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Abstract

Sickle cell anemia and b-thalassemia intermedia are very different genetically determined hemoglobinopathies predisposing to

pulmonary hypertension. The etiologies responsible for the associated development of pulmonary hypertension in both diseases

are multi-factorial with extensive mechanistic contributors described. Both sickle cell anemia and b-thalassemia intermedia pre-

sent with intra and extravascular hemolysis. And because sickle cell anemia and b-thalassemia intermedia share features of

extravascular hemolysis, macrophage iron excess and anemia we sought to characterize the common features of the pulmonary

hypertension phenotype, cardiac mechanics, and function as well as lung and right ventricular metabolism. Within the concept of

iron, we have defined a unique pulmonary vascular iron accumulation in lungs of sickle cell anemia pulmonary hypertension

patients at autopsy. This observation is unlike findings in idiopathic or other forms of pulmonary arterial hypertension. In this

study, we hypothesized that a common pathophysiology would characterize the pulmonary hypertension phenotype in sickle cell

anemia and b-thalassemia intermedia murine models. However, unlike sickle cell anemia, b-thalassemia is also a disease of

dyserythropoiesis, with increased iron absorption and cellular iron extrusion. This process is mediated by high erythroferrone

and low hepcidin levels as well as dysregulated iron transport due transferrin saturation, so there may be differences as well.

Herein we describe common and divergent features of pulmonary hypertension in aged Berk-ss (sickle cell anemia) and Hbbth/3þ

(intermediate b-thalassemia) mice and suggest translational utility as proof-of-concept models to study pulmonary hypertension

therapeutics specific to genetic anemias.
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Introduction

Sickle cell anemia (SCA) and b-thalassemia are genetically

determined hemoglobinopathies and affect millions of

people globally. SCA is caused by a single point mutation

(Glu6Val) in the beta-globin gene and results in the synthe-

sis of abnormal hemoglobin (Hb-S) that generates long

strand Hb-S polymers and the characteristic sickling of

red blood cells (RBCs) in those homozygous for the muta-

tion.1,2 RBC injury and subsequently erythrophagocytosis

leads iron accumulation in monocytes/macrophages, heme

loss and partitioning as well as extracellular hemoglobin.3,4

On the other hand, b-thalassemia is associated with dyser-
ythropoiesis and a broad range of disease severity (i.e. tha-
lassemiaminor, intermedia and major) that are defined by
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numerous documented Hbb gene mutations.5,6 The cause of

disease is an imbalance in normal b/c-globin chain relative
to a-globin chain synthesis leading to intracellular a-globin
chain accumulation in the absence of a-hemoglobin stabi-
lizing protein.5,7 Free intracellular a-globin is prone to oxi-

dation, heme disorientation and pro-oxidative hemichromes
that injure the RBC.8 Extravascular hemolysis and export
of iron from macrophages and hepatocytes9 is a significant

contributor to excess iron in patients with b-thalassemia,
along with paradoxical iron absorption from the gut,9 and

ultimately iron loading from intermittent or repeated
transfusions.5

A shared potential comorbidity of SCA and b-thalasse-
mia is pulmonary hypertension (PH) with right ventricular
dysfunction. The prevalence of PH is 6–10% of the SCA
patient population based on cardiac catheterization.10–12

The risks for development of SCA-PH are defined and
heavily weighted toward the frequency and extent of hemo-

lysis and nitric oxide consumption,13 hypercoagulability,14

increasing age,15 renal dysfunction16 and transfusion-

dependent iron overload.17,18 In comparison and based on
cardiac catheterization, the prevalence of PH concomitant

with b-thalassemia is estimated to be 4.8% and 2.1% for
b-thalassemia intermedia and major, respectively. The most

critical risk factors for the onset of PH in both intermediate
and major forms of disease are aging and whether a sple-

nectomy has occurred.5,19 In addition, following splenecto-
my, intermediate b-thalassemia and E/b-thalassemia

patients demonstrate intravascular hemolysis20,21 and
RBC microparticle-induced endothelial dysfunction with

thrombosis22 in association with PH development. All
forms of PH, including SCA and b-thalassemia, are associ-

ated with dramatic structural remodeling of the pulmonary
vasculature,23 elevated PA pressures (>25mmHg), right

ventricular hypertrophy, and cardiac dysfunction. Thus,
the symptomatology and outcomes are primarily deter-

mined by right ventricular failure caused by increased PA
pressures.

Transgenic murine models of SCA (Berk-ss) expressing
human a and bS globin24–26 exhibit multi-organ pathologies

that manifest spontaneously and include hemolysis resulting
in severe anemia, iron accumulation (splenic, hepatic, renal,

and pulmonary) and cardiopulmonary abnormalities that
approximate homozygous disease in humans.24–26 Deletion

of both bminor and bmajor genes on one beta globin allele and
the other normal define the b-thalassemia intermedia mice

(Hbbth3/þ) that demonstrate mild anemia, splenomegaly,
and iron accumulation in all organs.7,27 We report extensive

iron-loaded macrophages in remodeled human SCA-PH
pulmonary vascular tissue and in rodent models of SCA-
PH.4 Commonalities in SCA macrophage iron accumula-

tion and iron overload in b-thalassemia suggests a potential
anemia independent contribution to PH that warrants

study. The evaluation of transgenic murine models is nec-
essary to further a mechanistic understanding of

cardiopulmonary disease in these common hemoglobinopa-

thies. Nonetheless, an a priori comparison of PH and car-

diac function in Berk-ss and Hbbth3/þ has not been

performed. In the current study, we hypothesized that

both Berk-ss and Hbbth3/þ mice develop pulmonary vascu-

lar remodeling, PH and right ventricular dysfunction, sim-

ilarly. To this end, studies were undertaken to assess

cardiopulmonary dysfunction and determine lung and

right ventricular metabolism in age and sexed match Berk-

ss and Hbbth3/þ mice.

Materials and methods

Ethical approval and animal care

Young-adult male and female C57Bl/6 WT and Berk-ss

mice (eight weeks old) were obtained from Jackson

Laboratories (Bar Harbor, ME, USA) and Hbbth3/þ (eight

weeks old) were obtained from Dr. Jaro Vostal, MD, PhD

(FDA, Center for Biologics Evaluation and Research, Silver

Spring, MD, USA) to establish breeding colonies. A total of

77 mice (WT: n¼ 15, Hbbth3/þ: n¼ 24 and Berk-ss: n¼ 38)

were evaluated at 20–28 months of age. All experimental

procedures were conducted under the guidelines recom-

mended by The Journal of Physiology28 and were approved

by the Institutional Animal Care and Use Committee at

the University of Colorado, Denver, Anschutz Medical

Campus.

Open chest solid state catheterization for right ventricular

function analysis

Aged mice underwent terminal open chest right ventricular

(RV) function measurements with a 1.2F, FTE-1212B-4018

pressure volume catheter (Transonic Systems Inc., Ithaca,

NY) inserted by direct cardiac puncture. Anesthesia induc-

tion was achieved with inhaled isoflurane (4–5%), and a

tracheal incision (�1 cm) was performed. Next, a tracheal

tube was inserted and connected to an Anesthesia

Workstation or Hallowell EMC Microvent and a plane

was maintained at 1.0–2.5% isoflurane in 100% oxygen.

Then, a thoracotomy was performed exposing the heart,

the pericardium was resected and a small hole made at the

base of the RV with a 30 g needle for insertion of the pres-

sure–volume catheter. Steady-state hemodynamics are

collected with short pauses in ventilation (up to 10 s) or

high-frequency oscillatory ventilation to eliminate ventila-

tor artifact from the pressure–volume recordings.

Occlusions of the inferior vena cava were performed by

applying pressure to the inferior vena cava (up to 10 s)

through the abdominal opening. After the pressure–

volume and hemodynamic measurements completed, mice

were humanely euthanized by exsanguination and cervical

dislocation. Data were recorded continuously using

LabScribe2 and analyzed offline.
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Blood and organ collection

At the end of the experimental protocol, 0.8mL of blood

was collected and placed in an EDTA-Kþ vacutainer and a

hematocrit (Hct) tube for analysis of Hct and archiving of
plasma. Tissues were collected after PBS perfusion as

reported previously.29 The hearts were removed, and the

RV and left ventricle (LV) with septum (LVþ S) were
weighed for the assessment of the Fulton Index (RV/

LVþS). RV and half of the lung were snap frozen for

metabolomic analysis. The other half of the lung was per-

fused and inflated, fixed in formalin for 24 h, and stored in
85% ethanol prior to paraffin embedding and tissue

sectioning.

Histology and morphology

Tissue sections were dewaxed and rehydrated and processed
as previously described.29 Five-micron lung sections were

stained with hematoxylin and eosin (H&E) by standard

procedures to assess the accumulation of perivascular cells
as well as vessel wall thickness as previously described.30

Briefly, lung vascular remodeling was quantified for the

H&E stained lung tissue sections. Scanned images were
equally divided into 100 equal segments. Images that did

not have sufficient vessels in the segment were excluded

and from the remaining images, 10 randomly selected seg-
ments were used for analysis. Using the program

STEPanizer (Tschanz & Weibel, 2011), a grid was overlaid

on each image and was used to quantify the vasculature

within each image. The percentage of vascular tissue to
parenchymal tissue in the lung was calculated.

Perls iron staining was performed on tissue sections incu-

bated with Perls iron reagent containing 5% potassium fer-
rocyanide and 2% hydrochloric acid for 45min at room

temperature and rinsed in deionized water. Sections were

then incubated with 0.3% hydrogen peroxide and 0.01M
sodium azide in methanol for 30min at room temperature.

All sections were then rinsed in 0.1 M phosphate buffer, pH

7.4, incubated with DAB (SigmaFast DAB, Sigma) for
3min, washed in deionized water, and lightly counterstained

with Gill’s II hematoxylin.

Metabolomics

Lung and RV tissue homogenates (10mg of tissue) were
extracted in methanol: acetonitrile: water (5:3:2 v/v/v – at

a 10mg/ml ratio) prior to UHPLC-MS analyses (Vanquish-

QExactive, Thermo Fisher), as described previously in the
study of metabolic reprogramming in pulmonary hyperten-

sion,31 with a focus on organ metabolism (including lungs32

and RV33) and related technical notes.34

Statistical analysis

Data are presented as a mean� standard error of the mean
(SEM). Statistical comparisons for data measurements were

completed with the analysis of variance (ANOVA) and
Post-hoc analyses were completed with the Tukey-Kramer
multiple comparison tests. Other non-parametric ANOVA
(Kruskal Wallis with Dunns post-hoc) was used for metab-
olomics analyses. Strain effects between WT type and either
Hbbth3/þ or Berk-ss were completed using a Student’s t-test.
For metabolomics analyses, principal component analyses
(PCA) and hierarchical clustering analyses were performed
with the software MetaboAnalyst 5.0.35 Statistical analysis
was completed using the statistical software package
GraphPad (version 9.1). Statistical significance was defined
as P� 0.05.

Results

Assessment of pulmonary hypertension

To begin comparing basal pulmonary vascular phenotypes
between aging WT, Hbbth3/þ, and Berk-ss mice, RV func-
tional analysis was compared across the three genotypes of
mice by analyzing pressure–volume (PV) loops with occlu-
sion obtained from mice in each group. Compared to WT
mice, both Hbbth3/þ and Berk-ss mice have elevated RV
systolic pressures (Pes; describing PA pressures; �23�
1mmHg vs.� 32� 1mmHg; p< 0.01 vs. WT) (Fig. 1a),
increased medial thickening (p¼<0.05; vs. WT) (Fig. 1b),
greater RV weights (�0.03� 0.002 g vs. �0.05� 0.002 g;
p< 0.013 vs. WT) (Fig. 1c), and RV/BW ratios (�0.94�
0.06 vs. 1.6� 0.06 and 1.9� 0.08; WT, Hbbth3/þ and Berk-
ss, respectively; p< 0.01 vs. WT) (Fig. 1d). Despite the
larger LVþ S ratios observed in both Hbbth3/þ and Berk-
ss mice vs. WT cohorts (Fig. 1e), analysis of the Fulton
index revealed that Berk-ss mice had a greater RV/LVþ S
ratios compared to WT and Hbbth3/þ (0.35� 0.01 vs. �0.3�
0.01; p< 0.05 vs. WT and Hbbth3/þ) (Fig. 1f). Analyses for
sex differences within strains show no differences (data not
shown). Taken together, these data demonstrate that unlike
WT as both male and female Hbbth3/þand Berk-ss transgen-
ic mice naturally develop PH and RV hypertrophy.

Based on our reported observations in human SCA PH
that demonstrate pulmonary vascular iron macrophage
accumulation4 and the results presented in Fig. 1, we next
stained lung tissue to assess for pulmonary vascular iron
accumulation. Lung tissue sections stained with Perls
DAB are shown (Fig. 1g). Both Hbbth3/þ and Berk-ss
lung tissue sections reveal vessels with iron positive cells,
suggesting a common feature associated with iron accumu-
lated cells in the development of PH in the models.

Assessment of right ventricular function

Right ventricular hypertrophy and dysfunction is a hall-
mark of pulmonary vascular disease. Because Hbbth3/þ

and Berk-ss mice develop PH (as evidenced by elevated
PA pressures and RV weights) with age, we sought to char-
acterize and compare basal RV function across these
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genotypes. Evaluation of PV loops with occlusions provides
knowledge on: (1) intrinsic mechanical properties of the
ventricle, (a) stiffness (end diastolic pressure volume rela-
tionship (EDPVR) and (b) elastance a measure of

contractility (Ees); (2) the mechanical resistance forces on
the RV and it’s efficiency at ejecting blood into the PA, (a)
afterload (Ea) and (b) energy transfer between ventricular
contractility and arterial afterload as described by the
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ventricular to vascular coupling ratio (VVCR); (3) the func-

tional performance metrics of the ventricle, (a) cardiac

output (CO), (b) stroke volume (SV), (c) heart rate, (HR),

(d) preload volume, and (e) ejection fraction (see Fig. 2a).

Intrinsic mechanical properties: Pulmonary vascular dis-

ease in aging Hbbth3/þ mice is associated with greater RV

stiffness as evidenced by the higher EDPVR (Fig. 2b) values

when compared to both WT and Berk-ss mice (�0.09� 0.02
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vs. �0.03� 0.005 Hbbth3/þ vs. WT and Berk-ss r; p< 0.001).
In contrast, Hbbth3/þ mice demonstrated comparable con-
tractility (Ees) (Fig. 2c) to WT mice (�1.9� 0.4 vs. �1.7�
0.5), while contractility was significantly decreased in
Berk-ss mice (1.1� 0.; p¼ 0.04 vs. Hbbth3/þ) (Fig. 2c).
Further, both Hbbth3/þ and Berk-ss mice demonstrate an
increased RV afterload (Ea) (Fig. 2d), supportive of
increased PA pressures in the two models. Taken together,
these data suggest that Hbbth3/þ mice have a restrictive
physiology phenotype with preserved contractility, while
aged Berk-ss mice demonstrate impaired RV contraction
(Fig. 2b and c).

Right ventricular functional properties: To assess if
changes in stiffness and contractility translated to changes
in RV function, we compared stoke volumes (SV), cardiac
output (CO), and heart rate (HR) in WT, Hbbth3/þ, and
Berk-ss mice. Comparisons revealed no significant differen-
ces between SV, HR, or CO between the cohorts (Fig. 2e–g),
but we did observe a lower preload volume in Berk-ss mice
(�45� 3.3 ll vs.� 58� 6.2 ll vs. Hbbth3/þ; p¼ 0.013)
(Fig. 2h), which was compensated for by higher ejection
fraction in Berk-ss mice (50� 2% Berk-ss vs. 37� 3% vs.
Hbbth3/þ; p¼ 0.009) (Fig. 2i). RV afterload was increase in
Hbbth3/þ and Berk-ss mice (Fig. 2h) demonstrating
increased pulmonary vascular resistance, congruent with
increased RV systolic pressures (Esp). Despite the increased
RV afterload in Hbbth3/þ and Berk-ss mice, the RV to pul-
monary vascular coupling ratios remained consistent with
WT demonstrating RV efficiency was preserved (Fig. 2j).
These data demonstrate that the intrinsic mechanical prop-
erties of the RV in Hbbth3/þ and Berk-ss mice develop dif-
ferently, but do not lead to decompensated RV function
with age.

Assessment of body weight, hematocrit, and
splenomegaly

Berk-ss mice demonstrated the lowest body weights (28�
0.7 g vs. 38� 2.3 (WT) and 31� 1 (Hbbth3/þ); p< 0.01),
greatest spleen weights (1.042 g �0.04 vs. 0.095 g� 0.004
(WT) and 0.607�0.07 (Hbbth3/þ); p< 0.0001), and Hct

(16� 0.6 vs. 42�1 (WT) and 24� 1 (Hbbth3/þ); p< 0.001),
whereas the Hbbth3/þ mice demonstrated an intermediate
phenotype (Fig. 3c and d). Congruent with the differences
Hct and extra-medullary ineffective erythropoiesis, spleen
weights were greatest in Berk-ss mice.

Metabolomics analysis

To better understand the differential underpinnings of PH
in Hbbth3/þ and Berk-ss mice the metabolism in lung and
RV tissue were evaluated. Lung metabolic reprogramming
is a hallmark of PH36 and to date studies have focused on
the specific metabolic adaptations of different cell types
(e.g., fibroblasts,37,38 macrophages,39 and smooth muscle
cells40) in the pulmonary vasculature that participate in
the proliferation of the pulmonary adventitia and fibrosis.
While results from evaluation of the RV are reported on in
rodent PH models of SU5416-hypoxia-normoxia expo-
sure,33 limited information is available as to whether such
metabolic adaptations are observed in the lungs and RV of
murine models of hemoglobinopathies linked to PH. To
bridge this gap, we performed metabolomics analyses of
lung and RV tissues from WT, Hbbth3/þ, and Berk-ss
mice. Results are reported more extensively in
Supplementary Table 1. Unsupervised analyses were per-
formed, including principal component analysis (PCA –
Fig. 4a and b) and hierarchical clustering analysis of the
most significant 25 metabolites by ANOVA across the
three groups (Fig. 4c and d). Results suggest distinct meta-
bolic signatures across the three groups in both tissues, with
Berk-ss mice showing greater metabolic divergence from
WT than the Hbbth3/þ mice (Fig. 4a and b). Specifically,
lungs from Berk-ss mice were characterized by a significant
dysregulation of amino acid levels (methionine, leucine,
phenylalanine, glutamine, aspartate) and decreased levels
of several short and medium chain acyl-carnitines (C2,
C8, C14) compared to WT and Hbbth3/þ mice (Fig. 5a
and b). Interestingly, decreases in glutamine and reduced
glutathione were observed in lung tissue from Hbbth3/þ

mice, while Berk-ss lung tissue was characterized by
increases in methionine – a scavenger of reactive oxygen
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species and contributor to the repair of reactive oxygen

species-induced protein isoaspartyl damage (Fig. 5b).

Altered carboxylic acid metabolism, with increases in 2-oxo-

glutarate and fumarate, decreased 2-hydroxyglutarate and

significant accumulation of malate were noted in Berk-ss

lung tissues (Fig. 5b). On the other hand, Hbbth3/þ RV

were characterized by higher levels of free short chain

fatty acids (pentanoate, hexanoate, heptanoate, nonanoate)

and carboxylic acids (2-oxoglutarate, fumarate), suggestive

of altered lipid catabolism in mitochondria (Fig. 6a and b).

RV from Berk-ss were characterized by higher levels of

metabolites from the pentose phosphate pathway (phospho-

gluconate, ribose phosphate, sedoheptulose phosphate)

(Fig. 6b), a pathway whose activation has been implicated

in the etiology of proliferative events in PH in other

rodent models.41 Increases in the levels of arginine, argini-

nousccinate, citrulline, and guanidinoacetate – but not orni-

thine – in the RV of Berk-ss mice (Fig. 6a and b) is

compatible with up-regulation of nitrogen metabolism

through the urea cycle and/or the dysregulation of vasodi-

latory signaling through activation of nitric oxide synthase.

Discussion

Hemoglobinopathies associated with hemolysis, including

b-thalassemia and SCA are associated with an increased

incidence of PH.42 The etiologies of PH in the disorders

are increasing age and past splenectomy35 as well as the

Fig. 4. Berk-ss and Hbbth/3þ mice demonstrate unique lung and right ventricular metabolism across the 25 most significantly changed metab-
olites: Multivariate analyses of metabolomics data of lungs and right ventricle (RV) of wild type (WT – green), sickle cell disease (SCA – red) and
beta-thalassemia mice (blue). Analyses included principal component analysis (PCA) in (a) and (b), and hierarchical clustering analyses of the top
significant 25 metabolites by ANOVA (c and d).
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consequence of hemolysis,11 hypoxia43,44 and thromboem-
bolic disease.45 Because there is currently no targeted ther-
apy for hemoglobinopathy associated PH, it is important to
identify early proof-of-concept models with the potential for
human translational application.

Our previous work identified a unique feature amongst
SCA patients suffering from PH, right ventricular failure,
and ultimately sudden death that is consistent with high
hemoglobin, iron (Fe2þ and Fe3þ), ferritin heavy chain
and lipid peroxidation content macrophages in the adventi-
tia of remodeled pulmonary vasculature.4 While clinical
progression of both b-thalassemia and SCA increase the
risk for the development of PH, it remains unclear if
common features exist. From a preclinical perspective
understanding, the similarities and differences in the cardio-
pulmonary response of transgenic murine models can aid in
development of therapeutics. In the current study, we
hypothesized that both Berk-ss and Hbbth3/þ mice develop
pulmonary vascular remodeling, PH, and right ventricular
dysfunction. To date, we are unaware of prior studies

comparing cardiopulmonary function in murine models
of Group V PH associated with hemolytic
hemoglobinopathies.

We report Berk-ss and Hbbth3/þ mice develop PH with
pressures around 30mmHg, but as high as 40mmHg. These
pressures may also be underestimated due to anesthesia and
invasive open chest procedures used with solid state heart
catheterization. Regardless, this is consistent with generally
stable SCA PH patients who succumb to cardiopulmonary
complication with repeated exacerbations of stressors that
contribute toward progressive disease.46 In the absence of
external stressors, Berk-ss and Hbbth3/þ mice develop a sim-
ilar degree of pulmonary vessel remodeling, cardiac remod-
eling, and intracellular pulmonary vascular macrophage red
blood cell degradation products, resulting in iron accumu-
lation. The potential contribution of macrophage iron rep-
resents an intriguing therapeutic target. Studies to date
report that iron mitigation strategies may be beneficial in
non-transfusion-dependent disease.4,47–49 Further, overlap-
ping features of human disease such as extracellular

Fig. 5. Lung tissue metabolites that detail primary differences between Berk-ss, Hbbth/3þ and their shared wild type: An overview of arginine
metabolism (a) in lungs from wild type (green), sickle cell disease (red), and beta-thalassemia (blue) mice, one of the most affected pathways
across the three groups, along with glutaminolysis/glutathione metabolism, methionine metabolism, Krebs cycle, and related carboxylic acids
(e.g., 2-hydroxyglutarate – (b)). Asterisks indicate significance by ANOVA (Kruskal-Wallis with Dunn post hoc test; *p< 0.05; **p< 0.01).
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Hb accumulation, microparticle accumulation as well as
thrombosis remain important targets for therapeutic
intervention.

Assessment of right ventricular mechanics provides
useful insight into cardiac compensatory responses in the
presence of PH. Solid state catheter measurements support
PH based similarities in right ventricular afterload in both
mice populations; however, right ventricular mechanics sup-
port Hbbth3/þ mice having a restrictive physiology pheno-
type with preserved contractility, while Berk-ss mice
demonstrate impaired RV contraction. Interestingly, neither
Berk-ss nor Hbbth3/þ mice demonstrate changes in right
ventricular function (stroke volume, heart rate, or cardiac
output), suggesting silent, but significant underlying patho-
physiology. Both mice show severe anemia and increased
spleen weight, indicative of erythrophagocytosis and extra-
medullary erythropoiesis in mice. Similar to hypoxic PH,
the severe anemic response in these animals likely contrib-
utes to the overall process of cardiopulmonary dysfunction,

possibly because of constantly stabilized hypoxia inducible
factors (HIF-1 and HIF-2). Neither Berk-ss nor Hbbth3/þ

mice tolerate the anemia, so hyper-erythropoiesis develops
with continuous activation of mitogenic factors that may
play a role in pulmonary remodeling.44

Although there are similarities, WT, Hbbth3/þ, and Berk-
ss mice also demonstrate different lung and right ventricular
metabolism; Berk-ss mice significantly diverge from WT
more than Hbbth3/þ in the top 25 cardiopulmonary altered
metabolites. For example, Hbbth3/þ mice showed decreased
pulmonary glutathione and possible signatures of mito-
chondrial dysfunction, a hallmark of PH in other rodent,
bovine, ovine models, and primary tissue from PH
patients.36,50 On the other hand, right ventricular metabo-
lism in Berk-ss mice showed pentose phosphate pathway
activation, the main pathway that contributes reducing
equivalents that sustain anabolic demands51 in proliferating
cells, consistent with cellular proliferation in PH52 and in
glucose-6-phosphate dehydrogenase deficiency.53

Fig. 6. Right ventricle tissue metabolites that detail primary differences between Berk-ss, Hbbth/3þ and their shared wild type: An overview of
arginine metabolism (a) in the right ventricle (RV) from wild type (green), sickle cell disease (red), and beta-thalassemia (blue) mice, one of the
most affected pathways across the three groups, along with the pentose phosphate pathway, glutaminolysis/glutathione metabolism, methionine
metabolism, Krebs cycle, and related carboxylic acids (e.g., 2-hydroxyglutarate - b). Asterisks indicate significance by ANOVA (Kruskal-Wallis
with Dunn post hoc test; *p< 0.05; **p< 0.01; ***p< 0.001).
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We observe differences in cardiac function and metabolic

divergence in the Berk-SS and Hbbth3/+ murine models of

spontaneous PH. Based on knowledge derived from patient

data, PH development is associated with intra-vascular

hemolysis, iron accumulation, and microparticle (RBC

and endothelial)-induced endothelial dysfunction/thrombo-

sis in both diseases.13–15,18,54 These contributors to the path-

ophysiology of PH development likely become more

pronounced with age concomitant with a lifetime of expo-

sure to hemolysis, endothelial dysfunction, and anemia in

murine models. Molecular contributors that include

decreased nitric oxide bioavailability that occurs after Hb

consumption and/or arginase elevation, heme/iron-induced

oxidative processes, and intermittent bouts of hypoxia that

occur with RBC clearance are expected to contribute as

underlying mechanisms.4,55,56 Interestingly, functional and

tissue metabolic differences are observed in the two murine

models evaluated here.
In summary, the study provides a direct comparison of

the pulmonary vascular and right ventricular phenotypes

associate with SCA (Berk-ss) and b-thalassemia intermedia

(Hbbth3/þ) mice, two murine models of genetic hemolytic

hemoglobinopathy with potential for translation to human

Group V PH. Unique to these models is development of

cardiopulmonary dysfunction with similar pulmonary vas-

cular remodeling, and pulmonary vascular iron accumula-

tion. Divergence between the two models is readily observed

in cardiac remodeling and right ventricular mechanical

parameters. Aspects of disease with commonality such as

pulmonary iron accumulation, severe anemia, and an inabil-

ity to undergo anemia tolerance in the face of hypoxia sug-

gest potential areas of overlap for the study of therapeutic

intervention.
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