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ABBREVIATIONS:  
 
AUC: Area Under the Curve 
COVID-19: Novel coronavirus discovered in 2021 Wuhan 
CT: Computed Tomography  
EMR: Electronic Medical records 
GGO: Ground-Glass Opacities 
HU: Hounsfield Units 
IL-6: Interleukin 6 
IL-8: Interleukin 8 
IQR: Inter Quartile Range 
ROC: Receiver Operating Characteristic  
TNF-α: Tumor Necrosis Factor alpha  
WHO: World Health Organization 
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ABSTRACT 
 
Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind 
SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be 
discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for 
COVID-19 outcomes. Here, we harness the predictive power of chest CT in combination with plasma cytokines 
using a machine learning approach for predicting death during hospitalization and maximum severity degree in 
COVID-19 patients. Patients (n=152) from the Mount Sinai Health System in New York with plasma cytokine 
assessment and a chest CT within 5 days from admission were included. Demographics, clinical, and 
laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α) were collected from the electronic 
medical record. We found that chest CT combined with plasma cytokines were good predictors of death (AUC 
0.78) and maximum severity (AUC 0.82), whereas CT quantitative was better at predicting severity (AUC 0.81 
vs 0.70) while cytokine measurements better predicted death (AUC 0.70 vs 0.66). Finally, we provide a simple 
scoring system using plasma IL-6, IL-8, TNF-α, GGO to aerated lung ratio and age as novel metrics that may 
be used to monitor patients upon hospitalization and help physicians make critical decisions and 
considerations for patients at high risk of death for COVID-19. 
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INTRODUCTION 
 
Despite extraordinary international efforts to reduce the spread of SARS-CoV-2, new variants continue to 
appear, and outbreaks persist. Vaccine coverage remains uneven and the virus is expected to circulate 
throughout the global population for years to come 1,2. The exceptional burden placed on healthcare resources 
by the SARS-CoV-2 pandemic has highlighted the need for accurate predictors of disease outcomes to enable 
effective patient and resource management. Early identification of patients at risk for severe disease may 
ensure healthcare resources are properly allocated to provide maximal benefit to the population.  
 
The World Health Organization (WHO) clinical management guidelines suggest that imaging, including 
computed tomography (CT), may help for diagnosis and assessment of complications in COVID-19 patients. 
CT imaging provides a noninvasive, rapid method for assessing COVID-19 disease severity and diagnosing 
complications such as pulmonary embolism 3. Patients infected with SARS-CoV-2 may present abnormal chest 
CT findings, including ground-glass opacity (GGO) and local or bilateral consolidation within 1-3 weeks of 
infection 4. Chest CT has played a critical role in the clinical care of COVID-19 patients, specifically in patient 
stratification and prognosis when discrepancies between clinical and chest X-rays are noted 5. CT qualitative 
scores, based on the radiologist’s evaluation of the images and CT quantitative methods, have been used to 
calculate pneumonia lesions burden and degree of lung involvement as potential imaging biomarkers 6-18. 
Furthermore, pneumonia lesion assessment on CT images have been shown to be predictive of severity and 
outcomes, potentially increasing accuracy of patient stratification 7-12,14-16.  
 
The hyperinflammatory response associated with COVID-19 is known to be a major contributor of disease 
severity and mortality 19. We previously established the prognostic and predictive value of measuring cytokine 
levels (IL-6, IL-8, and TNF-α) in the blood of COVID-19 patients upon presentation 20. These cytokines are 
independently predictive of survival and of serious disease outcomes, including acute respiratory distress 
syndrome (ARDS) and multi-organ failure linked to cytokine release storms 20,21.  
 
Integrating chest CT findings with clinical data and laboratory tests including CRP, procalcitonin, lymphocyte, 
and neutrophil counts has shown promising results in predicting COVID-19 patient outcomes 9,13-15,18.   
However, the AUC for these predictors range widely and may also be limited by biases in patient selection, 
model overfitting, and sometimes unclear methods 22. 
 
In an effort to develop a robust tool for patient risk stratification for care prioritization, we selected maximum 
disease severity during hospitalization and hospital death as appropriate outcomes. We hypothesized that a 
combination of plasma cytokines and CT measurements would have higher predictive power of COVID-19 
outcomes than either method independently. To test this hypothesis, we used our previously developed 
cytokine panels 20 in combination with CT measurements 9-18 to compare and evaluate the performance of 
predictive models for death and maximum severity. Here, we applied a data driven machine learning approach 
to test whether a combination of plasma cytokines and CT measurements outperform each method alone. 
Additionally, we also built a nomogram predicting risk of COVID-19 related death using a combination of 
plasma cytokine and CT variables.  
 
METHODS 
 
Cohort Design 
This retrospective single-center study was approved by the Mount Sinai Health System Institution Review 
Board (IRB). A waiver of informed consent was obtained from the IRB to query patient’s electronic medical 
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record (EMR). All research methods were carried out in accordance with relevant human subjects research 
guidelines and regulations.  
 
Between March and September 2020, 207 patients who presented to the Emergency Departments of the 
Mount Sinai Health System with suspicion of COVID-19 underwent a PCR for SARS-CoV-2 infection, ELLA 
panel for plasma cytokines, and a chest CT to evaluate for pneumonia lesions and/or to rule out pulmonary 
embolism. These 207 patients were identified by querying the EPIC EMR in collaboration with the Mount Sinai 
Data Warehouse. Samples for the RT–PCR SARS-CoV-2 lab test were collected via nasopharyngeal or 
oropharyngeal swab at one of 53 different ISMMS locations, representing outpatient, urgent care, emergency, 
and inpatient facilities. Blood specimens for ELLA were collected via venipuncture. Chest CT scans were all 
performed within the Mount Sinai Health System. All specimens and imaging were collected and tested as part 
of standard of care.  
 
The initial cohort of 207 patients underwent further evaluation by manual chart review. Inclusion criteria for this 
study were: 1) hospitalized for COVID-19, 2) plasma cytokine assessment within 48 hours upon hospital 
admission and, 3) chest CT up to 5 days apart from plasma cytokine assessment. We excluded patients with 
1) time gap between plasma cytokine assessment and chest CT greater than 5 days (n=41), 2) CT scans with 
severe artifacts (n=12), 3) patients with acute conditions overlapping with COVID-19 that may have affected 
the cytokine assessment (n=2, a patient with acute pancreatitis, and a patient with acute cholecystitis who 
underwent laparoscopic cholecystectomy). Thus, our final cohort was constituted by 152 patients.  
 
Clinical and laboratory data 
Demographic and clinical data was extracted from the Epic electronic health record (Verona, WI) for the 
identified patients using Epic Hyperspace (August 2019), Epic Clarity (February 2020) and Epic Caboodle 
(February 2020) databases via connecting to Oracle (18c Enterprise Edition Release 18.0.0.0.0) and SQL 
server (Microsoft SQL Server 2016 (SP2-CU11) (KB4527378) - 13.0.5598.27 (X64)) databases, respectively. 
Additional data elements included lab results, vital signs, need for O2 therapy, O2 saturation, chest imaging 
reports, clinical outcomes, and medications administered during hospitalization. Data was merged from the 
various data sources using R version 3.6.1 (Vienna Austria). The tables were read-in and written using R 
packages tidyverse (v 1.3), reshape2 (v 1.4), rms (v 6.1), glmnet (4.1), ggplot2 (v 2.0) (29) and readxl (v 1.3.1). 
The date of first symptoms was extracted from the electronic records via manual chart review by two 
independent investigators (G.C., and D.M.D.V).  
 
CT image acquisition 
Chest CT studies were performed using a variety of vendors and systems: SOMATOM Definition AS (Siemens 
Healthineers, Erlangen, Germany [n=50]); SOMATOM Edge Plus (Siemens Healthineers, Erlangen, Germany 
[n=35]); SOMATOM Perspective (Siemens Healthineers, Erlangen, Germany[n=2]; LightSpeed VCT (GE 
Healthcare, Chicago, United States [n=33]); Revolution HD (GE Healthcare, Chicago, United States [n=13]); 
Revolution EVO (GE Healthcare, Chicago, United States [n=6]); and Aquilion Prime (Canon Medical Systems, 
Otawara, Japan [n=13]). A non-contrast chest CT was performed on patients with COVID-19 symptoms to 
evaluate for potential pneumonia lesions (n=46), and a chest CT angiogram with iodine contrast [100-200 mL 
of Iopamidol (Isovue, Bracco Diagnostics), depending on patient’s weight, administered by bolus injection] was 
performed in patients in whom pulmonary embolic disease was suspected (n=106). CT acquisition parameters 
are listed in Supplementary Table 1. 
 
CT qualitative score 
Image analysis was performed by two independent experienced readers (M.C. and A.B., fellowship-trained 
cardio-thoracic radiologists, both with 5 years of experience) who were blinded to the clinical and laboratory 
data, but aware of COVID-19 diagnosis. Each reader assessed half of the cohort, with an additional overlap of 
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40 cases to assess inter-observer reproducibility. A CT qualitative score was calculated according to the 
percentage of lung parenchyma affected by GGO and/or consolidations23,24. Each lobe was classified as: none 
(0%), minimal (1-25%), mild (26-50%), moderate (51-75%), and severe (76-100%) involvement. Lung lobes 
with no involvement were scored as 0, minimal involvement as 1, mild involvement as 2, moderate involvement 
as 3, and severe involvement as 4. An overall CT qualitative score was obtained by summing the ordinal value 
for each of the 5 lung lobes and yielding a final score of 0-20. Additionally, the readers assessed several 
qualitative variables in accordance with the Fleischner society definitions24 (Supplementary Table 2). 
 
CT quantitative assessment 
Using the open-source software 3D slicer (www.slicer.org)25 and the Chest Imaging Platform plug-in 
(chestimagingplatform.org), semiautomated segmentation of the lungs and intensity thresholding was 
performed to define the following lung regions: 1) aerated lung: <-500HU (Hounsfield Units); 2) GGOs: -500 to 
-100HU; and 3) consolidations: -100 to 100HU. Mediastinum, hilar structures, and pleural effusions were not 
included in the segmentations. All segmented images were reviewed by a single observer (G.C., a post-
doctoral fellow with 8 years of experience) to evaluate the segmentation task, and manual corrections were 
performed if needed. A second reader (B.M., PGY-5 radiology resident) performed manual corrections on 15 
patients randomly selected to assess inter-observer variability. Both observers were blinded to outcome. This 
quantitative analysis yielded the following variables: 1) total lung volume (mL); 2) well-aerated lung volume 
(mL); 3) GGO volume (mL); 4) consolidation volume (mL); and 5) GGO to aerated lung ratio. 
 
ELLA cytokine platform 
The ELLA platform is a rapid cytokine detection system based on four parallel singleplex microfluidics ELISA 
assays run in triplicate within cartridges following the manufacturer’s instructions. In March 2020, as the 
number of COVID-19 cases was increasing in New York City, we transferred the ELLA methodology to the 
Clinical Laboratories at Mount Sinai Hospital, which allowed the ELLA cytokine test to be coded into our 
electronic health record ordering system as part of a COVID-19 diagnostic panel. This panel measures key 
cytokines, IL-6, IL-8 and TNF-α used for predicting patient outcomes in the setting of COVID-1920. We applied 
established cutoffs for high/low cytokine levels as follows (in pg.ml-1): >70 for IL-6, >50 for IL-8, and >35 for 
TNF-α20. 
 
Study endpoints 
The endpoints were: 1) COVID-19-related death during hospitalization (hospital death) and 2) maximum 
severity score attained during hospitalization. We applied the WHO ordinal scale (from 0 to 7 points) to assess 
disease severity (prior to death)26. 
 
Statistical analysis 
To test associations with outcomes, we performed Wilcoxon rank, Fisher exact, Spearman correlation27 and 
Fisher independence tests28 for each variable. Next, to assess the probability of survival, we performed 
univariate and multivariate Cox proportional hazard models for cytokines (IL-6, IL-8, TNF-α), demographic 
variables (age, sex, race/ethnicity), BMI, minimum O2 saturation upon presentation, CT qualitative score and 
CT quantitative variables in the coxph and survminer package on R29. The variables IL-6, IL-8 and TNF-α, were 
converted to binary variables based on thresholds previously described in the methods section20. The 
threshold used for accepting null hypothesis was set to adjusted p-value<0.05 after false discovery rate 
correction for multi-observation correction. Additionally, for Fisher independence test, we binned numeric 
variables into 4 quartiles. To further simplify the severity endpoint, we binned patients into mild (3-4) and 
severe (5-7) groups according to the WHO ordinal scale. Maximum severity was set as the highest degree of 
severity at any point during hospitalization. Severity was capped at 7, prior to death when applicable.  
 
Model building and prediction performance 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.11.21264709doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.11.21264709
http://creativecommons.org/licenses/by-nc-nd/4.0/


We used elastic net regression available on glmnet package30 to build a predictive model of outcomes: 1) 
death during hospitalization and 2) maximum severity score. To validate the predictions, we used a 
combination of cross-validation and testing/training proportions. Briefly, we maintained the proportions of 
cases/controls while randomly selecting 100 times samples for each of the ratios: 9/1, 8/2, 7/3, 6/4 and 5/5 of 
training and testing, respectively. Next, within each randomly selected subset we tested one model for each, 
mixing coefficient for ridge and lasso regression (alpha values of 0 or ridge to 1 or lasso), producing 500 
significant (p-value <0.05) models per scenario. Additionally, we filtered variables that had a statistically 
significant (p-value<0.05) effect using elastic net regression coefficient selection. Model performance was 
evaluated using ROC analysis31. The comparisons between different models’ AUCs were done using Wilcoxon 
rank sum test, bootstrap and DeLong statistics on default settings available in the pROC package32. Finally, 
the variables defined by the optimized model were used to build a nomogram by translating the model statistics 
into probabilities using the rms package33,34.   
 
 
RESULTS 
 
Cohort characteristics 
We obtained health information, imaging, and laboratory results as part of standard clinical care from 152 
patients with confirmed COVID-19 diagnosis as seen at the Mount Sinai Health System. The median time from 
hospital admission to chest CT was 0.72 days (IQR 0.0 – 1.0) and to cytokine testing was 0.28 days (IQR 0.0 – 
1.1).  The median time between chest CT and cytokine testing was 1.0 days (IQR 0.0 – 2.0). The hospital 
mortality rate for our cohort was 17.1% (Table 1). Additional patient characteristics and clinical features are 
listed in Table 1. The median levels for IL-6, IL-8, and TNF-α, upon presentation, were 61 pg/mL, 35.0 pg/mL, 
and 18.5 pg/mL, respectively (Table 2). Patients who died had a higher maximum severity score (WHO ordinal 
scale), and lower O2 saturation at presentation compared to those who survived (adjusted p-value < 0.0001) 
(Figure 2 & Suppl. Table 3). There were no significant differences in sex (adjusted p-value = 0.91), race 
(adjusted p-value = 0.39), ethnicity (adjusted p-value = 0.97), or age (adjusted p-value = 0.32) between 
patients who died vs. those who survived (by Wilcoxon rank sum test) (Suppl. Figure 1, Suppl. Table 3).  
 
CT qualitative score and CT quantitative analysis 
CT qualitative scores were higher in patients who died vs. those who survived, but this difference did not reach 
significance after multiple observation correction (adjusted p-value = 0.07) (Figure 2 & Suppl. Table 3). CT 
quantitative variables: GGO volume (adjusted p-value = 0.01), consolidation volume (adjusted p-value = 0.01), 
and GGO to aerated lung ratio (adjusted p-value = 0.005) were all significantly higher (Figure 2 and Suppl. 
Table 3), while well-aerated lung volume was significantly lower (adjusted p-value = 0.035) in patients who 
died. A representative example of CT qualitative score and CT quantitative assessment is shown in Figure 1. 
Both CT qualitative score and CT quantitative analysis had excellent inter-observer reproducibility, with ICC of 
0.998 (95% confidence interval: 0.996-0.999) and 0.986 (95% confidence interval: 0.960-0.995), respectively. 
Additionally, CT measurements and features were significantly correlated to each other, and to severity (Rho 
values between 0.4 and 0.7, adjusted p-values<0.05).  
 
Cytokine analysis 
IL-6 (adjusted p-value = 0.005) and IL-8 (adjusted p-value = 0.006) levels were significantly higher in patients 
who died, while there was no significant difference for TNF-α (adjusted p-value = 0.119) (Figure 2 and Suppl. 
Table 3). Also, Cytokines (IL-6, TNF-α, IL-8) were correlated to severity (Rho values between 0.3 and 0.6, 
adjusted p-values<0.05). 
 
Association between variables and risk of death 
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We investigate the association between a subset of clinically relevant variables and the probability of death 
using univariate and multivariate Cox proportional hazard models for all the available variables (Suppl. 
Figures 2-10 Suppl. Tables 4-5). Significantly different survival probabilities were found for O2 saturation, IL-
6, IL-8, TNF-a, Neutrophiles, Monocytes, D-dimer, and GGO to aerated lung ratio, among others (Suppl. 
Tables 4, Suppl. Figures 2-10). Further, we observed AUCs < 0.6 (adjusted p-value < 0.05) for O2 saturation, 
age, gender, BMI and race/ethnicity (Suppl. Table 6). These results indicate that oxygen saturation and 
demographic variables had poor power in predicting death despite producing significant prognostic models in 
assessing risk of death. 
 
 

 
Figure 1. CT qualitative score and CT quantitative analysis. Male patient with COVID-19. A) CT 
demonstrates multifocal ground-glass opacities and regions of consolidation in the right lower. The qualitative 
score established by a radiologist is based on the percentage of lung involvement per lobe (shown on the right, 
range 0-20).  B) CT quantitative analysis using segmentation software. Quantitative analysis extracts 
volumetric measurements (shown on the right) representing the aerated lung, the ground glass opacities 
(GGO) volume, the consolidation volume and the GGO to aerated lung ratio. RUL: right upper lobe; RLL: right 
lower lobe; ML: middle lobe; LUL: left upper lobe; LLL: left lower lobe. 

Aerated lung 2832.2 mL

GGO 403.3 mL

Consolidation 64.9 mL

GGO/aerated lung 0.12
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Figure 2. Key differences between patients who died and patients who survived. We conducted a 
Wilcoxon rank test for the variables collected. The number of * indicates significance (*<0.05. **<0.01, 
***<0.001, ****<0.0001).  
 
 
Prediction of COVID-19 death 
To test the hypothesis of whether cytokines or CT measurements were predictive of clinical outcomes, we 
developed four “scenarios” to cover all variables within a category (Cytokines or CTs). The variables selection 
for each of these scenarios was informed by clinical expertise, previous research, and data availability. The 
variables in each scenario were: 1) “Cytokines” (IL-6, IL-8, TNF-α and age), 2) “CT-Qualitative” (CT qualitative 
score and age), 3) “CT-Quantitative” (GGO volume (mL), well aerated lung volume (mL), Total volume (mL) 
and age), 4) “Combined” (All features from Scenarios 1, 2 and 3). The workflow chart highlights the steps in the 
construction of the predictive models is showed in Figure 3.  
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Figure 3. Data analysis overview. The flowchart shows how we start from 4 different scenarios (cytokines, 
CT qualitative, CT quantitative, combined) with the endpoints of death and maximum severity. First, we explore 
potential biases in our dataset by testing with several statistical approaches such as correlations, Fisher exact 
and independence, and Wilcoxon rank test. Next, we evaluate the probability of survival using Cox proportional 
hazard models to identify potential markers. Then, we use elastic net regression to explore further the 
predictive capabilities to separate patients that survive or not per scenario. To ensure we correctly test our 
hypothesis per scenario, we perform a combination of random testing/training sets and cross-fold validation to 
identify the predictive value of each scenario. Then, we use a coefficient-based selection to filter the significant 
(adjusted p-value<0.05) models and select the variables relevant for predicting. Finally, we use the variables 
from our best minimal model to build a risk prediction nomogram.   
 
 
In parallel, to identify the best predictors of outcomes, we developed a fifth “Optimized” scenario with the aim of 
selecting the minimum number of variables. Thus, we used all available variables and performed a stepwise 
coefficient selection to choose the variables that had the highest effect on the model. Age was the only 
demographic variable that survived the coefficient selection process whereas race/ethnicity, BMI and sex were 
not selected as they did not have a significant effect on the predictive model (Figure 3). 
 
The models built with cytokines showed an average AUC of 0.70 with CI 95% (65-75), while CT qualitative, CT 
quantitative and combined models had average AUCs of 0.61 with CI 95% (57-62), 0.66 with CI 95% (60-70) 
and 0.75 with CI 95% (69-80), respectively (Figure 4A, 4B). All models were significantly (adjusted p-
values<0.05) different from each other (Figure 4B). These results show that a combined model increases the 
predictive power of death prediction of CT based on additional information from cytokine assays.  
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The optimized prediction scenario contained IL-6, IL-8, TNF-α, GGO to aerated lung ratio, and age. This model 
showed an AUC of ~0.78 with CI 95% (72-84), combining cytokines (IL-6, IL-8, TNF-α,) and CT quantitative 
measurements (GGO to aerated lung ratio). The optimized scenario was significantly higher (adjusted p-
values<0.05) than previous models using Wilcoxon rank test (Figure 4B, 4D). 20 
 
Prediction of COVID-19 maximum severity score 
To test the predictive power of these scenarios for maximum COVID-19 severity (according to the WHO scale), 
we used elastic net regression. These results show that the combined scenario (AUC: 0.84 with CI 95% [80-
88]) performed better (adjusted p-values<0.05) than the optimized scenario (AUC: 0.82 with CI 95% [78-86]) 
(adjusted p-value<0.05), CT quantitative (AUC: 0.81 with CI 95% [77-86]), CT qualitative (AUC: 0.74 with CI 
95% [70-78]) (Adjusted p-values<0.05) (Figure 4C, 4D) and cytokines (AUC: 0.70 with CI 95% [66-75]) 
(Adjusted p-values<0.05). Of note, the CT quantitative performed better (Adjusted p-values<0.05) than CT 
qualitative and cytokines (Figure 4D).  
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Figure 4. Power of chest CT and cytokines for prediction of death and maximum severity score. We 
tested the 5 scenarios to evaluate their relevance for prediction of death and maximum severity. A) Average 
ROC curves derived using risk of death are showed for each scenario. B) Boxplot showing the AUC values for 
all significant (p-value<0.05) models build per scenario for risk of death. C) Average ROC curves derived for 
maximum severity per scenario. D) Boxplot showing the AUC values for all significant (p-value<0.05) models 
build per scenario for severity. 
Finally, to simplify our findings we took advantage of our elastic net regression interpretability to distillate 
probabilistic model for scoring risk or nomogram. The nomogram uses the glmnet selected variables GGO to 
aerated lung ratio, age, TNF-α, IL-6 and IL-8 to provide a score for risk of death (Suppl. Figure 11)18 20.  
 
 
DISCUSSION 
Previous studies predicting COVID-19 patient outcomes using clinical, laboratory, or radiologic findings have 
shown overly optimistic predictive performance, partially due to risk of bias22. Moreover, these models did not 
utilize internationally validated classifications, such as the WHO scale, MODS, APACHE II, or SOFA. Thus, 
accurate prognostic models aimed at predicting COVID-19 outcomes are necessary.  
 
In our study, we evaluated the performance of chest CT features and plasma cytokines from plasma alone and 
in combination in predicting death and maximum severity degree of hospitalized COVID-19 patients. These 
predictive models are important, so as to inform physicians of potential outcomes and thus helping with risk 
stratification, clinical decision making and treatment options. While cytokine assessment was more useful in 
prediction of death, CT features showed higher predictive performance for COVID-19 disease severity. In 
addition, the CT quantitative method, using volumetric variables extracted by manual segmentation 
outperformed CT qualitative score based on the radiologists´ assessment. Our findings reveal that a combined 
model using a CT quantitative feature (GGO to aerated lung ratio), demographics (age), and serum cytokines 
(IL-6, IL-8 and TNF-α) represents an accurate non-invasive tool for predicting risk of death and severity degree 
in hospitalized COVID-19 patients.   
 
We investigated the probability of death using demographics, plasma cytokines (IL-6, IL-8, TNF-α), and CT 
measurements by Cox proportional hazard models. Although demographics variables showed significance 
(adjusted p-value<0.05) in univariate and multivariate analysis, they failed to predict outcomes with more than 
0.6 AUC using elastic net regression. Further, we found that the models based on a combination of cytokines 
(IL-6, IL-8, and TNF-α) and age had a fair prediction power for death (AUC of 0.70) and maximum COVID-19 
severity degree (AUC of 0.70). These results are concordant with the study carried out by Del Valle et al.20 that 
showed IL-6, IL-8, and TNF-α to be strong and independent predictors of patient death.  
 
We assessed two approaches to evaluate CT images: one based on the radiologist’s qualitative assessment 
and a quantitative measurement of lesion burden using manual segmentation based on HU thresholding. 
Previous studies using either qualitative or quantitative image analysis methods have shown high performance 
in predicting adverse outcomes, such as mechanical ventilation, ICU admission, death, or severity degree 7-

11,13-17,35. However, several of these studies used non-internationally validated severity degree scales.  
 
Our models based on the CT qualitative and quantitative methods had an AUC of 0.61/0.66 for predicting 
death, respectively, underperforming when compared to cytokines (AUC 0.71). However, both CT models 
outperformed the cytokines model in predicting maximum severity score, with the CT quantitative model 
performing better than the CT qualitative model (AUCs of 0.81 and 0.74, respectively). These findings reveal 
that a quantitative assessment may more accurately assess lung involvement as stated by Avila et al.6. A 
model based on CT analyses could be a potential approach for COVID-19 stratification. In addition, both CT 
evaluation methods showed excellent inter-observer agreement between two independent readers with ICC > 
0.9 in our study, concordant with other studies8,11,16   
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The potential of combining CT features with clinical and laboratory data (CRP, lymphocyte count and 
lymphocyte to neutrophil ratio among others) has been previously described9,13,15,18. However, the combination 
of CT features with plasma cytokines has not been evaluated. Our combined and optimized models, using both 
plasma cytokines and CT features, showed the best performances in predicting death (AUC 0.74 - 0.78) and 
maximum severity degree (AUC of 0.82 - 0.84). This noninvasive approach may help clinicians in risk 
stratification and in choosing individualized therapeutic strategies. 
 
Our study design prevents overly broad conclusions. First, the sample size is too small to control for all types 
of potential biases. Our limited sample size was dictated by our strict inclusion/exclusion criteria. Second, the 
CT quantitative analysis could overestimate the GGO volume and consolidation volume due to partial volume 
effect and the inclusion of small vascular structures. However, this error affects every study and could be 
considered a systematic error that does not affect the final output. Finally, our population consists mainly of 
moderate to severe cases, as mild cases were not admitted.  
 
Our study demonstrate that a combination of chest CT imaging analysis and plasma cytokine assessment can 
be used to profile COVID-19 patients and potentially triage them into risk groups. Here we show this 
combination to be a powerful tool in predicting COVID-19 mortality and severity degree. More importantly, we 
show that robust and simple predictive models can support clinical decision-making to stratify patients based 
on risk and aid in individualized therapeutic strategy development. Plasma cytokine assessment alone may 
help to predict survival, while CT analysis may aid in patient severity degree stratification. Additionally, CT 
quantitative analysis represents a potential tool to evaluate pneumonia lesions. Combining selected cytokine 
and CT quantitative features in an optimized model was shown to outperform either measurement alone. 
 
Ultimately, these data and methods provide novel metrics that may be used to monitor patients upon 
hospitalization and help physicians make critical decisions and considerations for patients at high risk of death 
for COVID-19. These markers should be prospectively analyzed in relation to therapy choice, in particular with 
costly treatments such as monoclonal antibodies that could potentially be aimed at those patients with 
unfavorable scores at presentation. 
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Table 1. Patient demographics, clinical and outcome data (n=152). Data are numbers of patients with 
percentages between parentheses.  
 

Median age (IQR) - years 61 (48 - 71) 

Sex (Male) 90 (59.2%) 

Race/ethnicity 
 

- Hispanic 37/152 (24.3%) 

- African American 35/152 (23.0%) 

- Asian 12/152 (8.0%) 

- White 35/152 (23.0%) 

- Other 70/152 (46.1%) 

Obesity (BMI ≥30) 51 (33.6%) 

Oxygen saturation at presentation  

- Normal (³95%) 50/152 (32.9) 

- Abnormal (<95%) 102/152 (67.1) 

Comorbidities 
 

- Asthma 16/151 (10.6%) 

- Atrial Fibrillation 12/151 (7.94%) 

- Cancer (active) 26/151 (17.2%) 

- Chronic Kidney Disease 16/151 (10.6%) 

- Congestive Heart Failure 14/151 (9.27%) 

- COPD 13/151 (8.61%) 

- Diabetes 43/151 (28.5%) 

- HIV 6/151 (4.00%) 

- Hypertension 52/151 (34.4%) 

- Obstructive Sleep Apnea 5/151 (3.31%) 

Smoking 
 

- Current 12 (9.09%) 

- History 39 (61.4%) 

Symptoms 
 

- Anosmia/Ageusia 1/152 (0.658%) 

- Congestion/Runny Nose 10/152 (6.58%) 

- Cough 78/152 (51.3%) 

- Diarrhea 26/152 (17.1%) 

- Fatigue 49/152 (32.2%) 

- Fever 83/152 (55%) 

- Headache 9/152 (5.92%) 

- Myalgias 20/152 (13.2%) 

- Nausea/Vomiting 42/152 (27.6%) 

- Shortness of breath 105/152 (69.1%) 

- Sore throat 4/152 (2.63%) 
Worst WHO score achieved (capped at 7) 

 
- Mild (3-4) 78/150 (52.0%) 

- Severe (5-7) 72/150 (48%) 

Clinical Outcomes 
 

- ICU admission 43/152 (65.4%) 

- Acute Respiratory Distress Syndrome 10/151 (15.1%) 
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- Died during hospital admission 26/152 (17.1%) 

Table 2. Cytokine assessment, CT qualitative score and CT quantitative analysis. Data are medians with 
interquartile ranges (IQR) in parentheses. GGO: ground-glass opacities. 
 

Cytokine assessment  
 
IL-6 (pg/mL) 
IL-8 (pg/mL) 
TNF-α (pg/mL) 

 
 
61.0 (22.8-146.3) 
35.0 (20.0-59.9) 
18.5 (13.0-27.4) 

CT qualitative score 9 (5-14) 

CT quantitative analysis  
 
Total lung volume (mL) 
Well aerated lung volume (mL) 
GGO volume (mL) 
Consolidation volume (mL) 
GGO/well-aerated lung ratio 

 
 
2713 (2081-3505) 
1982 (1420-2903) 
344.5 (208.2-509.6) 
98.20 (49.68-252.6) 
0.1774 (0.0767-0.3673) 
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