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Background: Prostate cancer is one of the most commonmalignancies among

men worldwide currently. However, specific mechanisms of prostate cancer

were still not fully understood due to lack of integrated molecular analyses. We

performed this study to establish an mRNA-single nucleotide polymorphism

(SNP)-microRNA (miRNA) interaction network by comprehensive

bioinformatics analysis, and search for novel biomarkers for prostate cancer.

Materials andmethods:mRNA,miRNA, and SNP data were acquired fromGene

Expression Omnibus (GEO) database. Differential expression analysis was

performed to identify differentially expressed genes (DEGs) and miRNAs

(DEMs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses, protein-protein interaction (PPI) analysis and

expression quantitative trait loci (eQTL) analysis of DEGs were conducted.

SNPs related to DEMs (miRSNPs) were downloaded from the open-source

website MirSNP and PolymiRTS 3.0. TargetScan and miRDB databases were

used for the target mRNA prediction of miRNA. The mRNA-SNP-miRNA

interaction network was then constructed and visualized by Cytoscape 3.9.0.

Selected key biomarkers were further validated using the Cancer Genome Atlas

(TCGA) database. A nomogram model was constructed to predict the risk of

prostate cancer.

Results: In our study, 266 DEGs and 11 DEMs were identified. KEGG pathway

analysis showed that DEGs were strikingly enriched in focal adhesion and PI3K-

Akt signaling pathway. A total of 60mRNA-SNP-miRNAs trios were identified to

establish the mRNA-SNP-miRNA interaction network. Seven mRNAs in mRNA-

SNP-miRNA network were consistent with the predicted target mRNAs of

miRNA. These results were largely validated by the TCGA database analysis.

A nomogram was constructed that contained four variables (ITGB8, hsa-miR-

21, hsa-miR-30b and prostate-specific antigen (PSA) value) for predicting the

risk of prostate cancer.
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Conclusion:Our study established the mRNA-SNP-miRNA interaction network

in prostate cancer. The interaction network showed that hsa-miR-21, hsa-miR-

30b, and ITGB8 may be utilized as new biomarkers for prostate cancer.
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Introduction

Prostate cancer (PCa) is the fifth leading cause of cancer

death and the second most commonly diagnosed cancer among

men worldwide in 2020 (Sung et al., 2021). In addition to

significantly impacting the quality of life and health of

patients, advanced PCa imposes a substantial economic

burden on individuals and societies (Lu et al., 2021). PCa, a

highly heterogeneous disease, is tightly regulated by diverse

cytokines, gene expression programs and signal pathways

throughout the disease course (Wang et al., 2018; Haffner

et al., 2021). However, studies on the underlying pathogenesis

and molecular mechanisms still remain largely uninvestigated

because of lacking integrated molecular analyses. Hence, despite

significant advances in treatment, the overall therapeutic benefits

still remain unfavorable (Lin et al., 2020; Asif and Teply, 2021).

This underscores the importance of early diagnosis of PCa.

Prostate-specific antigen (PSA) is a widely used biomarker for

the early diagnosis of PCa. However, the value of PSA screening

for early detection of PCa remains controversial due to over-

diagnosis and over-treatment (Mottet et al., 2021). Previous

studies reported that increased PSA may be associated with

benign conditions such as infection and inflammation, and

some aggressive PCa tissues do not produce PSA, thus

resulting in low diagnostic accuracy (McGrath et al., 2015).

Therefore, effective biomarkers are urgently needed to

improve the accuracy of early diagnosis of PCa.

MicroRNAs (miRNAs) are an important class of single-

stranded, non-coding, and endogenous RNAs with

21–25 nucleotides in length, serving as the molecular carriers

of highly specific genetic information (Hill et al., 2014). In recent

years, miRNA was believed to be pivotal in the pathogenesis of

PCa. For instance, the downregulation of miR-146a could

suppress the migration and invasion of PCa cells by regulating

ROCK1 levels (Moustafa et al., 2018). The miRNA seed region,

located at the 5′ end of the mature miRNA with 2-8 nucleotides

could specifically bind to 3′ untranslated region (3′UTR) of target
mRNA, called miRNA recognizing element (MRE) sites

(Saunders et al., 2007). Thus, any interference in miRNA-

MRE interactions may cause dysregulated gene expression and

thereby contribute to human diseases. Single nucleotide

polymorphisms (SNPs), the most frequent genetic variation,

are essential markers for investigating the genetic basis of

human diseases. SNPs in miRNA and MRE may disrupt the

base complementary pairing to interfere with the combination of

mRNA-miRNA, leading to mRNA destabilization and/or

translational inhibition (Kang et al., 2016).

Genome-Wide Association Studies (GWAS) have been widely

applied to robustly link SNP genotypes with clinical phenotypes,

which have identified 269 common SNPs correlated with higher

risk of PCa (Conti et al., 2021). Expression quantitative trait loci

(eQTL) analysis has been conducted to explore the impact of

known disease-associated genetic variation (mostly SNP) on gene

expression changes (Fehrmann et al., 2011; Hernandez et al.,

2012). However, most of the existing eQTL analyses only study

the association betweenmRNA and SNP, rarely involvingmiRNA,

thus resulting in an incomplete interaction pattern. Therefore, in

this study, we aim to construct an mRNA-SNP-miRNA

interaction network by bioinformatics analysis and search for

novel biomarkers for PCa.

Materials and methods

Microarray datasets

The GEO microarray database was searched using different

combinations of the following terms: “prostate cancer,” “adjacent

normal prostate tissues” and “benign prostatic hyperplasia.”

Adjacent normal prostate tissues and benign prostatic

hyperplasia were defined as normal prostate. Based on the

search strategy above, we obtained two gene expression datasets

(GSE54808, GSE69223), one miRNA expression dataset

(GSE60117) and one SNP expression dataset (GSE18333).

Detailed information for each dataset was presented in Table 1

(see Supplementary Table S1 for further details).

Data preprocessing

We downloaded the matrix files of GSE54808 and

GSE69223 datasets to acquire gene expression profiles. Probe

names in matrix files were converted into gene symbols

according to the appropriate platform annotation files. Missing

values of the processed gene expression datasets were imputed

using the k-Nearest Neighbor (kNN) algorithm by R package

impute. The two gene expression datasets were merged by R

package dplyr and a batch correction was conducted to remove

technical differences using ComBat from the R package sva. The

data processing of miRNA expression profile in GSE60117 dataset
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was similar to those carried out for gene expression profiles,

including ID conversion and missing values imputation.

Differential expression analysis

Differential expression analysis was conducted between normal

and PCa tissues by limma package. Genes and miRNAs with

q-value < 0.05 and |log2FC|>1 were defined as differentially

expressed genes (DEGs) and differentially expressed miRNAs

(DEMs), respectively. Subsequently, DEGs and DEMs were

visualized by volcano plots and heatmaps using R package pheatmap.

Enrichment analysis and protein-protein
interaction network

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were conducted to test the

functional enrichment of DEGs using R packages clusterProfiler,

DOSE, org.hs.eg.db and topGO. GO terms were identified in

three categories: Molecular Function (MF), Biological Process

(BP) and Cellular Component (CC). The pathway annotation

was obtained from KEGG pathway information. The results were

visualized using R packages ggplot2 and tidyverse. Protein-

protein interaction (PPI) network for the identified DEGs was

established by the Search Tool for the Retrieval of Interacting

Genes (STRING) online database. DEGs that the edge counts of

every single gene (degree) were more than five were defined as

hub genes. To access more reliable results, the minimum

interaction score was set at high confidence (0.700).

mRNA expression quantitative trait loci
analysis

EQTL analysis was conducted to analyze the relationship

between DEGs and SNP genotypes in GSE18333 using R package

MatrixEQTL. cis-eQTL refers to regulatory variation physically

locating near the gene itself, and trans-eQTL refers to regulatory

variation residing at locations distant from the genes. cis-eQTLs

and trans-eQTLs (with p < 0.01) were identified and used for

subsequent analysis.

Establishment of mRNA-single nucleotide
polymorphism-microRNA interaction
network

SNPs in DEMs target sites (miRSNPs) were downloaded from

the open-source websites MirSNP (http://bioinfo.bjmu.edu.cn/

mirsnp/search/) and PolymiRTS 3.0 (https://compbio.uthsc.edu/

miRSNP/). cis-eQTL and trans-eQTL of mRNA were matched

with miRSNPs through overlapping SNPs, thus linking mRNAs to

miRNAs. We searched for the effect of miRSNPs on the binding

sites in this network from the website MirSNP. Then, we searched

for the target mRNAs of miRNA in the above mRNA-SNP-

miRNA trios on the online tool Targetscan (http://www.

targetscan.org/) and miRDB (www.mirdb.org). Finally, the

mRNA-SNP-miRNA interaction network was constructed and

visualized using Cytoscape 3.9.0.

The Cancer Genome Atlas dataset analysis

The gene and miRNA expression profiles of the same subjects

were obtained from the Cancer Genome Atlas (TCGA) database,

including 52 normal prostate and 497 prostate cancer cases. Then,

we conducted differential expression analysis by limma package

(q-value < 0.05 and |log2FC|>0.5 were used as thresholds) to

validate the biomarkers selected from differential expression

results and the mRNA-SNP-miRNA interaction network.

Statistical analysis

All statistical analyses were performed using R software

(version 4.1.0, http://www.r-project.org). Student’s t-test was

TABLE 1 Details of microarray datasets from GEO database.

GSE Type Sample size Chip

Prostate cancer Normal prostate

GSE54808 mRNA 18 12 Affymetrix Human Gene 1.0 ST Array

GSE69223 mRNA 15 15 Affymetrix Human Genome U133 Plus 2.0 Array

GSE60117 miRNA 56 21 Agilent-021827 Human miRNA Microarray

GSE18333 SNP 33 27 Afymetrix Genome-Wide Human SNP 6.0 Array
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used to determine statistically significant differences between

two groups. Boxplots were generated using R package

ggplot2 and ggpubr to describe the distribution of expression

levels. The receiver operating characteristic (ROC) curve was

plotted to assess diagnostic performance of selected biomarkers,

and the area under the curve (AUC) was also reported.

Univariable logistic regression analyses were used to evaluate

the association between PCa and correlated variables, including

age, PSA value and selected biomarkers. Then, variables that

with p-value less than 0.1 in the univariate analysis or with

important clinical significance were entered into the

multivariate logistic regression analysis. A nomogram was

constructed based on the multivariate logistic regression

analysis and internal validation of the nomogram was

performed using the 1000-bootstrap resample. The

performance of the nomogram was evaluated by

discrimination and calibration. The AUC was used to

determine discriminative ability of the nomogram. The

calibration was graphically assessed by a visual calibration

plot, which compares the predicted probability with actual

probability of PCa. All tests were two-tailed, and p-values of

less than 0.05 were considered statistically significant.

Results

Differential expression analysis

The study design and the process of the bioinformatics

analysis are shown in Figure 1. In our study, compared with

normal prostate tissues, 266 DEGs that FC > 2 or <0.5 and q <
0.05 were screened out, including 70 upregulated and

196 downregulated genes. Sorted by |Log2FC| value, the top

11 DEGs were displayed in Supplementary Table S2. 11 DEMs (|

Log2FC |>1 and q < 0.05) were also screened, including

9 upregulated and 2 downregulated miRNAs (Supplementary

Table S3). DEGs and DEMs were visualized as heatmaps and

volcano plots (Figure 2).

FIGURE 1
Flow chart of study design.
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Enrichment analysis and protein-protein
interaction network

To study the function of DEGs, we performed GO and KEGG

analyses (Figure 3A and Figure 3B). Extracellular matrix

organization and extracellular structure organization in BP-

associated category, collagen-containing extracellular matrix in

CC-associated category and actin binding in MF-associated

category were the most significant GO terms enriched with a

large number of DEGs. In addition, KEGG analyses showed that

DEGs were associated with focal adhesion, PI3K-Akt signaling

pathway, proteoglycans in cancer and othermolecular pathways. A

total of 263 of the 266 DEGs were mapped into the PPI network

(Figure 3C). In this network, the parameter degree was used to

calculate edge counts of every single gene, and 79 DEGs with the

degree>5 were defined as hub genes (Supplementary Table S4).

mRNA expression quantitative trait loci
analysis and mRNA-single nucleotide
polymorphism-microRNA interaction
network

eQTL analysis was conducted to identify the relationship

between SNP and mRNA expression, then 605 DEGs and cis-

eQTL pairs and 332709 DEGs and trans-eQTL pairs were

FIGURE 2
Results of differential expression analysis. (A) Volcano plot for DEGs. (B) Heatmap for DEGs. (C) Volcano plot for DEMs. (D) Heatmap for DEMs.
Red indicated upregulated DEGs or DEMs, green indicated downregulated DEGs or DEMs, and black indicated genes or miRNAs that were not
differentially expressed. In the heatmaps of DEGs and DEMs, the vertical axis represents genes or miRNAs that were clustered by similarity of their
transcription profile, and the horizontal axis represents samples. DEGs, differentially expressed genes; DEMs, differentially expressed miRNAs.
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identified. miRSNPs were acquired from the open-source

websites MirSNP and PolymiRTS 3.0 and a total of

9,436 pairs of miRNA-SNPs were screened out. By matching

miRNA-miRSNPs pair with cis- and trans-eQTLs of mRNAs

through overlapping SNPs, 60 mRNA-SNP-miRNAs trios were

identified. The effect and binding energy of binding sites on the

miRSNPs in the mRNA-SNP-miRNA trios had been listed in

Supplementary Table S5. In addition, we predicted the target

mRNAs of DEMs, and 7 target mRNAs in the mRNA-miRNA

pairs were found to be in concordance with the mRNAs in our

mRNA-SNP-miRNA pairs (Table 2). We ultimately visualized

the mRNA-SNP-miRNAs trios by constructing an interaction

network using Cytoscape3.9.0 (Figure 4).

FIGURE 3
Results of enrichment analysis and PPI network. (A) The top 30 enriched significant GO categories of BP, CC, and MF. (B) The top 20 enriched
KEGG pathways. The magnitude of gene counts is represented by the circle size, and the adjusted p value is represented by the legend’s color
saturation. (C) PPI network of differentially expressed gene. BP, biological process; CC, cellular component; MF, molecular function; PPI, protein-
protein interaction.

TABLE 2 Target mRNAs of DEMs in the mRNA-SNP-miRNA network.

DEMs Target mRNA Corresponding SNP

hsa-miR-1260a ANGPTL1 rs3177567

hsa-miR-30b-3p ITGB8 rs16963454

hsa-miR-30b-3p RBP4 rs16963454

hsa-miR-30b-5p ELOVL7 rs2241648

hsa-miR-30b-5p ELOVL2 rs2241648

hsa-miR-30b-5p NID1 rs2241648

hsa-miR-142-3p SLC38A11 rs12101610

ANGPTL1, angiopoietin like 1; ITGB8, integrin subunit beta 8; RBP4, retinol binding

protein 4; ELOVL7, ELOVL fatty acid elongase 7; ELOVL2, ELOVL fatty acid elongase 2;

NID1, nidogen 1; SLC38A11, solute carrier family 38 member 11.
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Validation of the selected biomarkers in
the Cancer Genome Atlas database

The top 11 DEGs and DEMs, and 7 mRNA-miRNA pairs in

the interaction network were selected for further validation in the

TCGA database. The results showed that all 11 DEGs were

confirmed, and three of the top 11 DEMs were validated

including hsa-miR-21, hsa-miR-146b-5p and hsa-miR-30b. In

addition, all DEGs and one of three DEMs in the 7 mRNA-

miRNA pairs were also validated by the TCGA database analysis,

including ANGPTL1, RBP4, ELOVL2, ELOVL7, NID1, SLC38A11,

ITGB8, and hsa-miR-30b. The boxplots for validated biomarkers

were presented in Figure 5A. To further explore useful biomarkers

for PCa diagnosis, four biomarkers (ELOVL7, ITGB8, hsa-miR-21,

and hsa-miR-30b) were screened out based on the above analysis

results and literature survey. The ITGB8 showed the highest

predictive capacity (AUC = 0.889, 95%CI = 0.850–0.927) for

PCa, followed by hsa-miR-30b (AUC = 0.739, 95%CI =

0.657–0.820), hsa-miR-21 (AUC = 0.737, 95%CI = 0.672–0.801)

and ELOVL7 (AUC = 0.607, 95%CI = 0.529–0.685) (Figure 5B).

Nomogram for the probability of prostate
cancer

The three biomarkers with AUC>0.7 were selected for model

development, and univariable analysis showed that ITGB8, hsa-

miR-21 and hsa-miR-30b were significantly associated with PCa

risk (p < 0.05), but age and PSA value were not significant.

Considering the significant clinical diagnostic implications of

PSA value, ITGB8, hsa-miR-21, hsa-miR-30b and PSA value

were finally entered into the multivariable logistic regression

analysis. Based on the regression analysis, a nomogram was

constructed that contained four variables for predicting the

risk of PCa (Figure 5C). The nomogram yielded an AUC of

0.919 (95% CI: 0.889–0.949), indicating a good discrimination

ability for PCa (Supplementary Figure S1A). The calibration

curve showed good agreement among the prediction by the

nomogram and actual observations (Supplementary Figure S1B).

Discussion

Advanced PCa is a lethal illness with a dismal prognosis. Early

diagnosis and treatment for PCa may be particularly significant.

Although PSA was widely used to screen for PCa, there were

several limitations in PSA testing as population screening program.

Low sensitivity of PSA testing has limited its application for PCa

screening (Sanda et al., 2017). Previous research has reported that

15% of men with PSA of less than 4.0 ng/ml would be diagnosed

with PCa, of which 15% would be diagnosed with high-grade PCa

(Thompson et al., 2004; Lucia et al., 2008). PSA testing also has

specificity limitations. Currently, there were only less than half of

men whose PSA level was higher than 4.0 ng/ml were diagnosed

with PCa by needle biopsy (Schröder et al., 2009; Tomlins et al.,

2011). Understanding the molecular mechanisms of PCa

development may contribute to identifying effective biomarkers

for this disease. However, the specific regulatory mechanism of

miRNA and SNP still remains unclear due to the lack of integrated

molecular analyses. Constructing an mRNA-SNP-miRNA

interaction network contributes to the comprehensive analysis

of the underlying regulatory mechanisms between genetic

FIGURE 4
mRNA-SNP-miRNA interaction network. Every box represents onemRNA, SNP ormiRNA, detailed in the legend. The 7mRNA-SNP-miRNA trios
with predicted mRNA-miRNA pairs are connected by red solid lines, and other mRNA-SNP-miRNA trios were connected by the grey solid lines. SNP,
single nucleotide polymorphism; miRNA, microRNA.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2022.922712

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.922712


FIGURE 5
Validation and diagnostic performance of biomarkers. (A) Boxplots of representative biomarkers. Significant p-values were shown in boxplots; *
means p value ≤ 0.05, ** means p value ≤ 0.01, *** means p value ≤ 0.001 and **** means p ≤ 0.0001, if not indicated, means p value > 0.05. (B)
Receiver operation characteristic (ROC) analysis to analyze the ability of ELOVL7, ITGB8, hsa-miR-21, and hsa-miR-30b to distinguish PCa from
normal controls. (C)Nomogram for predicting the risk of PCa. The points of each variable could be obtained from the point scale axis, then total
points could be calculated by summing up each single point. The probability of PCa could be estimated by locating the sum on the total points axis of
the nomogram.
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variants and diseases. Thus, we combined the profiles of mRNA,

SNP, and miRNA from GEO microarray datasets and built an

interaction network and nomogram model synthetically. Our

study has identified several novel biomarkers in the mRNA-

SNP-miRNA trios, revealing that SNPs in miRNA and MRE

may interfere with the combination of mRNA-miRNA, which

is beneficial to explore the novel biomarkers for PCa.

In our present study, 266 DEGs were identified, including

70 upregulated and 196 downregulated genes. C7 was one of the

top-ranked downregulatedDEGs in this study based on the |log2FC|

values. Interestingly, previous studies have reported similar findings

among PCa patients, and demonstrated that C7 was closely

associated with immune infiltration level, overall survival and

disease-free survival of the patients, suggesting that C7 had the

potential for use as a prognostic prediction and immunoregulatory

target in PCa (Chen, et al., 2020). Moreover, BMP5 has been found

to closely relate to the progression of PCa. Huang et al. (2012)

analyzed the genotype of 601 patients with PCa and showed that

PCa cell lines displayed high expression of BMP5, and

rs3734444 in BMP5 was significantly correlated with PCa-

specific mortality (Huang et al., 2012). Another study found

that inhibition of BMP5 can be effective in delaying the PCa

progression of Pten-deficient mice by impairing self-renewal

capacity of stem/progenitor cells (Tremblay et al., 2020).

However, our research showed that BMP5 was differentially

downregulated in PCa patients, which was inconsistent with

prior studies. Differences in the experimental approaches,

species and specimen types may explain the discordant

results, and further experiments are required to validate the

findings of this research. Notably, the activation of OR51E2,

another significantly overexpressed DEG in our study, was able

to enhance the proliferation of androgen-independent PCa cells,

thus driving transformation to neuroendocrine cancer (Abaffy

et al., 2018). Our study provided converging evidence that the

upregulatedOR51E2might be crucial in the pathogenesis of PCa.

MiRNAs have been recognized as a group of non-coding RNA

which are intimately involved in posttranscriptional regulation. In

our study, 11 DEMs including nine upregulated and two

downregulated miRNAs were identified. Consistent with our

study, previous research has reported that several upregulated

DEMs were implicated in the progression of PCa. Prior findings

showed that hsa-miR-21 could regulate the growth of androgen-

independent PCa, and only the overexpression of hsa-miR-21 was

enough to enable androgen-dependent cancer cells to overcome

castration and progress to androgen-independent cancer (Ribas

et al., 2009; Fabris et al., 2016; Wang et al., 2020). Therefore, the

upregulation of hsa-miR-21 might be associated with ADT-

resistance and castration-resistant prostate cancer (CRPC)

progression. Since liquid biopsy became more widely applied in

PCa, hsa-miR-30b-3p was found high-expressed in the

extracellular vesicles of patients’ urine, suggesting that hsa-miR-

30b-3p has the potential as a biomarker for PCa (Wang et al., 2020;

Matsuzaki et al., 2021). In addition, circ_CCNB2 knockdown can

upregulate hsa-miR-30b-5p to modulate KIF18A expression and

enhance the radiosensitizing effect for PCa patients (Cai et al.,

2020). These DEMs might offer vital insight into underlying

regulatory mechanisms of PCa.

KEGG pathway analysis of DEGs revealed significant

enrichment for focal adhesion and PI3K-Akt signaling pathway.

Focal adhesion kinase (FAK) was an important molecular for focal

adhesion signaling pathway and a non-receptor tyrosine kinase

that mediates integrin-based signaling. Previous studies suggested

that FAK participated in the proliferation, adhesion,migration and

survival of PCa cells, suggesting focal adhesionmay play a vital role

in PCa pathogenesis (Figel and Gelman, 2011). 22 DEGs were

associated with focal adhesion signaling pathway, including one

upregulated gene (THBS4) and 21 downregulated genes (PRKCA,

ITGB8, MYLK, FLNA, VCL, CCND2, MYL9, THBS1, ITGA5,

COL6A3, LAMB1, TNC, CAV1, FLNC, PRKCB, COL6A2, IGF1,

PGF, COL6A1, ITGA8, PDGFC). Of these, the key gene IGF1 has

been reported to drive the fine-tuning network between the

integrin-FAK signaling and the Akt-mTOR pathway, thus

promoting the growth and invasion of PCa cells (Siech et al.,

2022). Furthermore, Shorning et al. (2020) found that PI3k-Akt

signaling pathway could interact with other oncogenic signaling

cascades, like androgen receptor, thereby stimulating the growth

and developing drug resistance of PCa cells (Shorning et al., 2020).

ITGA5 is the key gene in PI3k-Akt signaling pathway. The

combination treatment of the pharmaceutical inhibition of

PI3K signaling pathway and ITGA5 knockdown has been

reported to promote apoptosis in PTEN mutant PCa cells,

possibly due to the joint signal transduction to BCL-XL (Ren

et al., 2016). Taken together, it is reasonable to speculate that the

focal adhesion and PI3K-Akt signaling pathway were probably

relevant to the mechanism of PCa, and IGF1 and ITGA5 could be

potential markers for PCa.

The mRNA-SNP-miRNA interaction network was comprised

of 19 SNPs, 7miRNAs, and 51mRNAs. The results were verified by

online websites Targetscan and miRDB, and ultimately 7 mRNA-

SNP-miRNA trios were found to be related with each other. Among

the 7 trios, we found several DEGs and DEMs have important

implications for understanding the underlying mechanism of PCa,

including hsa-miR-30b, hsa-miR-142-3p, ITGB8, and ELOVL7.

miRNA hsa-miR-30b-5p was found to be related to 17 DEGs

through 4 overlapped SNPs, and hsa-miR-30b-3p was correlated

with 5 DEGs through 3 SNPs. These findings indicate hsa-miR-30b

might contribute importantly to the pathogenesis of PCa. As

mentioned above, overexpression of hsa-miR-30b-3p was found

in the extracellular vesicles in patients’ urine, and the upregulating

hsa-miR-30b-5p can exert a radiosensitizing effect on tumor cells

for PCa patients, providing supporting evidence for our study. In

addition, hsa-miR-142-3p related to 13 DEGs through 3 SNPs.

Hsa-miR-142-3p can bind to the 3′UTR of FOXO1 to decrease

FOXO1 expression, causing the proliferation of PCa cells and

suppression of apoptosis (Tan et al., 2020). However, hsa-miR-

142-3p was not found to be differentially expressed in the samples

Frontiers in Genetics frontiersin.org09

Wang et al. 10.3389/fgene.2022.922712

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.922712


from the TCGA database, and further validation is required to

elucidate its biological functions.

In the interaction network, ITGB8was associated with hsa-miR-

30b-3p through rs16963454. Previous findings have reported that

ITGB8 can be upregulated by miR-93 to promote the proliferation

and invasion of PCa cells, confirming the instrumental role of ITGB8

in PCa carcinogenesis (Liu et al., 2018). However, our results found

that ITGB8 was obviously downregulated in PCa. This is possibly

because different miRNA binding activates different pathways, thus

follow-up experimental studies are needed to further elucidate its

specific mechanism. Moreover, ELOVL7, a validated overexpressed

DEG in our interaction network, was associated with hsa-miR-30b-

5p through rs2241648, which might make a critical contribution to

the development of PCa. Specifically, ELOVL7 may be involved in

the growth and survival of PCa cells through the metabolism of

saturated very-long-chain fatty acids (SVLFAs) and their derivatives

in previous study, which may become a druggable molecular target

for novel treatment or prevention strategies (Tamura et al., 2009).

Nevertheless, since the AUC of ELOVL7 was only 0.607, we could

not determine its diagnostic performance, and further validation is

required. Based on the above results, we constructed a nomogram

model to predict the risk of PCa pathogenesis. However, we did not

find relevant literature directly relating to the regulatory mechanism

of the SNPs identified in our study, thus further validation by

experimental investigations is needed.

In this study, we constructed an mRNA-SNP-miRNA

interaction network and a nomogram model for PCa.

However, several limitations still exist in this study. First,

Gleason score and neoadjuvant treatment, which may affect

gene and miRNA expression in PCa, were not available in our

datasets, thus we could not evaluate their association with our

results. Second, due to differences in sample and microarray

types between the two gene expression datasets, the batch effect

cannot be completely removed and may affect the robustness of

our results. Third, the GEO datasets of mRNA, SNP and miRNA

in this study were not obtained from the same population, which

may be subject to bias in the results. To eliminate the bias as

much as possible, we performed batch correction and analyzed

the gene and miRNA expression profiles of the same subjects

from TCGA database to validate our results. In the future, the

mRNA, miRNA and SNP datasets from the same samples are still

required to offer more compelling outcomes, and our results

need further experiments to validate.

Conclusion

Our study established mRNA-SNP-miRNA interaction

network in PCa. In the interaction network, we found hsa-

miR-21, hsa-miR-30b and ITGB8 played vital regulatory roles

in the pathogenesis of PCa. Further experiments are needed to

verify the specific mechanism of these screened-out biomarkers

in PCa.
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