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Abstract: There is worldwide concern with regard to the adverse effects of drug usage. However,
contaminants can gain entry into a drug manufacturing process stream from several sources such as
personnel, poor facility design, incoming ventilation air, machinery and other equipment for
production, etc. In this validation study, we aimed to determine the impact and evaluate the
contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the
pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity,
particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is
affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate
the RTP chamber′s leakage by the pressure decay, where the system is charged with the air, closed,
and the decay of pressure is measured by the time period. We conducted the determination of a
vaporized H2O2 of a sufficient concentration to complete decontamination. The performance of the
RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment.
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1. Introduction

The pharmaceutical material transport into the Grade A (equivalent to ISO 5 (ISO 14644-1) [1])
filling environments is one of the most common for the causes of the aseptic processing deterioration [2].
The design arrangements of the conventional filling facility have placed it in a Grade B environment.
Process operations are required while sterile materials are delivered from a Grade B environment to
the Grade A filling area. Contamination is a key factor in risk analysis of classical aseptic processing
areas. Open processes, which need direct operator intrusion, are considered to be a greater risk
for contamination than closed processes. The execution of the isolator technology has noticeably
decreased the impact of the contaminated surrounding environment upon the vital zone of the aseptic
processing. Although the isolator is properly validated and operated which can decrease risk from an
environmental contamination to a level approaching zero, the transfer of materials in and out of an
isolator is the most probable reason for the loss of the separated enclosures environmental integrity.
This is often accomplished by correspondence the process and the activity of people and materials, by
utilizing risk assessment tool such as Hazard Analysis and Critical Control Points [3] or Failure Modes
and Effects Analysis [4]. The safer the transfer system, the more the external environment becomes
less threatening, and therefore it results in a more efficient risk management. The Parenteral Drug
Association (PDA) Industry Aseptic Processing Survey 2001 identified the material transfer failures as
follows [5]:
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• Personnel contamination
• Non-routine activity
• Aseptic assembly
• Human error
• Mechanical failure
• Airborne contaminants
• Improper sanitization: Surface contaminants
• Material transfers: Failure of HEPA (High Efficiency Particulate Air Filter) (0.2 µm filter)
• Improper sterilization

The transfer technology is a major part of the manufacturing pharmaceutical isolator (Class III
Biological Safety Cabinet) systems and should be selected according to the provided protection
level. Hence, the available transfer technologies are air-lock, rapid transfer ports (RTP) chamber, and
laminar-airflow interface. The RTP chamber is generally utilized for physical separation [1,6]. Firstly,
it can be built into a wall or incorporated in the isolator barrier system with a transfer chamber to
supply a secure and simple method for removing articles, materials, supplies and waste without
rupturing the containment [7,8]. Secondly, it can be fabricated in various sizes, fastened to connect
necessities for choosing agent storage, facilitated to ensure the chain of delivery, and for describing
procedure. Thirdly, it is designed to transfer pharmaceutical material, and therefore continuous airflow
within the chamber is needed to decrease the concentration of particle contamination [9] to confirm all
biological safety standards. The resulting exhaust gas is passed through a designed filtering system to
prevent particle contamination from the internal to the ambient environment or contrariwise [10–14].
The RTP chambers were designed to increase experimental safety by prohibiting this contamination,
decreased the possibility of operator error, and lessen the contaminated area. The maintenance of the
RTP chamber is critical, especially in assuring the minimization of the leakage (where the leakage of
air could lead to the ingress of air from the less-clean surrounding room environment) maintenance of
the RTP chamber integrity, of which is most commonly sanitized by hydrogen peroxide vapor.

The aim of the study was to demonstrate that the RTP chamber could be utilized as a containment
device for the pharmaceutical manufacturing processes. If validated, the device could be used as a
primary barrier in high containment to protect the operators and the environment from accidental
exposure to aerosols, which is the part of the risk evaluation of the operation via the human pathogens,
but distinct leading is not offered where aerosols are deliberately created [15]. In the absence of a
published standard for the RTP chamber testing, a test protocol was developed based on a combination
of the test standards that are generally utilized in the high-containment environments. This study also
presented four tests to evaluate cross-contamination control in the RTP chambers: (1) a quantitative
check of the airflow velocities; (2) a particle count test under normal and enhanced airflow velocities;
(3) a pressure decay test of the complete containment system at different initial pressures; (4) vaporized
hydrogen peroxide decontamination.

2. Materials and Methods

To make a good internal environment of the RTP chamber that is fully isolated from the exterior,
variable frequency drive fans were utilized in the air-intake and the air-exhaust system, precisely
controlling the filtered air flow and supplying an air-barrier protection. The aerodynamics allows for a
one-way flow or airflow turbulence within the RTP chamber, under negative pressure compared to
the surrounding environment. Supply and exhaust air can go through the high-efficiency particulate
air (HEPA) filters (Efficiency 99.99% on 0.3 micron) to prevent the production of aerosols that could
possibly escape into the ambient environment [16]. Following ISO 14644-1 [1], ISO 14644-7 [17],
ISO 10648-2 [18], and ASTM (American Society for Testing and Materials) E2930-13 [19] standards,
contamination control in the RTP chamber was evaluated. Experiments were carried out using
airflow velocity meter (TSI Inc., 9535-L, Cole-Parmer, Taichung, Taiwan), an optical particle counter
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(Pacific Scientific Model Met One 2100.10, Ashtead Technology, Westhill, UK), a pressure meter
(testo480-manual-0563_4800, TESTO, New Taipei, Taiwan) and a vaporized hydrogen peroxide
generation detector (self-fabricated) to perform four validation tests (including airflow velocity, particle
quantities, pressure decay and vaporized hydrogen peroxide amount) in the RTP chamber (Size:
960 mm (Length) × 600 mm (width) × 1120 mm (height), Air System Enterprise Co., Ltd., Taoyuan,
Taiwan) as shown in Figure 1. The RTP chamber assisted the low-contamination inward and outward
transfer of the product chambers or system parts into and out of the containment systems. The double
door cannot be opened until the chamber is tied and closed in position.
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2.1. Airflow Velocity Test

The work zone of the airflow velocities monitoring is described by the airflow at right angles to
the supply HEPA filter, often recommended as a grid of equal spaced points on the entrance plane of
the airflow. This test measured the removing of the airflow velocity along the RTP work space, 15, 30,
45, 60, and 95 cm above the platform, and is performed at three percentage operating levels (50%, 60%
and 75%) on the whole RTP chamber (see Figure 2). Readings at individual locations were obtained
and noted on a specified grid via the movable parts and the average for each designated zone is thus
calculated [20].
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It was noticed what differentiated the ideal gas law: pV = mRT via the time, given as by Doyle [23]. 

dt

dm
RT

dt

dp
V   (1) 

Figure 2. Location of the measuring points during airflow velocity test.

2.2. Particle Count Method

Particle counting probe should be fixed in an orientation demonstrated to get an important sample
and kept to assure aseptic conditions while HEPA filter integrity. The particle count test is executed by
particles counting at defined grid locations within the RTP chamber. The sampling points should be
equally spaced throughout five locations [21], and at a work height to describe the quality of the air
cleanliness as it approaches the RTP chamber as presented in Figure 3.
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2.3. Pressure Decay Test

First, we sealed the return air and air outlet, and then injected dry air into the RTP chamber to
bring the pressure to 15, 30, and 45 Pa. After these steps, we observed the pressure differential by using
a pressure meter, and recorded the time required for the pressure dropping to zero Pa [22]. It was
noticed what differentiated the ideal gas law: pV = mRT via the time, given as by Doyle [23].

V
dp
dt

= RT
dm
dt

(1)
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where V: volume constant, and T: temperature constant (as slow leakage from a large system is a
quasi-static process). Also, all the leaks inside the entire gaseous nitrogen system can be designed for
one large equivalent orifice. For the choked flow, the flowrate through this equivalent orifice is [24].

dm
dt

(lbm/sec) = −CAp[
gc

RT
k(

2
k + 1

)

(k+1)
(k−1)

]

1
2

(2)

where C: orifice flow coefficient, A: flow area normal to flow direction (in2), p: upstream pressure
(psia), R: ideal gas constant (ft-lbf/lbm- R), gc: unitary conversion factor = 32.2 lbm ft/lbf s2, and k:
ratio of specific heats. The minus sign on the right side of Equation (2) shows that the mass left from
the control volume.

Also, make [gck( 2
k+1 )

(k+1)/(k−1)
]

1
2
= S

Combining Equations (1) and (2) results in:

dp
dt

= −[CAS
√

RT
V

]p or
dp
dt

+ [
CAS
√

RT
V

]p = 0 (3)

At the beginning, it was deduced that all the quantities within the parentheses of Equation (3)
were constants as for pressure and time. This lead to a simple first order linear differential equation,
and the solution is exponential decay:

p(t) = p(0)e−at (4)

where a = CAS
√

RT
V .

2.4. Vaporized Hydrogen Peroxide Fumigation Tests

A self-fabricated VHP generating unit (see Figure 4) uses 35% wt. hydrogen peroxide generating
the vapor within the target enclosure to decontaminate the RTP [1]. This generator performs and
controls four phases during the sterilization cycle: dehumidification, conditioning, decontamination,
and aeration. To initiate the cycle, vaporized hydrogen peroxide is first pumped from the tube to the
RTP. During the dehumidification phase, the unit removes moisture from the enclosure to a defined
set point prior to the injection of vaporized hydrogen peroxide. The conditioning phase promotes
a rapid increase in hydrogen peroxide levels within the enclosure over a relatively short amount of
time. The decontamination phase has a reduced injection rate that maintains the vaporized hydrogen
peroxide concentration (achieved during conditioning) over an extended period of time. Aeration,
in which the vaporous hydrogen peroxide is circulated through HEPA filters and an activated carbon
filter for neutralization, is initiated once the programmed decontamination time has been concluded.
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3. Results and Discussion

3.1. Airflow Velocity Test

The vertical distribution of airflow velocities was determined by measuring 50%, 60% and 75%
airflow quantity at varying heights (h = 15, 30, 45, 60 and 95 cm). The data shows that the airflow
quantity produces a more important character in the airflow velocities. The measuring indicated that
the airflow velocities are by the height from the platform substantially depends on 50%, 60% and 75%
airflow quantity. The airflow velocities at four tested heights (15, 30, 45, 60 and 95 cm) were linearly
related to the tested heights, giving a polynomial relation at the tested heights (15, 30, 45, 60 and
95 cm). Increasing airflow quantity more quickly promotes larger airflow velocities. When relating the
effects of airflow velocities to the height using a multiple linear regression technique, we obtained the
relationships between the airflow velocity and the height shown as Figure 5. Underneath HEPA filter
(95 cm height), average airflow velocity is within ±0.00002 m/s, which are smaller and continued
compliance with acceptance testing procedure of ISO 14644-3 C.4 [25].
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3.2. Particle Count Method

The monitored particle concentration for different points inside the RTP chamber is shown in
Table 1. The distribution of the particle concentration attends to be commanded by the airflow velocity
and the particle diameters. Table 1 shows the RTP chamber particle concentration via the different
airflow velocities. While the airflow velocity is higher, the consistence of the particle concentration
is preferable. It presents that strengthening the convection can also modify the consistence of the
concentration. All the results presented in Table 1 demonstrate that enlarging the particle diameter
can decrease the consistence of the concentration. The dissimilarity of the concentration between
different points is obvious for particles with diameter larger than 3 µm. The difference between the
different positions can surpass 30% for particles with a diameter smaller than 1 µm in the RTP chamber.
The dissimilarity of the concentration at the same point between the particles with different sizes can
also surpass 30%. The middle measuring point M is the best cleanliness method/technique due to
the use of a centrifugal fan. Particle counts above zero indicate integrity deficits. HEPA filter integrity
should be kept to assure aseptic conditions. The cleanliness classification of the RTP chamber work
zone (as defined by USP 797 [26]) continued compliance with acceptance testing procedure of ISO
class 5 at 0.5 µm and larger particles under operational conditions.
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Table 1. Measured concentrations of particles of various sizes at the measuring points given in Figure 3.

20 cm over Platform, 75% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 456 6634 1427 301 956
0.5 µm 33 475 96 26 76
1 µm 9 158 38 4 14
3 µm 0 12 0 0 1
5 µm 1 7 2 0 1

10 µm 0 0 0 0 0

20 cm over Platform, 60% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 436 3035 2673 533 393
0.5 µm 29 197 178 37 30
1 µm 8 76 66 10 6
3 µm 1 9 3 2 2
5 µm 0 2 1 0 1

10 µm 0 0 0 0 1

20 cm over Platform, 50% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 1165 11,781 937 802 520
0.5 µm 76 854 59 54 34
1 µm 19 294 20 18 8
3 µm 0 23 0 1 0
5 µm 0 9 0 0 0

10 µm 0 0 0 0 0

40 cm over Platform, 75% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 88 30,766 27,221 2488 0
0.5 µm 5 2387 2103 205 0
1 µm 3 764 705 46 0
3 µm 0 42 50 0 0
5 µm 0 20 24 2 0

10 µm 0 1 0 0 0

40 cm over Platform, 60% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 1772 38,530 78,428 1712 0
0.5 µm 130 2941 5473 115 0
1 µm 38 1050 1665 30 0
3 µm 6 100 145 3 0
5 µm 2 50 75 2 0

10 µm 0 2 3 1 0

40 cm over Platform, 50% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 7642 7937 124,631 665 84
0.5 µm 530 575 8763 50 10
1 µm 148 172 2566 16 2
3 µm 11 7 195 1 0
5 µm 2 12 74 0 0

10 µm 0 0 5 0 0

60 cm over Platform, 75% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 45,210 3492 4218 5322 1
0.5 µm 3432 265 295 414 0
1 µm 1092 84 88 96 0
3 µm 74 5 7 9 0
5 µm 42 3 2 3 1

10 µm 3 1 0 1 0
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Table 1. Cont.

60 cm over Platform, 60% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 1971 33,288 18,861 43,865 1
0.5 µm 159 2513 1376 3361 0
1 µm 42 851 370 1076 0
3 µm 4 57 26 76 0
5 µm 1 32 13 36 0

10 µm 0 1 1 2 0

60 cm over Platform, 50% Airflow Quantity

Measuring points A1 B1 A2 B2 M
0.3 µm 2034 89,337 15,599 4054 1
0.5 µm 120 6895 1123 262 0
1 µm 40 2174 341 79 0
3 µm 6 172 24 3 0
5 µm 2 82 10 2 0

10 µm 0 2 2 0 0

3.3. Pressure Decay Tests

Figure 6 presents pressure versus time for the air at an ambient temperature via 15, 30, and 45 Pa
of three different initial pressures. Once the initial pressure value was obtained, the charge valve was
closed. Gas leaked through the system from the metering valve, and utilized the passing time, as the
pressure decayed under 8 Pa. RTP chamber employed a positive air pressure differential adequate
to achieve this full separation continued compliance with acceptance testing procedure of the FDA
(Food and Drug Administration) guidelines [27]. The smaller the value of the initial pressure makes it
faster than the initial decay rate. The proportional relationship between the natural logarithm of decay
time and the pressure is presented in a simple linear formula and the correlation coefficient is over
0.961 for all of the results as shown in Table 2.
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Table 2. Correlations of pressure (P) vs. time (t).

Pi (Pa) Pressure (P) vs. Time (t) Pf (Pa)

45 P = −0.0033 ln(t) + 4.0742, R2 = 0.9612 7.2
30 P = −0.0036 ln(t) + 3.5563, R2 = 0.961 5.6
15 P = −0.0242 ln(t) + 3.3191, R2 = 0.9775 2.2

3.4. Vaporized Hydrogen Peroxide Tests

We conducted the determination of vaporized H2O2 of a sufficient concentration to complete
the decontamination. No conditioning phase was used and the H2O2 was vaporized and injected
over a period of only a few minutes, as shown in Figure 7. After completing the injection phase, the
dwell periods of various lengths were tested and operated during the recirculation blower of the
RTP. Initially the RTP was dehumidified to 5% RH and various injection concentrations were tested.
A rather sharp break point can be observed at 1054, 1068, and 1730 ppm at 700, 850, and 1000 ppm,
respectively. The injection rate of 700 ppm resulted in one to three minutes. Table 3 present the results
of those that were extremely reproducible and representative experiments.
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Table 3. Survivors vs. Total Concentration of H2O2.

Total Concentration of Sterilant 700 ppm 850 ppm 1000 ppm

Positive BIs/Total BIs 0/120 120/120 0/120

The performance of the RTP is important, especially in ensuring the minimization of
cross-contamination of the RTP integrity and HEPA filter efficiency. The RTPs are normally tested for
airflow velocity, particle counts, pressure decay of leakage, and sterility. All of these parameters must
be set at pre-defined ranges.

It has been found that the air flow balance is affected by the quantity of airflow and the height
above the platform of the RTP. It is relatively easy to evaluate the RTP leak with pressure decay,
where the system is appointed with the air, closed, and the decay of pressure is measured via time.
We conducted the determination of vaporized H2O2 of a sufficient concentration to complete the
decontamination compliance with acceptance testing procedure of FDA guideline [27] continuously.
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4. Conclusions

The performance of the RTP chamber is important, especially in ensuring the minimization of
contamination of the RTP chamber integrity and the HEPA filter efficiency. The RTP chambers are
normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. All of
these parameters must be set at pre-defined ranges. It has been found that the air flow balance of the
RTP chamber is affected by the quantity of the airflow and the height above the platform. It is relatively
easy to evaluate the RTP chamber leak with pressure decay, where the system is ordered via the air,
closed, and the sink of pressure is measured versus time. We conducted the determination of vaporized
H2O2 of a sufficient concentration to complete the decontamination. This study details a procedure
for validation of the RTP chamber. The approach to performance testing described here is generally
applicable; however, the results are directly applicable to only the product tested. Performance testing
of the RTP chamber will improve safety and can be completed at an ISO Class 5 environment.
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