially account for RIA-derived
glucagon measurements due to cross-reactivity of the assay. However, this contribution is
small, since the investigated proglucagon cleavage products contribute less than 10% to
the variation in RIA measured glucagon. Altered glucagon levels and higher
post-challenge incretins are associated with a healthier metabolic phenotype.
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INTRODUCTION

Glucagon, glicentin, and glucagon-like peptide (GLP)-1 as
proglucagon cleavage products all originate from the same
preproglucagon gene (see Figure 1). Differential expression of
the preproglucagon gene in varying tissues is accompanied by
differential processing of the proglucagon transcript by
prohormone convertases.

For a long time, counteracting insulin was thought to be the
main function of glucagon. Since patients with type 2 diabetes
show elevated fasting glucagon levels (1), the hormone has been
believed to be a relevant contributor to hyperglycemia. Research
over the last years, however, revealed a much more complex role
of glucagon with potentially beneficial effects for whole-body
metabolism (2, 3).

GLP-1 is an insulinotropic peptide that potentiates insulin
secretion and mainly originates from the L cells in the distal
small bowel and colon (4, 5). Glicentin is also produced in the
intestinal L cells and its exact functions are still enigmatic.
Studies in animal models and in vitro human tissues suggest a
regulatory function on intestine, gastric acid production and
insulin production (6–12).

Studies have shown that bariatric surgery for the treatment of
obesity results in dramatic metabolic changes which can at least
partially be attributed to incretins such as GLP-1 and glicentin
(13–15). Uncovering the complex regulation that underlies the
beneficial effects of bariatric surgery requires a better
understanding of different incretins and their interplay
on metabolism.

In a multi-cohort study with more than 4000 participants
who underwent oral glucose tolerance tests, we found
non-suppressed glucagon levels at 2-hours after glucose load in
21-34% of the study populations (16). Surprisingly, this non-
suppression of glucagon was associated with a metabolically
healthier phenotype. One limitation of the findings was the
radioimmunoassay used to quantify glucagon in the study as
this assay is known for substantial cross-reactivity with other
proglucagon cleavage products (17), at least in an updated
Frontiers in Endocrinology | www.frontiersin.org 2
version marketed since around 1999 (18). This is caused by the
overlapping amino acid sequences of glucagon with other
incretin peptides, resulting in assay cross-reactivity when the
capture antibody binds to an epitope within these shared
sequences. The proglucagon sequence from amino acid
position 33-61 corresponds to glucagon. The alternative gene
product glicentin spans amino acids 1-69 of the proglucagon
gene, whereas GLP-1 comprises amino acids 78-107 (Figure 1).
Wewer-Albrechtsen et al. investigated glucagon 1-61, which is
another circulating proglucagon fragment (spanning the
proglucagon sequence 1-61). Glucagon 1-61 has been shown to
stimulate insulin secretion and act on human hepatocytes in a
series of experiments (19). Glucagon 1 – 61 comprises the amino
acid sequence of glucagon and glicentin but lacks the eight
C-terminal amino acids of glicentin (19) (Figure 1).

Due to a cross-reactivity of the radioimmunoassay, it is
plausible that the presumed positive effects of glucagon on
metabolism we observed in our previous study result from
effects of other proglucagon fragments. Therefore, we aimed to
investigate the post-load dynamics of glucagon and it’s with
other proglucagon fragments quantified with a highly specific
glucagon immunoassay.
RESULTS

Glucagon concentrations were first measured by radioimmunoassay
(Figure 2A). Analyzing these measurements, 36% of the
participants showed stable or rising RIA-derived glucagon
concentrations during the OGTT. We defined them as non-
suppressors. Of note, the non-suppressors had significantly lower
fasting levels of glucagon compared to the suppressors (p=0.011). In
parallel, samples were measured with the highly specific glucagon
ELISA, showing lower values compared to RIA. Bland-Altman plots
revealed reasonable agreement between the two methods with on
average 15 ± 6 pmol/l higher concentrations from RIA
measurements (Figure 3).
FIGURE 1 | Schematic presentation of proglucagon and proglucagon cleavage products. Numbers indicate amino acid positions of cleavage sites. Antibodies
schematically indicate epitopes that are used by the commercial immunoassays applied in our measurements (as provided by the manufacturer).
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The ELISA also detected persons with stable or rising
glucagon. Similar to RIA measurements, fasting glucagon was
lower in the non-suppressors (p<0.001). The RIA- and ELISA-
derived glucagon suppressors and non-suppressors showed
Frontiers in Endocrinology | www.frontiersin.org 3
similar kinetics, regardless of which assay the hormone was
measured with (Figures 2A, B). As the applied glucagon RIA
is known to have cross-reactivity with other proglucagon
cleavage products (18, 20, 21), we quantified these hormones
FIGURE 3 | Bland-Altman plot of the RIA- and ELISA-measured glucagon. Differences in glucagon measurements between the two assays are plotted against mean
glucagon values. The dashed lines represent the mean, the solid lines depict the lines of agreement calculated as mean ± 1.96 times the SD of this difference.
N=156 measurements from 52 oGTTs.
A B

D E F

G IH

C

FIGURE 2 | Concentrations of investigated analytes in the groups of glucagon suppressors and non-suppressors during the OGTT. The respective analyte is
indicated in the box. (A: glucagon measured by radioimmunoassay, B: glucagon measured by ELISA, C: glucagon 1-61, D: glicentin, E: GLP-1, F: glucose, G: C-
peptide, H: insulin, I: free fatty acids). Lines represent means with standard errors. Circles indicate data points for suppressors, triangles for non-suppressors, p-
values were calculated with linear mixed models. N=52.
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by highly specific ELISAs. We measured glucagon 1-61, glicentin
and GLP-1 from the same samples (Figures 2C–E).

To investigate the relative contribution of these proglucagon
cleavage products to RIA-derived glucagon measurements, we
modeled glucagon RIA levels at all available OGTT time points
using glucagon ELISA, glicentin, glucagon 1-61 and GLP-1. The
share of total variance explained by this model was 82.2%. The
combination of the above-mentioned variables explained 43.6%
as fixed effects. By removing each factor separately, we
determined their relative contributions. In Figure 4, we show
the relative contribution of glicentin, GLP-1 and ELISA-based
glucagon to the total variance of the RIA-based glucagon
measurement (total variance was set to 100%). ELISA
measured glucagon explained 93% of the variance, whereas
glicentin explained 5% of it. The contribution of GLP-1 (2%)
was not statistically significant. Inclusion of Glucagon1-61 in the
model deteriorated its performance and has been therefore
removed from the final model.

While the fasting concentration of glucagon 1-61 and
glicentin were comparable between groups (p≥0.1), GLP-1 was
significantly lower in non-suppressors (p=0.02).
Frontiers in Endocrinology | www.frontiersin.org 4
Glucagon 1-61 as well as glicentin kinetics were significantly
different between suppressors and non-suppressors with higher
concentrations of both hormones in non-suppressors (Figures 2C,
D). For GLP-1, the concentrations were not significantly
different (Figure 2E).

As incretins stimulate pancreatic insulin release, we next
analyzed insulin and C-peptide levels as well as plasma
glucose. Insulin and C-peptide levels were comparable between
the two groups (Figures 2G, H). However, insulin
concentrations were lower in the non-suppressors in the last 30
minutes of the OGTT, resulting in a statistical difference between
groups. In line with comparable insulin secretion, suppression of
free fatty acids was not different between groups (Figure 2I).
However, plasma glucose concentrations were significantly lower
in the non-suppressors (Figure 2F), even after adjustment for
BMI (p=0.04).

The non-suppressors were leaner (p=0.03) and had a lower
waist circumference (p=0.04). Despite comparable liver fat
content and insulin sensitivity (p≥0.3), they had lower post-
challenge glucose concentrations (p=0.01), which remained
significant after adjustment for BMI (p=0.002).
DISCUSSION

In a meta-analysis with over 4000 participants, we previously
identified non-suppression of glucagon in response to oral
glucose intake, to be linked to a favorable whole-body
metabolism (16). One limitation of that study was
quantification of glucagon by RIA that likely cross-reacts with
additional proglucagon cleavage products. We therefore
performed comparative analyses of glucagon kinetics assessed
by RIA and a highly sensitive ELISA. In addition, we investigated
the kinetics of the major proglucagon cleavage products
glucagon 1-61, glicentin and GLP-1. Regardless of the
measurement approach, we identified persons with glucagon
suppression during the OGTT and such with stable or even
rising concentrations. The persons that did not suppress RIA-
measured glucagon in response to oral glucose intake showed
higher incretin responses during the glucose challenge. Of note,
these differences in glucagon and incretin kinetics were
accompanied by a metabolically healthier phenotype.

Our data suggest that glucagon 1-61, glicentin and GLP-1
could partially account for RIA-derived glucagon measurements.
However, this contribution appears to be small, because (i) there
is a reasonable agreement between RIA and ELISA
measurements and (ii) the investigated proglucagon cleavage
products explain less than 10% of total glucagon measured
with RIA.

There is substantial controversy on the role of glucagon in the
pathogenesis of diabetes (22, 23). While glucagon promotes
hepatic glucose production, this effect is self-limited, and
compensated by glucagon’s stimulation of insulin secretion,
inhibition of hepatic triglyceride synthesis, increase in basal
energy expenditure and central inhibitory effects on appetite
(3, 23, 24). Glucagon also stimulates GLP-1 receptors, though, to
a lesser extent than its primary ligand (25), that has been proven
FIGURE 4 | Estimated model-based relative contribution of proglucagon
cleavage products to the variance of RIA-derived glucagon measurements.
We used linear mixed models with the participant as a random intercept and
the OGTT-time point as fixed effects. Marginal R squared was calculated to
describe the proportion of variance in the outcome variable explained by the
fixed effect. Removing each factor separately, we determined the percentage
of its respective contribution to RIA-derived glucagon measurements that are
presented here as a bar chart.
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beneficial in the treatment of both diabetes and obesity. Thus,
although there is a clear association of fasting hyperglucagonemia
and type 2 diabetes (26, 27), this might be secondary to
compensatory processes without playing a causal role in diabetes
development. When it comes to postprandial changes in glucagon
concentrations, results are even more puzzling (16, 28–30) and the
detailed contribution in the pathogenesis of type 2 diabetes is still
unclear (22). While glucagon non-suppression in the postprandial
state was long thought to be a hallmark of impaired glucose
tolerance, based on smaller studies (31, 32), this did not hold true
in our large meta-analysis (16), where post-load non-suppression of
glucagon was detected in those with a healthier phenotype.

In our current study, we replicated this finding with the highly
specific glucagon immunoassay and extended these findings by
quantifying additional proglucagon cleavage products. Higher
post-load levels of glucagon 1-61, glicentin and GLP-1 in the
glucagon non-suppressor group were associated with lower
blood glucose levels. Given the insulinotropic effect of
incretins, the most obvious explanation could be a difference in
insulin secretion between the two groups. However, our data
argue against this, as we detected no significant difference in
C-peptide levels, which are indicative for pancreatic insulin
secretion. This is further underlined by comparable insulin-
induced suppression of lipolysis, which was assessed by free
fatty acid concentrations.

Fasting glucose, that strongly relies on endogenous glucose
production (33) is not different between the suppressor and
non-suppressor glucagon groups. This suggests that endogenous
glucose production does not have a relevant contribution to
differences in glycaemia between the two groups. Comparable
whole-body insulin sensitivity argues against major differences in
hepatic insulin sensitivity that would result in different
suppression of endogenous glucose production during
the OGTT.

One possible explanation for the altered glucose levels is
therefore a difference in non-insulin dependent glucose disposal.
Non-insulin dependent glucose disposal is also referred to as glucose
sensitivity or glucose effectiveness. This term describes the ability of
glucose to regulate glucose disposal and gluconeogenesis by itself
under basal insulin conditions (34). Tissues such as fat and muscle
usually take up glucose in an insulin-dependent fashion. However,
insulin-independent glucose uptake is also present (35, 36).
Glucagon has direct glucoregulatory effects through the brain (24).
Thus, one possibility is that glucose effectiveness is regulated via the
brain, though the molecular mechanisms are still unclear (37). Our
results suggest that glucagon or incretins could be involved and may
promote non-insulin dependent glucose disposal. This mechanism
could contribute to the glucose-lowering effect of these hormones
and to recent pharmacotherapies that target these pathways.

Apart from its classical hyperglycemic potency, glucagon has
pleiotropic effects on appetite, energy metabolism and hepatic
triglyceride synthesis. To exploit the beneficial effects while
compensating for hyperglycemic effects, GLP-1 and glucagon
coagonists are already being clinically tested for the treatment of
diabetes and non-alcoholic steatohepatitis. Since levels increase
postprandially, one mechanistic explanation for the association
Frontiers in Endocrinology | www.frontiersin.org 5
of increased post-challenge glucagon with metabolic health could
be a physiologic co-agonism of GLP-1 and glucagon.

Our study is limited by the sample size and the fact that we
did not apply mass spectrometry as gold standard for the
identification of peptide hormones. We also did not measure
all proglucagon cleavage products that could cross-react with the
glucagon radioimmunoassay, including oxyntomodulin (18). In
addition, we did not test additional stimuli that potentially
trigger gastrointestinal secretion of proglucagon cleavage
products, e.g. mixed meal test.

In summary, we verified that in some persons oral glucose
intake does not result in a suppression of glucagon. Of note, these
persons additionally displayed higher post-load concentrations
of further preproglucagon cleavage-products, including glicentin.
As these persons are leaner and have lower blood glucose, our
results indicate that proglucagon cleavage-products could
potentially contribute to the development of a healthier
metabolic phenotype.
METHODS

Subject Characteristics and
Measurements
Samples from 52 randomly selected participants of the
prediabetes lifestyle intervention study (38) (PLIS, registered
with clinical trial.gov NCT01947595) were investigated in this
project. None of the study participants took any kind of
medication that interferes with glucose or energy metabolism.
The study was approved by the local ethics board (Ethics
Committee of the Medical Faculty of the Eberhard Karls
University and the University Hospital Tübingen) and
conducted in accordance with the declaration of Helsinki. All
participants provided written informed consent.

Oral glucose tolerance tests (OGTT) were performed after an
overnight fasting period of 12 hours. Venous blood was drawn at
baseline and 30, 60, 90 and 120 minutes after drinking a 75 g
glucose solution (Accu-Check Dextrose O.G.T., Roche
Diagnostics, Mannheim, Germany). Plasma glucose and free
fatty acids were measured from sodium fluoride plasma with
an ADVIA chemistry XPT autoanalyzer (Siemens Healthineers).
Serum insulin and C-peptide were analyzed using ADVIA
Centaur XPT immunoassay system (Siemens Healthineers).
Study participants were categorized into glycemic groups:
normal fasting glucose, impaired fasting glucose, impaired
glucose tolerance, impaired fasting glucose + impaired glucose
tolerance, and type 2 diabetes according to ADA criteria (39). For
details see Table 1.

Glucagon was measured by a commercially available
radioimmunoassay (Linco Research/Millipore, St. Charles,
MO). Glucagon, glicentin and GLP-1 were also measured with
commercially available ELISA assays (Mercodia, Uppsala,
Sweden) according to the manufacturer’s instructions. We did
not use the novel extended washing protocol that had been
recommended for glucagon measurements in patients after
June 2022 | Volume 13 | Article 892677

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wagner et al. Postprandial Dynamics of Proglucagon Cleavage Products
bariatric surgery. The antibody binding sites (19, 40) are
indicated in Figure 1. Glucagon 1-61 was measured with a
prototype ELISA from Mercodia (Uppsala, Sweden) according
to the manufacturer’s instructions. The prototype ELISA shows
0.5% cross-reactivity with glicentin and < 0.2% with glucagon
respectively. To ensure optimal sample quality, EDTA plasma
was stabilized with 300 ng/ml protease inhibitor aprotinin
(Sigma, Merck, Darmstadt, Germany) und subsequently
processed at 4°C and kept frozen at -80°C until batch measurement.

HbA1c was measured by HPLC. Height, weight, waist and hip
circumference were measured according to standard operating
procedures. Liver fat content was measured by localized (1)
H-MR spectroscopy using a 1.5 T MR scanner (Magnetom
Sonata, Siemens Healthcare, Erlangen, Germany) and the
distribution of lean and adipose tissues was measured by whole
body MR imaging as previously described (41).

Calculations
Insulin sensitivity was assessed with the index proposed by
Matsuda and De Fronzo (42).

Statistics
The relative change of glucagon RIA from 0 to 120 min was used
to define the groups of suppressors and non-suppressors. The
suppressors were determined as participants with the fold change
glucagon RIA (glucagon RIA 120 min/glucagon RIA 0 min) less
than 1, while non-suppressors were those with equal or higher
than 1.

To analyze measurements from the same participants at
different time-points of the OGTT, linear mixed models with
the participant as random intercept and the OGTT-time point as
fixed effects were used. By constructing a model with RIA
glucagon as outcome and glicentin, ELISA-glucagon, GLP-1 as
explanatory variables, also accommodating the time-point of
measurement (i.e. 0, 30 or 120 minutes) in a linear mixed model,
we estimated the contribution of these variables to the measured
Frontiers in Endocrinology | www.frontiersin.org 6
RIA glucagon in vivo, during OGTT. To this end, the marginal
coefficient of determination (pseudo R-squared) was calculated
for mixed models to describe the proportion of variance in the
outcome variable explained by the fixed effect using the MuMIn
package in R. Removing each factor separately, we estimated the
percentage of its respective contribution to RIA-derived
glucagon measurements.

The Wilcoxon rank-sum/Kruskal-Wallis test was used to
perform nonparametric tests on continuous variables, for
comparing two independent samples. Categorical variables
were compared by chi-squared test. P-values < 0.05 were
considered statistically significant. Statistical analyses were
performed with R (version 4.0. 3) (43).
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Stratified by glucagon RIA dynamics P unadjusted
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BMI (kg/m2) 29.3 (5.1) 26.5 (3.4) 0.034*
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