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The first few days of embryonic development in eutherian mammals are
dedicated to the specification and elaboration of the extraembryonic tissues.
However, where the fetus ends and its adnexa begins is not always as self-
evident during the early stages of development, when the definitive body
axes are still being laid down, the germ layers being specified and a discrete
form or bodyplan is yet to emerge. Function, anatomy, histomorphology and
molecular identities have been used through the history of embryology, to
make this distinction. In this review, we explore them individually by
using specific examples from the early embryo. While highlighting the chal-
lenges of drawing discrete boundaries between embryonic and
extraembryonic tissues and the limitations of a binary categorization, we dis-
cuss how basing such identity on fate is the most universal and conceptually
consistent.

This article is part of the theme issue ‘Extraembryonic tissues: exploring
concepts, definitions and functions across the animal kingdom’.
1. Introduction
The afterbirthwhose name reflects the time of its emergence is also, all too often,
an afterthought, except perhaps to embryologists. It exists because humans and
other eutherian mammals are matrotrophic viviparous amniotes [1]. As a result,
they have evolved specialized transient structures to support the nutritional,
respiratory and excretory needs of the fetus. Such structures also provide mech-
anical and immunological protection during fetal development within the
uterus of the mother [2,3]. These so-called ‘extraembryonic’ tissues are the
first to emerge and differentiate well before the development of any fetal
precursors is initiated. As development progresses, the extraembryonic tissues
and those of the fetus gradually become more anatomically distinct, but
early during development until their individual fates are determined, these
boundaries are not as concrete.

(a) Why we need to define embryonic-extraembryonic boundaries
Agreed terminology and their unambiguous definition are critical in ensuring
clarity when discussing concepts. For developmental biologists, this is all the
more important, to avoid confusion and misunderstanding, especially in an
age when artificial ‘embryos’ and embryonic components can be generated ex
vivo [4–10]. An appreciation of how specific terminology came into being is
also important for interpreting the wealth of information in historic texts that
form the foundation for modern developmental biology. Further, it can be rel-
evant to philosophical discussions on the individuality of the embryo and
helps to anchor what might otherwise be metaphysical definitions of our indivi-
duality in empirical facts of early embryonic development [11,12]. Here, we will
outline how the way in which we define the boundaries (both categorical and
anatomical) between the embryonic and extraembryonic has shifted throughout
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Figure 1. (a) The changing morphology and tissue composition of the mouse conceptus. After implantation, the conceptus is surrounded by maternal tissues (not
shown). The intraembryonic cavities and the extraembryonic structures are labelled. Use (b) as a key for tissue identities. (b) The sequential emergence of embryonic
and extraembryonic tissues of the conceptus starting from the fertilized egg. Cell fate commitment of TE-derivatives is seen first leading up to and in preparation for
implantation, while those of epiblast-derivatives arise following gastrulation. The black-and-white vertical line demarcate the primitive streak and the subsequent
fate of cells that ingress through it. The extraembryonic membranes are primarily bilayers while the fetus itself is made up of three germ layers (ectoderm, meso-
derm and endoderm) and germ cells. The embryonic or extraembryonic status of any tissue can be assessed by tracing its fate forwards through developmental time
(to the right) and seeing if it contributes to embryonic component or only extraembryonic structures. (TE, trophectoderm; ICM, inner cell mass; PrE, primitive
endoderm; VE, visceral endoderm.)
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history, both within developmental space and through devel-
opmental time. In the light of current knowledge, we will try
to reach a logical agreement on what these terms should
encompass, while calling attention to inevitable exceptions
and attempting to address how they can be best
accommodated.
(b) What constitutes an extraembryonic tissue?
The term ‘embryo’ generally refers to all tissues arising from
the fertilized egg, up until an anatomically distinct fetus con-
taining all the organ primordia of the future individual is
identifiable, at around mid-gestation. This however generates
the inconsistency of having to describe extraembryonic tis-
sues as being part of the early embryo which then leads to
awkward usages such as ‘embryo proper’ when referring to
that subset of tissues that gives rise to the fetus. To avoid
this, the term conceptus has been used in reference to all
derivatives of the zygote in their entirety, both those that give
rise to the fetus that is born, as well as those that contribute
to extraembryonic tissues lost at birth (figure 1a,b).

The categorization of tissues as extraembryonic has been
made based on anatomical location, histology, functional
differences or on the basis of molecular markers. Given the
defining feature of extraembryonic tissues is that they are
zygotically derived but do not contribute to the fetus, we
suggest that ultimately, it is the fate of cells within a tissue
that should be paramount in designating it as extraembryonic
or not. In this review, giving fate precedence, we will explore
concepts of extraembryonic and embryonic tissue identity,
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using the terms according to the following definitions, while
highlighting any exceptions to the rule:

– an embryonic tissue is one whose fate is to contribute to
any structure that is retained in the fetus, and by extension,
becomes part of the born ‘individual’,

– an extraembryonic tissue is one whose fate is to primarily
give rise to those structures that support the embryo
during its development (e.g. the placenta, extraembryonic
membranes, umbilical cord; figures 2 and 3) and not
retained as part of the individual after birth.

With several examples covering stages of development
from conception to beyond gastrulation, we will put this
binary definition to the test. We will inquire whether such
distinct tissues fated to exclusively contribute to either the
fetus or its adjoining extraembryonic structures, even exist
within the early embryo. As cell commitment, and then deter-
mination, is a gradual process, cells progressively restrict
their range of fates towards becoming embryonic and/or
extraembryonic tissues (figure 1b) [13]. As a result, whether
a tissue or its descendants is categorized as embryonic or
extraembryonic can continually shift across developmental
time—cells destined to extraembryonic fates are derived
from progenitors or precursors that could be categorized as
embryonic. This makes it important therefore to always
keep in mind the developmental stage under discussion
when considering whether a tissue is ‘embryonic’ or
‘extraembryonic’. Technological advances involving lineage
tracing techniques in the mouse (e.g. [14]) and discerning
the epigenetic characteristics of cells that presage fate restric-
tion (eg: [15]) currently allow us to more confidently base
our definition in fate than ever before, irrespective of
developmental stage.
2. Changing notions of the extraembryonic
through history of embryology

Through history, the designation of extraembryonic struc-
tures shifted from being based on their speculated function,
anatomical location and then morphological characteristics,
before their origins and fates could be well characterized.
These changes in the way we think about what constitutes
the extraembryonic part of the conceptus closely mirrors
the history of scientific rationale, following the advances in
methodology and technological tools available to study
embryonic development in increasingly finer detail.
(a) From a mystery to anatomical structures with
functions

Through antiquity and across cultures, the afterbirth was
entrenched in mysticism, folklore and superstition. The first
theory of the placenta as being an organ of fetal nutrition is
attributed to Diogenes of Appollonia (ca 480 BC), while
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Hippocrates (ca 460–370 BC) subscribed to the standard view
at the time that the fetus nourished itself per os within the
uterus by suckling on placental cotyledons [16–18]. Aristotle
(384–322 BC) was the first to study anatomy by systematic
observation, identifying that the fetus was enclosed within
membranes and nourished directly from maternal blood via
the umbilical cord ([19], Trans.). He also identified the chor-
ion and allantois (see figures 1 and 2) but incorrectly
postulated their origins to lie in coagulated male and
female semen ( flora alba), respectively, an idea propagated
by the other notable anatomist of antiquity, Claudius Galenus
(Galen of Pergamum; ca AD 130–201; [16]). In Western intel-
lectual thought, the Aristotelian and Galenic views were held
as doctrine for more than a millennium. Owing to the wealth
of literature available and its accessibility, the history of
embryology might seem a purely European pursuit up
until modern times. However, it is worth noting that the
flux of ideas between Europe and Asia through history influ-
enced embryological thought on both sides and curiosity
about the origin of the embryo existed independently across
a multitude of cultures [18,20–22].

Much of the study of embryology during the Renaissance
and the Age of Enlightenment was dominated by the debate
on the extent to which maternal and fetal bloods were intercon-
nected. It was finally resolved by William Harvey (1651; [23] in
[24]) establishing that fetal and maternal circulation were
separate, an idea elaborated by Marcello Malpighi (1661; [25])
and later validated by Camillis Falconet (1752; [26]). Harvey
also recognized blood islands at the periphery of the early
embryo as antecedents to the heart (1653; [27]). By then, it
had been known that the placenta consisted of both maternal
and fetal tissue [28], and that the chorion was essential for
implantation and placentation (Hunter, 1774, 1794; [29,30]).
(b) Microscopy and the age of descriptive embryology
Even at the dawn of the age of microscopy, many authors
shared contemporary beliefs in preformation, which had
authoritarian enforcement at the time. This idea held that
all organisms come into being as preformed miniatures of
themselves, leaving little room to debate the origin of extra-
embryonic structures [31]. However, unrelenting advances
in our understanding such as the discovery of the mamma-
lian egg (von Baer, 1827; [32]) and resolving the mystery of
fertilization (Newport & Forbes, 1854; [33]) argued in
favour of epigenesist thought (note that the use of the term
‘epigenesis’ in neoclassical embryology is distinct from the
use of ‘epigenetics’ in developmental biology today; see
[34]) that development progresses through the elaboration
of form in an unstructured zygote (Remak, 1860; [35]), with
every structure having an origin (lineage) and a destiny
(fate).



royalsocietypublishing.org/journal/rstb
Phil.Tran

5
By the nineteenth century, it became commonplace to
study the nature of tissues based on their morphological
characteristics through careful microscopic observations and
not just their anatomical location [31]. For example, the
early suggestions that the chorion, owing to its superficial
location, arose from the corona radiata of the ovum
(von Baer) were replaced by recognition that it was a
double continuous layer and was of fetal origin (Langhans,
1870; [36]). To meet the pedagogic demands of the time, a
dizzying array of new terminology entered the discipline,
often with a multiplicity of terms for the same tissue depend-
ing on the species it was described in [37]. As advances in
compound microscopy facilitated the possibility of charting
the course of these newly described tissues during develop-
ment, a gradual shift in thinking about the origin and fate
of tissues also became apparent.
s.R.Soc.B
377:20210255
(c) Mapping the origin and fate of tissues
Hubrecht (1889; [38]) identified for the first time a portion of
the blastocyst that did not contribute to the formation of the
fetus and named it the trophoblast [39]. The term trophecto-
derm (TE; see figure 1a) was only later adopted (borrowing
from its use in the marsupial unilaminar blastocyst, [40]) to
distinguish between these superficial cells before and after
implantation. The peri-implantation embryo was also studied
in great detail leading to distinguishing between tissues with
a common origin [41], such as the parietal and visceral ento-
derm (later endoderm; see figure 1a and following section
for details) initially based on marked histological distinctions
[42,43].

Questions about how the fate of cells in mammalian
embryos was determined remained unanswered well into
the twentieth century. Microenvironmental differences in
position were linked to fate determination of blastomeres,
with the formulation of the ‘inside-outside’ hypothesis,
where cells occupying an outside position within the
morula were fated to become extraembryonic [44,45].
During the latter half of the twentieth century, through
the generation of chimeras, and, disaggregation and
reaggregation approaches, the lineal origins of many post-
implantation tissues were connected to their pre-implantation
precursors [46,47]. Further refinement of these methods
allowed fate to be determined, by transferring cells heteroto-
pically (between locations) or heterochronically (between
stages) or by labelling cells and following their progeny
[48–52]. One such seminal study using DiI-labelling of cells
within the pre-gastrulation embryo led to the discovery of a
subset of cell necessary for its anterior–posterior axial pat-
terning (see following section for details), for the first time
assigning a true ‘instructive’ function to a tissue thought of
as being ‘only’ extraembryonic [53]. Advances in genetic
manipulation of the mouse, robust transgenic reporters
to trace specific lineages, and high-resolution time-lapse
imaging approaches to visualize genetically-labelled cell
populations in real time, together revolutionized research
into the origin and fate of extraembryonic tissues over the
next decades [54–56]. Today, extraembryonic tissues are not
merely structures confined to a specific anatomical location,
possessing a distinct histological character or expressing a
specific molecular marker, but they can be identified based
on the changing potential of cells, as their fates are gradually
restricted and ultimately determined.
3. The sequential emergence of extraembryonic
tissues during development

In the following sections, we elaborate on the conceptual
framework of a definition based on fate, using specific
examples from the early conceptus, where commitment to
extraembryonic fates is made progressively by cells with
embryonic potential.
(a) Pre-implantation derivation of extraembryonic
tissues

Blastomeres of the mouse morula are morphologically indis-
tinguishable from each other and totipotent, and even at the
16- and 32-cell stage, individual cells have the capacity to
give rise to both embryonic and extraembryonic tissues
[57]. The emergence of the first exclusively extraembryonic
tissue can be seen with the formation of the blastocyst, and
the differentiation of the TE, an extraembryonic tissue that
encloses the embryonic inner cell mass (ICM) in eutherian
mammals (see [58], to compare with the first lineage allo-
cations in non-eutherian mammals). In the late blastocyst of
the mouse, the TE maintains its extraembryonic fate as it
differentiates into the polar and mural TE, gearing up for
implantation (figure 1) [59,60]. During this time, the ICM
differentiates into two distinct tissues—the primitive endo-
derm and the epiblast [61]. One of the derivatives of the
primitive endoderm, the parietal endoderm is the next
tissue to acquire an exclusively extraembryonic fate, as its
cells migrate to line the mural TE to form the parietal (or
primary) yolk sac.
(b) Diversification and convergence of endodermal
lineages

Following implantation, the other derivative of the primitive
endoderm, the visceral endoderm (VE; analogous to the
hypoblast in other mammals), remains in close association
with the pluripotent embryonic epiblast. Great morphogen-
etic diversity is seen between different mammalian taxa
during the process of epiblast specification [62]. Until gastru-
lation, the parietal endoderm and VE facilitate nutrient and
waste exchange between the implanted conceptus and the
maternal tissues. In murid rodents, where the peri-implan-
tation conceptus goes on to acquire an atypical cup shape,
the VE differentiates over the proximal and distal regions,
with distinct morphological and molecular characteristics
[63]. The proximal region, which lines the polar TE-derived
extraembryonic ectoderm, is a cuboidal epithelium that is
continuous with the parietal endoderm, and likewise contrib-
utes to the yolk sac (figure 1a). By contrast, the distal region
surrounding the epiblast is largely squamous. Within this
latter region, a subpopulation of cuboidal cells emerges and
migrates to the prospective anterior to form the anterior VE
(AVE; [64]). AVE migration sets the polarity of the anterior–
posterior axis of the conceptus and restricts the site of gastru-
lation to the opposite side of the egg cylinder [65].
Morphologically and transcriptionally analogous cells to the
AVE have been described within the hypoblast of monkey
embryos [66,67] and cultured human embryos [68], as well
as those that are functionally equivalent to the AVE, in
rabbit embryos [69].
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During gastrulation, epiblast cells exit pluripotency to
commit to one of three principle germ layers of the fetus—
ectoderm, endoderm or mesoderm. The default fate of epi-
blast cells is to contribute to ectodermal derivatives [15].
Epiblast cells at the posterior, disengage from the adjacent
embryonic VE, to form a transient space, the primitive
streak. The modified basement membrane lining this region
allows epiblast cells to delaminate and ingress through the
primitive streak following an epithelial-to-mesenchymal tran-
sition [70–72]. Towards the anterior/distal region of the
primitive streak, FoxA2-expressing cells re-epithelialize
giving rise to the definitive endoderm (DE) which then inter-
calates with the underlying embryonic VE to collectively
form the precursor of the gut tube (figure 1b) [54,73]. There-
fore, in addition to the morphological and molecular
differences between the distal and proximal regions of
the VE mentioned above, they also seem to have distinct
embryonic and extraembryonic fates, respectively.

(c) Mesodermal contribution to extraembryonic
structures

In the mouse, the mesoderm is generated during gastrulation
as a population of Brachyury (T)-expressing cells that ingress
through the primitive streak [74]. Some of these cells migrate
anteriorly along the mesodermal wings to form the embryo-
nic mesoderm, which diversifies and contributes to various
mesodermal structures of the fetus (figure 1b). Another sub-
population of these nascent mesodermal cells migrates
proximally to accumulate adjacent to the extraembryonic
ectoderm and becomes the extraembryonic mesoderm, fated
to contribute to various extraembryonic structures [75,76].
Here, a new cavity, the exocoelom, forms in between these
cells (figure 1a). As this cavity expands, at its distal extreme,
extraembryonic mesoderm along with the adjacent ectoderm
of the epiblast undergo morphogenetic remodelling to con-
verge at the anterior, bisecting the proamniotic cavity into
the amniotic and ectoplacental cavities, with the newly
formed amnion as the partition separating them [77,78].
Extraembryonic mesoderm cells also line the extraembryonic
ectoderm and extraembryonic VE surrounding the exocoele-
mic cavity, forming the chorion and visceral (also secondary
or definitive) yolk sac, respectively [79]. The allantois buds
off from the junction of the visceral yolk sac and the
amnion, and grows diagonally across the exocoelemic
cavity towards the chorion with which it fuses [80–82]. The
final arrangement of the amniotic membrane and yolk sac
surrounding the fetus results from cephalocaudal and lateral
folding, and turning, reversing the topology of the embryo
(figure 2). Parts of the allantois, chorion and visceral yolk
sac are then incorporated with derivatives of the ectoplacen-
tal cone and with each other to form the chorio-allantoic
placenta and the umbilical cord (figure 2) [79,83,84]. During
subsequent developmental stages, the placenta in eutherian
mammals combines into one discrete organ many of the
physiological functions that are postnatally divided among
the body’s various organ systems.

Similar to the primitive ectoderm, the nascent mesoderm
of the mouse arises as an embryonic tissue, from which dis-
tinct extraembryonic components are subsequently derived
following gastrulation. By contrast, there is evidence that the
extraembryonic mesoderm of primates, including humans,
originates soon after implantation as an extraembryonic
tissue that contributes to primary yolk sac formation before
gastrulation [85,86]. Its developmental origin is the subject of
extensive debate, with some sources rooting it in the hypoblast
while others had previously suggested the trophoblast [87].
Nevertheless, unlike in the mouse, in primates, the initial
extraembryonic mesoderm arises from GATA4/6-positive, T-
negative cells [88], although it is probably later supplemented
by mesoderm from an embryonic epiblast origin generated at
gastrulation [89,90]. Another difference between primates and
the mouse is that the amniotic cavity in primates is formed by
the cavitation of the epiblast, leading to the formation of the
amniotic ectoderm prior to gastrulation. Taken together, it is
evident that the sequence of events leading to the formation
of extraembryonic tissues from their embryonic precursors
varies between species and is primarily dependent upon
where and when their fates are determined.
4. Comparison of fate with other commonly
used characters for defining embryonic-
extraembryonic identity

Here, we compare some of the other criteria on the basis of
which cells and tissues have been categorized as extraembryo-
nic and identify problems and inconsistencies associated
with them.

(a) Anatomy
As we have seen, the embryonic or extraembryonic status of
tissues was historically designated based on speculated sup-
portive functions assigned to them depending on their
anatomical location relative to the fetus. These notions were
long held, as embryonic-extraembryonic fate distinction
among groups of cells usually follow anatomical boundaries,
with the more exterior/superficial cells (TE, parietal endo-
derm, VE) of the conceptus adopting an extraembryonic
fate, while those encased within (ICM, epiblast) go on to con-
tribute to the fetus. This is even more pronounced after
gastrulation when the fetus is recognizable as an anatomi-
cally distinct entity (around nine days in mice and eight
weeks in humans) with rudimentary precursors to all the
body structures, surrounded by extraembryonic membranes
and connected to the placenta and maternal tissues by the
umbilical cord (figure 2).

However, there are several exceptions to this rule. The
embryonic-extraembryonic boundary is ever-changing, as
cells that go on to occupy the fetal portion of the conceptus
can have extraembryonic origins. In both rodents and pri-
mates, blood islands within the mesodermal walls of the
yolk sac function as the first observable sites of erythropoietic
activity [91]. The yolk sac-derived primitive blood enters into
embryonic circulation and resides within the anatomical con-
fines of the fetus during mid-gestation development [92].
Succeeding waves of definitive erythropoiesis is taken on
by embryonic organs (aorta-gonad-mesonephros, fetal liver
and bone marrow), and these cells go onto contribute to
definitive anucleate erythrocytes that perdure postnatally
(see, [93]). Therefore, early embryonic blood is extraembryo-
nic, both in origin and fate, despite its transient anatomical
location within the fetus.

Another example is the fate of the embryonic VE in the
mouse. It was long thought that the epiblast-derived DE
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inserts itself into the VE as a continuous sheet, displacing the
VE so that it could only contribute to extraembryonic struc-
tures. However, genetic labelling and careful time-lapse
tracking of cell movements revealed that DE cells get inter-
spersed among the superficially located embryonic VE cells,
together with which they contribute to the inner lining of
the gut tube [54]. Later, single-cell RNA sequencing analyses
showed that the transcriptome of VE-derived cells of the gut
endoderm converge with that of epiblast-derived DE descen-
dants while maintaining transcriptional signatures of their
origin [73,94]. Whether this transcriptional heterogeneity
based on lineal origin results in biases in fate within organ
primordia of the fetus or stem cell niches in the adult remains
to be established.
il.Trans.R.Soc.B
377:20210255
(b) Molecular identities
Even before transcriptomic approaches, single or multiple
marker gene expression was widely used as a criterion to dis-
tinguish between embryonic and extraembryonic tissues.
Such gene expression patterns can be used to demarcate the
boundaries between tissue types at a given time, but
do not necessarily remain unchanged as development pro-
gresses. For example, the extraembryonic TE can be
distinguished from the embryonic ICM of the early blastocyst
by the expression of Cdx2 in the former and Oct4 in the latter
[95,96]. However, during development, the same genes are
often reused in different tissue types, in close succession to
each other. Cdx2 is in fact regulated by two distinct cis-enhan-
cers in the TE and its derivative, the extraembryonic ectoderm,
with in vitroTE-derived trophoblast stem cells beingmore simi-
lar to extraembryonic ectoderm in this respect [97]. Therefore,
the degree to which blastocyst-derived stem cells (embryonic
stem (ES), trophoblast stem and extraembyonic stem cells)
can recapitulate their respective precursors can vary and in
vitro differentiation trajectories do not always mimic those in
vivo. Similarly, the homeobox gene Hex which is a marker of
the AVE is also expressed in the anterior DE and later on in
development in endothelial precursors, the liver and thyroid
primordia, with early and late expression being driven by dis-
tinct enhancers [98]. The T-box transcription factor
Eomesodermin, which is expressed in the extraembryonic ecto-
derm prior to gastrulation is later recruited transiently by
extraembryonic mesoderm of the yolk sac as a regulator of
hematopoietic development, as well as various embryonic
mesodermal cell types [99,100]. These examples reiterate the
importance of exercising caution when assigning tissue iden-
tity based on the expression of single or even several marker
genes, especially in the context of organoids or ES and induced
pluripotent stem cell-derived cells in vitro. With no precise
reference frame in developmental time, it is not always straight-
forward to determinewhich in vivo state a cell generated in vitro
best represents. Differentially expressed genes no doubt could
play roles in demarcating and maintaining embryonic and
extraembryonic boundaries, as shown by the differential
expression of Ephrin/Eph family members in tissues of the
mouse peri-implantation conceptus [63]. Nonetheless, single
markers, while indicating the ‘state’ of a cell, themselves are
not adequate for determining the fate of a cell.

In the past decade, single-cell transcriptomic approaches
have aimed to overcome this obstacle by first assigning iden-
tities to transcriptomic clusters using marker gene expression,
but then extracting a transcriptomic signature for the cells,
capturing within it the expression states and levels of many
genes [94,101]. This can be a vital tool in comparing in
vitro-derived cells to their in vivo counterparts [89,102].
Such approaches have revealed how classic marker genes
often span transcriptomic cluster boundaries and greatly
vary in level of expression within clusters [94,103]. Advances
in spatial-transcriptomics will enable us to better determine
the extent to which transcriptomic boundaries correspond
with anatomical boundaries [104], which is especially
useful in characterizing cells in transitional regions where
anatomical boundaries meet.

Single-cell transcriptomic approaches provide a snapshot
view of the transcriptomes of cells in the midst of constant
flux, undergoing the gradual process of committing to more
definitive fates. Such snapshots, from multiple cells collected
at different stages of development, can be used to infer the
in vivo ontogeny of tissues [105]. In the mouse for example,
as the AVEmigrates, it becomes transcriptionally more distant
from the embryonic VE from which it originates, than the
embryonic VE is from the extraembryonic VE [63]. It would
therefore be interesting to see how the fate of AVE cells differs
from that of other VE cells contributing to the gut endoderm as
a consequence of this inferred transient transcriptomic diver-
gence. Such computational inferences can provide important
insights, but need to be verified experimentally.

Multiomic approaches such as scNMT-Seq (a method for
the parallel profiling of chromatin accessibility, DNA methyl-
ation and the transcriptome from single cells) have also
proved to be powerful in determining what might be con-
sidered the ‘default’ state of cells and their immediate fate,
based on their epigenetic potential [15]. However, with data-
sets covering limited windows of developmental time, it can
be challenging to determine the embryonic or extraembryonic
status of cells, as it has to take into consideration all sub-
sequent fate choices made by the cell up until birth.
Designating fate using classic approaches such as generating
chimeras still remains the most robust approach, especially
when testing the potential of in vitro generated tissues to con-
tribute to embryonic or extraembryonic lineages [106]. Where
such approaches or genetic intervention is not possible, as
with human embryos, lineage histories can be drawn by
mapping somatic mutations or tracking mitochondrial het-
eroplasmy among cells, which when interpreted in reverse
(forward in developmental time) can be indicative of fate
specification [107,108].
(c) Cellular morphology and behaviour
Another means by which embryonic and extraembryonic dis-
tinctions have been made in the past is by comparing the
morphology of tissues and the constituent cells. Similar to
how fate choices often follow anatomical boundaries, the
same can be true for histomorphological boundaries. For
example, in the mouse, the primitive endoderm-derived VE,
though forming a continuous epithelium, segregates into
columnar extraembryonic and squamous embryonic regions
(figure 1a). Abrupt morphological boundaries are also seen
in the transition between the extraembryonic amniotic ecto-
derm and embryonic surface ectoderm and neuroectoderm
later in mouse development (fig. 2a from [109]) or between
the amniotic and embryonic ectoderm in pre-gastrulation
human embryos (fig. 23 on plate 3 from [110]). However,
such clear-cut distinctions are not universal. For example,
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the intercalating DE cells are morphologically indistinguish-
able from the existing VE cells, which is one of the reasons
why an appreciation VE contribution to the gut endoderm
evaded us for so long. Similarly, in pre-gastrulation primate
embryos, the extraembryonic mesoderm is continuous
with, and aside from a few ultrastructural features, morpho-
logically indistinguishable from, the primary yolk sac
endoderm, making their origin harder to determine.

The structural properties of a cell and their surrounding
extracellular matrix, could also modulate their ability to com-
municate with adjacent and underlying cells, which in turn
could affect their behaviour and fate. The AVE, derived from
the embryonic VE, acquires a columnar morphology more
similar to their extraembryonic counterparts, yet they are be-
haviourally very distinct in their ability to actively migrate.
Taking just histomorphology into consideration could lead to
misleading conclusions on the embryonic or extraembryonic
status of these cells. Differences in cellular behaviour can
also be seen in mesodermal cells upon leaving the primitive
streak. While the trajectory of embryonic mesodermal cells is
more direct, that of the extraembryonic mesoderm tends to
be more convoluted [111]. Molecular heterogeneities very
likely underpin some of behavioural differences between
these cells, but the extent to which this is a consequence of
intrinsic epigenetic determinants or extrinsic factors arising
from the surrounding microenvironment is unknown.
(d) Comparison between species
Much of our understanding of the development of extraem-
bryonic tissues in primates is based on experiments done in
the mouse. Although embryogenesis in primates is largely
similar to that in rodents, differences in topology of the con-
ceptus, initial origin of the extraembryonic mesoderm, and
the formation of the embryonic cavities remind us of the diffi-
culty in assigning embryonic or extraembryonic identity to
tissues based on commonalities in anatomical location or his-
tomorphology between taxa. Evolutionarily conserved
organization of extraembryonic tissues is seen among various
amniotes during early development, but their topographical
organization can diverge depending on the availability of
nutritional supplies or how it is accessed [112]. For example,
the very early specification of a presumptive extraembryonic
tissue, the TE, is a uniquely eutherian characteristic closely
related to its mode of development, wherein robust extraem-
bryonic structures need to be established for invasive
implantation and proper chorio-allantoic placentation. In
their sister group, the marsupials, the pluriblast, which
occupies a similar peripheral location within the blastocyst to
that of the TE, remains a mixed population of cells with
both embryonic and extraembryonic potential until much
later in development [113]. Taking this into consideration,
when considering diverse mammalian taxa with different
embryonic organizations and reproductive strategies, there is
more reason to base embryonic and extraembryonic status of
tissues on species-specific fate and not homology—a point
which was emphasized more than three decades ago [114].

It would be interesting to see in the future how the differ-
ences in the order of emergence of extraembryonic tissues
between species correlates with types of placentation, lengths
of gestation and the nutritional demands of the fetus—all fea-
tures highly reliant on the extraembryonic tissues themselves.
5. Important considerations when using a
definition grounded in fate

In this section, we consider some of the challenges of using an
operational definition based on fate. We will highlight some
examples that challenge a simple binary categorization of tis-
sues as extraembryonic or embryonic, and propose how these
can be reconciled, based on the fate of the constituent cells of
those tissues.

(a) When is fate determined?
The main challenge in assigning tissue identity based on fate
is ascertaining when fate is determined, since fate can be
more restricted than potential. Fate is what a particular cell
gives rise to within a specific time frame of reference, while
potential is all the cell types it is capable of giving rise to.
Uncommitted cells show gene expression changes in
response to specific intrinsic and extrinsic cues that allow
them to start to differentiate towards a specific fate. In such
a state of restricted potential, the fate of the cells can be
said to be specified. These changes are however labile and
can be reversed. Further gene expression changes accentuate
these early differences and irreversibly (during normal devel-
opment and under non-pathological conditions) seal the fate
of cells. The fate of the cells is then said to be determined.

Fate, by definition, cannot be ascertained from a snapshot
of developmental time. A cell might express a repertoire of
genes indicative of being capable of differentiating down a
specific trajectory, but if it is exposed to new signals (as con-
sequence, of changing position within the embryo for
instance), its prospective fate could be altered.

For example, biases might exist as early as the 2- or 4-cell
stage in the ability of each blastomere to contribute to different
proportions of embryonic (ICM) and extraembryonic (TE)
lineages [115,116]. However, these are not necessarily inherent
determinants of fate and the biases can be reversed if the blas-
tomere positions were to change. More recent system-based
approaches have shown indications of how heterogeneity
between blastomeres of the 8-cell conceptus could prime
them for early fate specification but this is unlikely to represent
determination [117]. As such, the equivalence in potential of
blastomeres is best demonstrated by cases of monozygotic
polyembryony among mammals, where blastomeres could
split prior to blastocyst formation, giving rise to separate con-
ceptuses with their own embryonic and extraembryonic
derivatives. Similarly, the recent use of somatic mutations to
infer clonal relationship between cells has shown that there
can be a great deal of variability between individuals in the
extent to which the early 2-celll blastomeres contribute to the
adult [118,119]. Even after compaction, aggregates made
entirely of inside or outside cells can form normal blastocysts
andwithin the ICM, individual cells are initially indistinguish-
able from each other at a transcriptomic level [120]. The
stochastic transcriptomic heterogeneities between blastomeres
or the cells of the ICM are gradually amplified and reinforced
by epigenetic changes leading to fate determination [117,120].
Identifying the modifications to the epigenome that are
responsible for restricting the potential of different extraem-
bryonic tissues at each branch point (figure 1b) may help us
pinpoint when the fate choices are made.

Distinguishing between specified and determined fate is
even more challenging in later stages of development. Lineage
tracing studies with inducible reporters can help map the fate
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of cells labelled at a specific time. Despite the technical chal-
lenges of such experiments in mammals, heterotypic
transplantation of cells between different regions and stages of
mouse egg cylinders has also been performed to show that the
allocation of cells to the various mesodermal lineages is depen-
dent on the timing of their ingression through the primitive
streak, with their potency becoming restricted as gastrulation
progresses [121].Although the first cells to traverse theprimitive
streak contribute to extraembryonic lineages, cells from the pre-
streak epiblast transplanted among the mid-streak epiblast do
not do so [121]. This suggests that the fate of cells in the epiblast
is not irreversibly determined prior to gastrulation but rather,
that they respond to cues from the surrounding cells in commit-
ting to theoptionsavailable at agiven time. It isunclearhowever
if epiblast cells are in some sense already committed prior to tra-
versing the streak, or whether the timing of their ingression
through the streak positions them in different regions of the
embryo that provide different inductive cues that determine
their fate. Studyingwhether these progenitors already bear epi-
geneticmarksprior togastrulation, indicative of their fate, could
help resolve this question. However, it will be important to also
establish whether such epigenetic marks are irreversible.

Given that some mammalian groups such as primates
have evolved mechanisms to generate extraembryonic meso-
derm independent of gastrulation [87], such approaches
might help explain the mechanisms whereby the pre- and
post-gastrulation extraembryonic mesoderm cells in these
species transcriptionally and presumably functionally con-
verge to contribute to the same extraembryonic organs.
This may occur in an analogous way to how the DE and
VE, despite their distinct developmental origins, converge
to form the foregut endoderm of the fetus [73,94].

(b) Cells crossing embryonic-extraembryonic boundaries
Determining the fate of cells at the boundary between tissue
types and transitional zones is often complicated, largely
because it is often unclear where these boundaries precisely
lie, andwhether theyare strict or somewhat blurry. Suchbound-
aries include, for example, the embryonic-extraembryonic VE
boundary, the anterior endoderm furrowafter the amniotic ecto-
dermmakes its connection, the connecting stalk of the allantois,
and the JuxtaCardiacField (JCF) at the confluenceof splanchnic,
somatic and extraembryonic mesoderms [103]. Cells in these
zones might be more capable of switching fates depending on
their exact positions. Detailed imaging studies [111] and poten-
tial future spatial epigenomics technologies [122] to visualize
epigenetic marks indicative of fate commitment in an anatom-
ical context might help us to more clearly define the nature
and degree of porosity of such boundaries.

The finer the detail in which we study embryogenesis, the
more we see situations where tissues we speak of as extra-
embryonic, actually harbouring cells that also contribute to
the fetus. For example, although yolk sac-derived primitive
blood is transient, as discussed earlier, the yolk sac-derived
hematopoietic cells could go on to colonize the hepatic primor-
dia and contribute to the very early stages of fetal liver
haematopoiesis [123]. Similarly, myeloid progenitors also
emerge from the yolk sac mesoderm and give rise to macro-
phages that go on to populate the developing brain and
become microglia. As the blood–brain barrier forms, these
cells expand within the confines of the central nervous system
and are maintained into adulthood [124,125]. Cells of the allan-
tois can also differentiate into definitive erythroid and myeloid
lineages in vitro, and this might be indicative of such differen-
tiation occurring in vivo [126,127]. The proximal portion of the
allantois is incorporated into the fetus during caudal folding
and the formation of the primitive urogenital sinus, that later
gives rise to the urinary bladder. This connection of the forming
bladder with the allantois narrows until it ultimately degener-
ates to form a structure called the urachus [128]. After birth, it
is retained as a dense fibrous structure, the median umbilical
ligament [129]. A final example is that of the previously
described JCF—an embryonic tissue contributing progenitor
cells to the developing heart [103]. Based on its location at an
embryonic-extraembryonic junction with boundary-spanning
gene expression profiles, careful study is warranted to rule out
any extraembryonic contribution to this cell population.

These examples challenge a binary categorization of
tissues, as cells within many of these tissues possess the poten-
tial to contribute to different fates and are highly migratory. If
considering tissue at the level of the individual component
cells, there are perhaps few tissues that can be recognized as
exclusively embryonic or extraembryonic until much later in
development. Therefore, an additional perspective we could
introduce is to consider embryonic or extraembryonic identity
as constituting opposite extremes of a continuum. The different
tissues of the developing conceptus can then be mapped along
this continuous measure depending on the proportion of their
constituent cells restricted to one fate or the other (figure 3).
Such a framework ultimately would also allow us to accommo-
date the spatially blurry and temporally changing nature of
embryonic-extraembryonic boundaries. In this framework,
the fate of a tissue as a whole would remain undefined until
the fates of all its constituent cells are known. As far as we
know, it is tissues such as the TE or the parietal endoderm
that do not contribute any cells to the fetus, that can be categor-
ized as extraembryonic much earlier compared to tissues such
as the extraembryonic mesoderm or the VE.
6. Concluding remarks
For effective scientific discourse, it is of utmost importance
that there is clarity in definitions and the terminology used.
We suggest that despite its technical challenges, basing
embryonic and extraembryonic categorization of tissues on
the fate of their constituent cells is the most conceptually con-
sistent approach. The history of scientific ideas closely
mirrors the history of scientific methods. At a time when
new technologies allow us to study embryonic development
with ever finer spatial, temporal and molecular resolution
in a steadily increasing range of models, we recall that ‘our
real teacher has been and still is the embryo—who is inciden-
tally the only teacher who is always right’ (Viktor
Hamburger, see [130, p. xi]). We will have to be prepared to
respond to new findings by regularly re-evaluating the cat-
egories we impose on tissues in the developing conceptus
without being hindered by preconception.
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