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Helminths are multicellular parasitic worms that comprise a major class of human
pathogens and cause an immense amount of suffering worldwide. Helminths possess
an abundance of complex and unique glycoconjugates that interact with both the innate
and adaptive arms of immunity in definitive and intermediate hosts.These glycoconjugates
represent a major untapped reservoir of immunomodulatory compounds, which have the
potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which
could be exploited as vaccines and diagnostics. This review will survey current knowledge
of the interactions between helminth glycans and host immunity and highlight the gaps
in our understanding which are relevant to advancing therapeutics, vaccine development,
and diagnostics.
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INTRODUCTION
Helminths are multicellular parasitic worms that comprise a major
class of human pathogens. They rely on a host species to complete a
portion of their life cycle, which results in significant morbidity for
human and animal hosts. The three classes of helminths – nema-
todes, trematodes, and cestodes – account for half of the WHO-
designated “Neglected Tropical Diseases,” and infect 1–2 billion
of the world’s poorest people, with soil-transmitted helminths
(gastrointestinal nematodes including Ascaris, Trichuris, Necator
sp.) and schistosomes (blood-dwelling trematodes) being the most
common (1–3). Although great strides have been made through
implementation of chemotherapy and improved sanitation, mas-
sive amounts of suffering due to helminth infections persist, and
to date, no vaccines for helminths or any human parasite exist.

The symptoms of helminth infection depend on infection
intensity (i.e., number of worms and/or eggs), and range from
none to chronic disease, disfigurement, and death. The majority of
cases in endemic regions manifest with low-level symptoms such
as anemia, malnutrition, and delayed physical/cognitive develop-
ment (1, 4). The estimated disease burden of helminth infection is
at least 13,000,000 DALYs (years of life and productive life lost due
to disability and/or death) (2). However, this is probably a gross
underestimation of the total disease burden because several com-
mon helminth infections are excluded, and DALYs fail to account
for the social and economic consequences caused by the subtler
symptoms mentioned above (1, 5, 6). Some estimates therefore
rank the burden of helminth infection even higher than that of
malaria or HIV/AIDS, making helminths a true “societal poverty
trap” (4, 7, 8).

While a substantial body of literature on the biology and
immunology of helminth infection exists, the science has yet to
translate into more sophisticated solutions for diagnosis, treat-
ment, or prevention. This stems from a poor understanding of
protective immunological mechanisms, insufficient knowledge of

unique molecular structures of helminths, and a lack of innov-
ative vaccine strategies to protect against complex, multicellular
pathogens. The complex carbohydrates of helminths present an
exciting opportunity to fill these gaps. Many glycans within glyco-
proteins and glycolipids are unique to helminths or to a particular
worm species, they are abundant on worm surfaces and secretions,
and humans vigorously target these glycans in the natural immune
response. Helminth glycans also have potent immunomodulatory
effects. Advances in glyco-technology have steadily increased our
ability to understand this often-overlooked area of host-pathogen
interactions. In this review, we will discuss the role of carbohy-
drates in helminth innate and adaptive immunity, highlight glycan
structures of interest, and call attention to progress in exploiting
these structures for modulation of autoimmune/atopic diseases
and better control of helminth infection.

THE INTERFACE OF HELMINTHS AND THEIR HOSTS
Each human helminth has a complex, multi-stage lifecycle, which
depends on particular intermediate and definitive hosts and an
ecological niche. For example, S. mansoni, the most common
cause of schistosomiasis, lives only in fresh water inhabited by the
mollusk host Biomphalaria glabrata. Its eggs hatch into miracidia
which penetrate susceptible snails. The miracidia circulate in the
snail hemolymph and transform into sporocysts, which over the
course of about a month generate free-swimming cercariae that
exit the snail (9, 10). Cercariae penetrate the skin of a human host
or other mammals exposed to water harboring infected snails.
In the process, they are transformed into schistosomula larvae,
which, after a few days in the dermis, make their way into the
venous circulation. Within 1–3 weeks they traverse the narrow
pulmonary capillary beds and move to the portal vessels, feed-
ing on blood, and growing in size as they move. Male and female
worm pairs mate and migrate up the mesenteric vein, where they
commence egg laying, about 5–6 weeks after initial infection. Eggs
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excreted into the stool continue the schistosome life cycle if they
are deposited back into fresh water, while others become trapped
in the intestinal walls and liver (11). Other mammals are also
infected by schistosomes and serve as major reservoirs of trans-
mission (12). Hookworms, by contrast, such as Necator americanus
and Ancylostoma duodenale, have only humans as their definitive
host (4). The larvae live freely in the soil for a short period of time
while they develop to the L3 stage larvae, which, like schistosomes,
penetrate the skin, and migrate into the vasculature. Upon reach-
ing the lungs, they migrate up to the pharynx, at which point they
are swallowed. The larvae molt, and male and female adult worms
embed in the mucosa and submucosa of the intestines in order
to mate and feed on blood (7, 9). Helminths can live for years to
decades in a human host, continuously producing eggs.

The helminth’s interface with host immunity is equally com-
plicated. Nematodes are protected by a layer of collagen that com-
prises the cuticle, which is overlain by a lipid-rich epicuticle and
a glycoprotein surface coat. The cuticle is re-synthesized and shed
every time the worm enters a new developmental stage (13). The
surface of the schistosome is complex, incompletely understood,
and variable throughout its life stages. The outer layer consists of a
tegument, a syncytial layer of cells which are bounded apically by a
complex invaginated membrane (14). The tegument is comprised
of secreted lipid-rich “membranocalyx,” as well as “glycocalyx,” the
latter of which is partially discarded upon transformation of cer-
cariae to schistosomules, but also appears to be prominent on the
surface of adult worms (15–18). The expression of both proteins
and glycans is regulated from one life stage to the next, and highly
variable (19, 20). The surface of the worms as well as excreted and
secreted products, molted tissue layers, and eggs make up the tar-
gets for immune recognition and attack. The gastrointestinal (GI)
tract of blood-feeding worms like schistosomes and hookworms
is also exposed to antibodies (21, 22).

GLYCANS OF SCHISTOSOMES AND OTHER PARASITIC
HELMINTHS
Parasitic helminths are characterized by their production of many
different glycoproteins, containing complex N - and O-glycans,
and glycolipids; all of these glycans are unusual and structurally
distinct from host glycans (some are depicted in Table 1). For
example, helminths, such as S. mansoni, neither synthesize sialic
acid nor acquire it from their hosts, whose glycans typically
terminate in sialic acid (23). Helminth glycans commonly ter-
minate with β-linked GalNAc (24–27), often in the sequence
GalNAcβ1-4GlcNAc (termed the LacdiNAc motif, LDN), which
is not commonly present in vertebrate glycans (28, 29). In addi-
tion, many helminths use unusual sugars, such as tyvelose, found
in N -glycans of Trichinella spiralis (30–32), which may be use-
ful in both resistance to infection (33) and diagnostics (34, 35).
Several helminths also generate unusual modifications of sugars,
such as the phosphorylcholine (PC) modification of glycans of
Echinococcus granulosus, several other parasitic nematodes, and
the free-living Caenorhabditis elegans [(36–41); and reviewed in
(42)], and 2-O-methylation of fucose and 4-O-methylation of
galactose in highly antigenic glycans of T. canis (43, 44). In S.
mansoni glycans, unique additions of fucose residues are seen
on both GlcNAc and GalNAc residues in the LDN motif, giving

rise to FLDN, LDNF, poly-LDNF, DF-LDN-DF (27, 45–51), as
well as unique fucose/xylose modifications of the N -glycan core
(23, 52, 53) (Table 1). Some nematodes, of which C. elegans is
best studied, also oddly modify their core fucose residues with
galactose (54–58). Interestingly, only the trematode S. mansoni
(59–61) and the cattle lungworm nematode Dictyocaulus vivipa-
rous (62) have been shown to synthesize glycans containing the
terminal motif of the Lewis x (Lex) antigen, variants of which are
also expressed commonly on human cells (61, 63). Schistosomes
synthesize novel glucuronate-containing glycans on glycoproteins,
such as the CAA structure (64, 65). The core structures of the gly-
colipids in helminths are also unlike those of mammals, such as
the presence of the “schisto motif” GalNAcβ1-4Glcβ-Cer (25) of
S. mansoni, and the “arthro motif” Manβ1-4Glcβ-Cer of A. suum
(66), instead of the mammalian “lacto motif” Galβ1-4Glcβ-Cer.

The unusual nature and antigenicity of parasitic helminth
glycans belies the apparently commonly held belief among immu-
nologists and parasitologists that parasites do not express antigenic
glycans, but rather cloak themselves in parasite-synthesized and/or
host-acquired antigens to avoid immune recognition in what has
been termed “molecular mimicry” or “antigen sharing” (67, 68).
This concept may no longer be tenable as a general description in
regard to parasitic helminths, which synthesize few glycans resem-
bling their vertebrate hosts. In fact, glycans constitute a major
portion of the host’s antigenic targets in several helminth infec-
tions. In non-human primate models of schistosomiasis, they
appear to be even more highly targeted than proteins (69–74).
When true molecular mimicry by infectious organisms does occur,
such as the structural similarity between mammalian ganglioside
GM1 and the terminal structure of the lipooligosaccharide from
Campylobacter jejuni, the mimicry is associated with pathologi-
cal autoimmunity, as seen in Guillain–Barré syndrome (75, 76).
Interestingly, few of the antibodies to helminth glycans cross-react
with host glycans. The only well-known example of this is Lex
(63), suggesting that even helminth glycans sharing some features
with rare mammalian glycoconjugates, such as LDN and LDNF
(Table 1) are presented in a unique fashion on parasites. As dis-
cussed below, results of multiple studies indicate that parasites
instead utilize “glycan gimmickry” (77), in which their glycans can
interact with host receptors to modulate host immune responses
to the benefit of the parasite.

INNATE IMMUNE RESPONSES TO HELMINTH-DERIVED
GLYCANS
The response of an infected host to a parasitic helminth is multi-
faceted and involves both innate and adaptive immune factors, and
a host of cellular responses. While this review section is devoted
to mammalian responses to helminth infections, it is worth not-
ing that other organisms have also developed a wide range of
responses to helminth infections. For example, one lectin (CNL)
from the mushroom Clitocybe nebularis (78) can bind to the LDN
motif, and the recombinant form of the CNL can directly kill the
hypersensitive C. elegans mutant strain pmk-1 (79). Other types of
fungi, on which C. elegans feeds, express specific lectins that recog-
nize the core galactose-fucose determinants (57). These are highly
expressed on the worm’s intestinal cells, and ingestion of such
fungi causes death of the nematode (80). The zebrafish (Danio
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rerio) is parasitized by the pathogenic nematode Pseudocapillaria
tomentosa (81). Similarly to human gastrointestinal worms, infec-
tion causes eosinophilic inflammation in the fish gut, offering a
potentially promising new model with which to understand the
interactions between helminth ligands and host innate immune
receptors (82, 83).

Mammalian immune responses to parasitic helminths are
incredibly complex. In some mammalian hosts, the adaptive
response may help to prevent, limit, or eradicate the infection,
while in others it appears ineffectual (84). The ability of adaptive
effector mechanisms to limit or clear infection likely depends, in
large part, on cues received from the innate response. The innate
response can both limit the pathology of the infection and directly
contribute to destruction and expulsion of worms. However, the
parasites have evolved glycan gimmickry approaches to battle the
host responses. Thus, the balance arrived at in a chronic infection
may result in asymptomatic infection even though humans rarely
clear all of the infecting organisms without treatment (84, 85).

Antigen-presenting cells (APCs) including dendritic cells
(DCs) and macrophages (MΦ) initially encounter invading
pathogens and are crucial for regulation of the type of adaptive
immune response (86, 87) (Figure 1). Helminths induce effec-
tor cell generation consisting of Th2, T regulatory cells (Tregs),
and alternatively activated (AA) MΦ (88–91), which may con-
tribute to the capacity of helminths to counteract inflammation
associated with autoimmune disease. Recognition of pathogen
glycans is known to be mediated by at least two classes of special-
ized pattern-recognition receptors (PRRs) on APC, the Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs), which are
instrumental in regulation of adaptive immunity (92–94). There
are over a dozen different C-type lectins expressed in DC and
Langerhans cells, and many other glycan-binding proteins, such
as selectins, siglecs, and galectins expressed by lymphocytes, all of
which have potential to interact with parasite-derived glycans (95,
96). TLRs function as PRRs that can recognize a wide variety of for-
eign molecular patterns (pathogen-associated molecular patterns
or PAMPs), as seen, for example, where they recognize the many
variants of LPS. While CLRs can also function as PRRs, their speci-
ficity is often much more restricted, as seen with dectin-1, which is
a receptor for β-glucan (97). The balance between CLR- and TLR-
mediated signals appears crucial to determine the balance between
tolerance and immunity (92, 98, 99). Human galectins-1 and -3
have been shown to recognize the core galactosylated-fucose epi-
tope that is expressed in nematodes and the LDN-motifs that are
common in schistosomes, respectively, implying a role for galectins
in pattern recognition of parasitic helminths (58, 100).

Little has been done on direct effects of intact worms on
APC, and the mechanistic roles of glycans in glycan gimmickry,
but several studies using soluble extracts of worms or their
eggs have demonstrated the importance of helminth glycans in
immunomodulation. Early observations showed that egg depo-
sition was responsible for the Th2 character of chronic murine
schistosomiasis (101). The Harn group followed up on these
observations by showing that LNFPIII, a human milk sugar con-
taining Lex, induced B cell proliferation and IL-10 production by
murine spleen cells (102). They also demonstrated that intranasal
administration of S. mansoni soluble egg antigen (SEA) extracts

FIGURE 1 | Interactions of glycans with immune cells and regulatory
pathways. (A) Glycan-binding proteins such as the C-type lectin receptor
(CLR) DC-SIGN in cooperation with Toll-like receptors (TLR), such as TLR4,
regulate dendritic cell responses to parasite glycans. (B) Schematic
representation of the role of dendritic cells (DC) and macrophages (MΦ) in
inducing an anti-inflammatory adaptive immune response upon contact
with helminth glycans.

to mice promoted IgE and IgG1 production and induced secre-
tion of IL-4, IL-5, and IL-10, but not IFN-γ, by lymphocytes
(103, 104). These responses were completely dependent on the
presence of intact helminth glycans, since partial oxidation of
glycans with periodate abolished the ability of SEA to stimulate
these Th2 responses (103). Both SEA and soluble worm pro-
teins from Trichuris suis (TSWAP) inhibit LPS-induced secretion
of many pro-inflammatory cytokines and chemokines from DC
(99, 103, 105). This suppressive effect was also periodate-sensitive,
while protein denaturation at 80°C, and digestion of the glyco-
proteins with chymotrypsin had no effect (106). In addition, co-
incubation of immature DC with LPS and helminth compounds
induced a decrease of CD86 surface expression (99) and a strong
upregulation of OX40L expression on the DC surface which was
glycan-dependent (105, 106). Other studies showed that immu-
nization of mice with soluble extracts of many different helminths,
including C. elegans, the roundworm Brugia malayi, and the
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tapeworm Taenia crassiceps, also induced a glycan-dependent
cytokine response biased toward Th2 cells (107–109). One of
the glycan determinants which contributes to the Th2-biasing
effect of SEA is Lex (103, 110–113), but other schistosome glycans
can also induce Th2 biasing, such as core fucosylated/xylosylated
N -glycans (114). The unique abilities of helminth glycolipids to
drive Th2 bias may involve CD1d-restricted T cells (115). Treat-
ment of monocytes with S. mansoni egg glycolipids, but not adult
worm glycolipids, stimulated IL-10, IL-6, and TNF-α production,
which was largely dependent on expression of the LDN-DF motif,
indicating that helminth glycolipids can induce both pro- and
anti-inflammatory cytokine secretion (116).

In regard to the mechanisms of glycan recognition, several
CLRs of DC and MΦ, such as DC-SIGN, bind selected glycans,
including Lex, LDNF, and poly-LDNF (117, 118) on the defined
glycan microarray from the Consortium for Functional Glycomics
(CFG). Human MΦ galactose-type lectin (MGL), expressed as
an Fc fusion protein, binds to a subset of glycans on the CFG
microarray, with highest recognition of those containing terminal
GalNAc residues (119). Related studies using similar microarray
approaches have also defined specific interactions of DC-SIGN,
mannose receptor (MR), and MGL with schistosome-related gly-
cans containing Lex motifs, LDN, LDNF, as well as core β2Xyl
glycans (120). MGL is selectively expressed on APC with ele-
vated levels on tolerogenic DC and AA-MΦ (121), suggesting a
role of MGL in the homeostatic control of adaptive immunity.
This is consistent with earlier studies showing that DC-SIGN
binds components within SEA of S. mansoni, as do the CLRs MR
and MGL (99). SEA expresses many of the fucosylated glycans
used in the microarray studies above. In particular, LDNF and
Lex antigens are expressed on all intra-mammalian stages of the
parasite (27, 59, 122). We also confirmed the differential bind-
ing profile of DC-SIGN and MGL to SEA and TSWAP by ELISA
(106).

The CLRs mentioned above induce endocytosis of bound mol-
ecules for antigen presentation but do not induce classical signs
of APC activation. They do, however, modulate the gene tran-
scription induced by other receptors (Figure 1A), such as NF-κB
signaling downstream of TLRs (123). Interestingly, there is evi-
dence that TLR4 may be involved in responses to S. mansoni Lex-
containing glycans (111), indicating interactions and co-signaling
via TLR and CLR may contribute to the overall polarization of
immunosuppressive responses to the parasite infections. Recent
studies in DC reveal the capacity of some CLRs to induce intracel-
lular signaling cascades upon binding to pathogen-derived glycans,
and show that CLR-induced signals intersect with the signaling
pathways of several TLRs, including TLR2, TLR4, and TLR8. CLR
signaling can “override” the response to a variety of otherwise pro-
inflammatory TLR ligands such as LPS, instead inducing secretion
of Th2-type or immunoregulatory cytokines, in a TLR-specific
manner (124–127). In contrast, S. mansoni fucosylated glycolipids
induce a pro-inflammatory response in DCs that is dependent
on both DC-SIGN and TLR4 (128). The specific signaling interac-
tions which contribute to this diverse response modulation are still
being explored. Novel roles for CLRs interacting with schistosome
glycoconjugates have been suggested by a glycoform of RNAse
termed omega-1 (129), where uptake by MR may contribute to

RNAse internalization and impaired protein synthesis through
degradation of both ribosomal and messenger RNA (130).

Thus, while much remains to be learned about parasite gly-
cans and their bioactivities, the glycans of parasitic helminths
have unique functions in innate immune responses and induce
both CLR signaling as well as cross talk with TLR signaling in the
human system. The molecular mechanisms of glycan-dependent
innate immune responses are also linked to the adaptive immune
responses, as discussed below. Understanding these responses
could well lead to the development of novel therapeutic glycans
that could be useful in treating human diseases associated with
inflammation and autoimmunity.

APPLICATIONS OF HELMINTH GLYCANS TO OTHER INFLAMMATORY
AND INFECTIOUS DISEASES
The immunomodulatory properties of helminth glycans are rel-
evant not only to the outcomes of helminth infections, but may
also be relevant to the outcomes of vaccinations, co-infections, and
inflammatory disorders. Recently, many investigators have focused
on understanding the effect that helminth immunomodulation
has on responses to co-endemic infections such as Mycobacterium
tuberculosis (MTB). Interestingly, it was found that N. brasiliensis,
a mouse model for GI helminth infection that passes through the
lungs, impairs ability to control MTB infection, and that this effect
was mediated by IL-4 signaling of alternatively activated (M2 type)
macrophages (131). Little work has been done on N. brasiliensis
glycoconjugates, but they do have Tn antigen, and PC-containing
glycoconjugates, which have several anti-inflammatory and other
immunomodulatory actions (42, 132–135).

Helminth infections and their products have a phenomenal
ability to ameliorate responses to a variety of inflammatory dis-
orders (136). For example, in clinical studies of patients suffering
from inflammatory bowel disease, treatment with the pig nema-
tode T. suis, caused remission of Crohn’s disease for more than half
of the patients and improved the symptoms of Ulcerative Colitis
for many patients (137, 138). Recently, two small clinical trials
of multiple sclerosis (MS) patients – one comparing uninfected
to those with naturally acquired T. suis infection, and the other
using T. suis ova as treatment – suggested that T. suis may decrease
unfavorable MRI changes, reduce exacerbations, and results in
favorable immunological parameters such as elevated IL-4 and IL-
10 (139–141). The PC-containing helminth product ES-62 was
recently shown to protect against airway inflammation in a mouse
model of asthma (142).

Studies of helminth anti-inflammatory effects on some other
disorders have been less favorable, such as the use of the hook-
worm N. americanus in Celiac Disease patients and T. suis for
allergic rhinitis (143–145). The reasons for these failures are still
unclear, but may include insufficient dose of worms, provocation
of a mixed rather than purely immunoregulatory cytokine pro-
file at safe doses, or a lack of effect at the level of symptoms even
when the desired immunosuppressive responses are achieved in
response to helminth treatment (146,147). While controlled inges-
tion of therapeutic helminths has thus far been safe for adults, it
can also cause significant gastrointestinal side effects (148). The
anti-inflammatory molecules produced by the parasites, many of
which, as mentioned above, are glycoconjugates, are not yet well
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defined. A better understanding of these molecules would allow us
to channel the immunomodulatory properties of helminths into
purer and more potent immunoregulatory therapies, with great
potential for treating multiple chronic inflammatory diseases.

ADAPTIVE IMMUNE RESPONSES TO HELMINTH-DERIVED
GLYCANS
Helminth infections present a dual challenge to immunologists:
Firstly, we have an insufficient understanding of the immune
effector mechanisms that successfully combat worms. Secondly,
the study of adaptive immunity to eukaryotic pathogens has
traditionally focused on protein, rather than glycan antigens. A
large portion of the surface-exposed and secreted antigens of
helminths consists of glycoconjugates (17, 149, 150). Thus, cru-
cial insights into immunological control of helminth infection lie
at the intersection of these two fields, as we will now discuss.

THE CHARACTER OF ADAPTIVE IMMUNITY TO HELMINTHS
Due to the immunomodulatory effects of several glycoconju-
gates mentioned above, helminths usually elicit a Th2 response
(Figure 1B). Non-endemic individuals newly exposed to S. man-
soni can suffer from a more Th1-type acute disease known as
Katayama fever, in which elevated levels of TNF, IL-1, and IL-
6, accompany eosinophilia (11, 151), but people in endemic
regions rarely suffer acute symptoms. Instead, they seem to be pre-
disposed to developing a chronic, Th2-type response, the onset of
which coincides with egg laying (11). This may stem from sensiti-
zation in utero or very early in life (152). The immune response to
chronic helminth infection is dominated by a self-reinforcing Th2
feedback loop between cytokines IL-4, IL-5, IL-13, and prominent
expansion of eosinophils and mast cells (8, 84). Initiation of this
Th2 feedback loop has been a topic of intense investigation in the
last few years, implicating mast cells, basophils, eosinophils, alter-
natively activated macrophages, and epithelial cells, just to name
a few, as being required to initiate production of Th2 cytokines.
Most recently, novel innate immune cell types such as the nuocyte
have surfaced as the most likely Th2-initiating cells [reviewed in
(153)]. Whatever the initiating Th2 cell type(s), it is likely that they
receive important signals from helminth glycoconjugates, and lit-
tle work has been done on the interactions of these molecules with
such “unconventional” Th2-initiators.

During the chronic Th2 response, abundant antibodies of all
subtypes are produced, especially IgE, IgG1, and IgG4 (22, 85,
154). In schistosomiasis, chronic pathology is primarily due to
eosinophilic (type 2) granulomas, consisting of macrophages,
CD4+ T cells, eosinophils, and collagen that surround eggs trapped
in liver, intestinal, or bladder tissue, which are eventually converted
to fibrotic scars (11, 155). Many other nematodes and cestodes also
cause eosinophilic granulomas (84, 156–158).

The regulatory response is crucial in control of chronic
helminth disease, for the well-being of both host and parasite
(Figure 1B). Schistosomes, hookworms, and filarial nematodes
all promote the development of Tregs, and the production of
regulatory cytokines like IL-10 and TGF-β from multiple cell
types, and IgG4, a non-complement fixing isotype. This type
of response, collectively termed “modified Th2,” serves to limit
the immunopathology that would result from an uncontrolled

Th2 amplification-loop, and allows the host to remain rel-
atively healthy for the long duration of helminth infection
(84, 159, 160). In concordance with this idea, schistosomiasis
patients with chronic liver and spleen inflammation lack the
IL-10 response to worm antigens, which is observed in chronic
patients with low-level symptoms (85). AA-MΦ also aid in lim-
iting worm-induced immunopathology. Alternative activation of
macrophages is induced by Th2 cytokines like IL-4 and IL-13 as
well as directly by the products of several helminths, including S.
mansoni, F. hepatica, filarial nematodes, and tapeworms (90, 150,
161–164). Though we have only just begun to define the seque-
lae of helminth glycoconjugate interactions with innate immune
receptors, described above, it seems likely that this class of mole-
cules plays a large role in dictating the character of the immune
response to infection.

CORRELATES OF PROTECTION FROM HELMINTH INFECTION
Although the association of Th2-type immunity with helminths
has been recognized for decades, we are still unraveling the effector
mechanisms through which Th2 components control worm infec-
tions. Animal infections with gastrointestinal nematodes provide a
model of an effective Th2-mediated response. Immunity to intesti-
nal nematodes depends on Th2 cytokines (IL-4, IL-5, IL-9, and IL-
13) and is antagonized by Th1 cytokines. Mast cells and basophils
are critical for expulsion of GI worms in some animal models, but
are not always necessary (165, 166). Th2 cytokines have important
protective effects directly on epithelial cells, including goblet cell
hyperplasia, increased smooth muscle contractility, and secretion
of molecules that directly target worms (22, 164, 165).

Animal models of helminth infection have demonstrated that
some immunological effector mechanisms are successful in com-
batting helminth infection. In the brown rat, which eliminates
S. mansoni before patency, complement fixation, IgG2a and IgE
levels,mast cell degranulation,and eosinophil-mediated antibody-
dependent cellular cytotoxicity (ADCC) have been cited in pro-
tection (167–172). In rhesus macaques, another protective model
for schistosomiasis where adult worms become attenuated in the
weeks after reaching patency, IgG-mediated complement killing
of schistosomules, and neutralization of adult worms have been
demonstrated (173–175). Other animal models have shown that
eosinophils, monocytes/macrophages, and neutrophils can medi-
ate in vitro ADCC of various helminth larvae including S. mansoni,
F. hepatica, and S. stercoralis (176–178).

In human schistosomiasis cohorts, some adults acquire fewer
infections and have lower worm burdens compared to children
and more susceptible adults (179). Eosinophilia is a relatively well-
established correlate of human schistosomiasis resistance (180,
181). Human eosinophils can kill schistosomula in vitro via IgG
from infection antisera (182–184), however, there is no direct evi-
dence that ADCC occurs during the course of human or animal
infection, and eosinophilia can also be accounted for by the pres-
ence of type 2 granulomas (185). Mouse models of eosinophil
knockout and eosinophil depletion have implicated a protective
role for this cell type in some tissue-dwelling nematodes, but for
many helminth models, eosinophils appear to play no role in pro-
tection [(186); and reviewed in (187)]. Rather than playing a direct
role in the damage of worms, their importance may be to support
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other cells which have been shown to act directly on worms,
such as basophils and alternatively activated macrophages [(188);
and reviewed in (189)]. Thus, whether eosinophils contribute to
protection in human helminth infections remains controversial.

High IgE levels (to heterogeneous schistosomula and adult anti-
gens, as well as more specific antigens, such as Sm22) and high
IgE/IgG4 ratios, are well-established correlates of human resis-
tance to schistosomiasis, while IgG2, IgG4, and IgM are negatively
correlated (190–194). IgA to the tegumental protein Sm28GST
was also correlated with resistance in one study of human sub-
jects (195). IgE is known to mediate mast cell degranulation,
however, paradoxically, mastocytosis was found to correlate with
susceptibility to reinfection in one occupationally exposed human
schistosomiasis cohort (196). The negative correlation of IgM,
IgG4, and IgG2 with human resistance has been attributed to
their ability to block IgE and IgG-mediated effector mechanisms
of parasite killing in vitro (191, 197–199). The factors that stim-
ulate skewing toward production of either protective or blocking
antibodies, sometimes to the same targets, are unknown.

An alternative hypothesis for the association of IgE with pro-
tection from schistosomiasis has been formulated based on the
recent observation that CD23+ B cells are associated with resis-
tance in a Kenyan cohort (200). B cells bind parasite-specific IgE
through CD23, the low-affinity IgE receptor, and upon encounter-
ing parasite antigen,are activated by IgE crosslinking to endocytose
the antigen. This mechanism could enable a large population
of B cells to present parasite epitopes to T cells, which would
in turn activate cognate parasite-specific B cells. The increasing
amount of parasite-specific IgE could thus steadily increase the
magnitude of the antibody response over the course of several
infections, outweighing the immunosuppressive effects of some
worm products (201). Such a robust IgE, IgG1, IgG3, and IgA anti-
body response would perhaps then be capable of destroying larvae
and/or adult worms through a combination of the mechanisms
discussed above.

T cell-mediated immunity may also play a role in the defense
against helminth infection. Mice repeatedly vaccinated with irra-
diated S. mansoni cercaria develop a high level of protection which
has been attributed to both Th1 and Th2 mechanisms, including
complement activation, CD8+ T cell cytotoxicity against schisto-
somula, and T cells and macrophages trapping schistosomula as
they migrate through the lung (202–205). The protection of these
mice is dependent on both antibodies and T cells (206–208). The
role of Th1 responses in humans is still unclear. In some popula-
tions endemic for schistosomiasis and lymphatic filariasis, a mixed
Th1/Th2 profile is associated with an effective immune response,
whereas in hookworm infection, only Th2 appears to be correlated
with resistance (22, 209). In some human populations, resistance
to schistosome infection is correlated with increased production
of IFNγ by CD4+ T cells stimulated with recombinant Sm14 pro-
tein and other antigens (210, 211). Polymorphisms in the IL-4 and
IFNγ genes have also been associated with resistance levels (212).
Thus, while many possible in vitro and in vivo mechanisms against
helminths have been described, it is yet unclear which, if any, of
these is implemented by a successful human immune response,
and which would be desirable in an anti-helminthic vaccine.

THE ROLE OF GLYCANS IN ADAPTIVE IMMUNITY TO HELMINTHS
Helminths produce an abundance of glycoconjugates that are a
rich source of antigens for the immune system of their defini-
tive hosts. For example, the S. mansoni cercarial glycocalyx, some
of which is shed into the skin during penetration and some of
which is retained on the parasite surface, is around 80% car-
bohydrate by weight (17, 149, 150). In fact, the majority of the
human and animal antibody response to schistosomes is directed
to glycan antigens (213, 214). Anti-glycan antibodies (αGAbs) are
a common feature of helminth infections. It has been challeng-
ing to define their role in protection, in large part because, as
described above, there is little consensus on the general mecha-
nisms of immunity (anti-glycan or otherwise) that are protective
against helminths, with different hosts likely employing different
protective mechanisms. This section will highlight the importance
of αGAbs and address the continuing challenges to defining their
role in helminth infection.

Helminths use specialized mechanisms to invade host organ-
isms and establish a niche in their tissues for long-term survival
or to enable passage of eggs out of the host. Helminth glycans are
involved in the establishment of such niches, and antibodies to
glycans can interfere with this process. The nematode T. spiralis,
which causes trichinellosis, caps its multi-antennary N -glycans
with the unique monosaccharide, tyvelose. Monoclonal antibod-
ies to tyvelose are a major component of the natural protection
conferred on suckling rat pups by infected dams and protect pups
when passively transferred. In epithelial cell culture models, anti-
bodies to tyvelose bind surface glycoproteins of the invading L1
larvae, inhibit migration into the cell layer and interfere with molt-
ing (30, 33, 215, 216). This could be how larvae are prevented from
colonizing gastrointestinal epithelium in the protective models.
While antibodies to tyvelose are protective in the rat model of T.
spiralis infection, antibodies to PC moieties are not (217). Mucosal
antibodies to a carbohydrate antigen of the gastrointestinal nema-
tode Trichostrongylus colubriformis also prevent establishment of
larvae in the sheep gut (218). In schistosomiasis, eggs must traverse
the endothelium and intestinal wall in order to exit the host via
stool. Using in vitro models of egg attachment to human umbilical
vein endothelial cells, antibodies to E-selectin and Lex were shown
to decrease adhesion (219). Whether the ability of αGAbs to inter-
fere with host tissue interactions in the models is due to blockage
of specific glycan-binding interaction or due to other neutralizing
or physically damaging effects on the worms, is unclear. However,
interference with invasion or adhesion through blocking surface
glycans clearly represents an opportunity to induce protection
and/or interfere with pathogenesis.

The antibody effector mechanisms most well known to damage
or kill schistosomula in vitro are ADCC and complement acti-
vation, and αGAbs are capable of both. Pioneering work by the
Capron group used a semi-permissive rat model to isolate an IgG2a
called IPLSm1. The antibody killed schistosomula in vitro via
eosinophil-mediated ADCC and passively transferred resistance
to naïve rats (171). IPLSm1 targeted a 38-kDa surface glycopro-
tein which was also recognized by infected monkey and human
sera, and was cross reactive with Keyhole Limpet Hemocyanin
(KLH) glycans (220, 221). Our present knowledge of KLH and
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schistosome cross-reactive glycans supports the hypothesis that
IPLSm1 targeted the FLDNF glycan (49, 50) (Table 1). The 38-kDa
antigen was also used to develop an anti-idiotype vaccine, which
conferred 50–80% protection to rats and induced antibodies that
mediated ADCC (222). Mice also develop abundant antibodies to
LDN-based glycans, including IgE, IgG1, and IgG3 (but not IgG2)
to LDNF, indicative of a skewing toward Th2-type antibody effec-
tor mechanisms such as ADCC (223, 224). A murine IgM to LDN
isolated by our group mediates complement killing of schistoso-
mula in vitro (122). The Harn group isolated three murine αGAbs,
two of which, an IgM against the Lex antigen and an IgG2b against
an unknown carbohydrate antigen, were protective and mediated
in vitro complement killing, and an IgG3 that was not (61, 225).

Adaptive immunity to glycans may also be involved in aspects
of helminth pathogenesis. LN- and LDN-coated beads induce
schistosomiasis-like granulomas in murine livers. It is unclear
whether this model works through adaptive or innate mechanisms,
but fucosylated glycans known to bind C-type lectins did not
induce granulomas (226, 227). The anti-Lex antibodies induced
by schistosomes are cytolytic to human myeloid cell lines. These
antibodies could potentially be responsible for mild neutropenia
seen in infected humans, or for killing of schistosomula (63).

Antibodies generated by mammalian hosts to helminth gly-
cans are not only abundant but highly specific. Schistosomes, for
example, present the same glycan epitope in a variety of struc-
tural contexts, such as on N - and O-glycans, or as single or
multibranched glycans, as diagrammed in Table 1. The struc-
tural presentation of such epitopes as Lex and LDNF can vary
among schistosome life stages, localization, and sexes (48, 228,
229). Data from our lab and others have demonstrated that mon-
oclonal antibodies and sera from infected hosts can discriminate
against very similar epitopes, such as the monomeric, biantennary
N -glycan, and multimeric forms of the Lex or LDNF trisaccharide
epitopes (60, 228). Given that some of these structural variants are
somewhat similar to mammalian glycans, this high level of speci-
ficity could be crucial to developing an effective parasite-specific
antibody response. Anti-schistosomal monoclonal antibodies with
well-defined glycan specificity can be used to isolate parasite glyco-
conjugates and potentially identify novel vaccine targets including
both glycan and protein epitopes (60). We and others are devel-
oping the Glycomics tools that will help us to better define the
specificity of the αGAbs against helminths (230–232).

Whether human resistance to helminth infection is mediated
by αGAbs is a fascinating but complex question, which has only
been addressed in a handful of studies examining correlative evi-
dence. S. mansoni-exposed humans and non-human primates
make antibodies to glycan epitopes with fucosylation patterns
unique to schistosomes such as FLDN and LDN-DF (233, 234).
One group observed that a Kenyan population showed decreases
in IgG1 to FLDN and LDN-DF, and increases in IgM to LDN-
DF and LDNF, over the course of 2 years after migrating from a
non-endemic to schistosomiasis-endemic area; the same associa-
tions were seen with increasing age in the schistosomiasis-endemic
resident population (234). Levels of IgE to worm glycolipids pre-
praziquantel treatment were inversely correlated with egg burden
2 years after treatment in another population (235). Using shot-
gun glycan microarrays made from the intra-mammalian stages

of schistosomes, other investigators have found that S. mansoni-
infected adults make IgG and IgM to several fucosylated glycan
epitopes, and that children have modestly higher titers than adults
to most glycans (230, 236). Collectively, these studies are difficult to
interpret, due to the challenges of identifying human populations
that truly show variable resistance and susceptibility (mechanisms
of which likely differ among populations), the difficulty of obtain-
ing glycan preparations that are both pure and accurately mimic
the mode of presentation by the parasite, and the differential
significance of antibody isotypes and sub-isotypes in human resis-
tance. Further studies are needed to strengthen these correlations
and more directly examine the role of αGAbs in protection from
schistosomiasis and other human helminth infections.

Other reports have indicated that antibodies to glycans can
be non-protective or even block the development of resistance
to helminths. Heligmosomoides polygyrus, a well-studied mouse
model of gastrointestinal nematode infection, elicits a non-
protective immunodominant response to an O-linked glycan on
VAL antigens (237). Following isolation of a protective IgG2a
against S. mansoni 38-kDa antigen mentioned above, a second
antibody, an IgG2c that targeted the same glycan, was isolated
from infected rats. The IgG2c blocked the protective effect of the
IgG2a in vitro and in vivo, which may be why a response to this
epitope was correlated with infection in humans but not with
resistance (197). It had earlier been hypothesized, based on results
from a complex series of experiments on chronically infected and
radiation-attenuated cercariae vaccinated mouse sera, that levels of
antibody to parasite surface antigens is not simply correlated with
protection. Protection may instead depend on a particular balance
of blocking and protective antibodies, possibly against the same
antigens (238). Clearly such counteractive effects of antibodies to
glycan antigens should be explored in more detail.

The lesson of all of these studies is that helminth glycans, like
protein epitopes, can induce both protective and non-protective
antibodies. Rather than viewing glycans as a class of targets and
asking,“is their role protective or subversive?” we should continue
to identify particular anti-glycan specificities and isotypes that can
afford protection, design experiments to directly test their role, and
develop technologies to better understand which structural pre-
sentations and innate cues are required to incite production of
protective versus non-protective antibodies.

APPLICATIONS OF HELMINTH GLYCANS TO DIAGNOSIS AND
VACCINATION
It has long been known that helminths synthesize unique glycan
structures, which are targeted by the adaptive immune response
in natural infection; however, this rich collection of antigens has
yet to translate into molecular targets for diagnostics and vaccines.
This section will emphasize research on how control of helminth
infection can be improved by exploiting glycans as novel diagnostic
and vaccine targets.

Treatment of helminth infections currently relies on
chemotherapeutics such as albendazole and praziquantel (6, 239).
Prevalence in some areas is so high that mass drug adminis-
tration (MDA) has been implemented for school-age children.
Chemotherapy significantly decreases worm burden and morbid-
ity but is not always curative, and its effectiveness varies depending
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on the worm life stage. Single-dose cure rates range from 15 to
72% in various helminth infections (239). However, the effective-
ness of MDA in controlling transmission and reducing morbidity
is difficult to determine, because traditional diagnostic methods
are laborious and insufficient to detect low-level infection or track
variations in worm burden (240, 241). The “gold standard” for
diagnosis of helminth infection continues to be microscopic exam-
ination of stool or urine samples for eggs. However, eggs are not
consistently shed into feces and urine. Despite improvements in
the sensitivity and ease-of-use of these tests, stool samples are still
difficult to obtain in the field, often yield false negatives due to
temporal variation in egg-laying, and differentiation of the type
of helminth eggs in stool requires skilled laboratory technicians
(239–242).

Commercial ELISA-based detection kits are available for diag-
nosis of some parasites including malaria (Plasmodium species),
cryptosporidiosis, and giardia in stool, urine, or serum samples.
For helminths causing schistosomiasis, filariasis, and trichinellosis,
antibody-based tests are available from commercial sources or by
special request from the CDC but are not widely used in endemic
areas (9, 243). Antibody tests are generally sensitive, but they suffer
several drawbacks, such as inability to differentiate between active
(acute or chronic) and past infections, cross-reactivity among
multiple helminth species, and difficulty of performance in the
field (242, 243).

Recent studies have uncovered a new set of potential diag-
nostic antigens, found in serum and urine, for schistosomiasis
and other helminths. Carbohydrate-based antigens and αGAbs
are promising tools given that they are chemically stable, specific
to particular helminth species, vary with stage of infection, and
are expressed both on worm surfaces and in secreted products.
Several glycan-based detection methods are now in the pipeline
for schistosomiasis (244, 245). A point-of-care urine dipstick test
for the schistosome excreted circulating cathodic antigen (CCA)
(Table 1), whose antigenicity is due to Lex repeats, is now com-
mercially available (245, 246). It is easier to perform in the field
and has higher sensitivity than a single Kato-Katz smear, and it can
detect prepatent infections in very young children (245, 247, 248).
Additionally, a test for the other well-studied circulating schisto-
some glycan antigen, circulating anodic antigen (CAA), which is
excreted by adult worms into urine and serum, has recently been
adapted for field use with promising results. The test is highly
sensitive and can detect just a few worm pairs (249). These and
other novel diagnostic tests are ready for rigorous comparison in
the field and are likely to change the face of schistosomiasis diag-
nostics in upcoming years. Another epitope, apparently unique
to schistosomes, is DF-LDN-DF, which forms the epitope for the
monoclonal antibody 114-4D12. This antibody can be used to iso-
late free urinary glycans for detection by mass spectrometry, and
to identify the DF-LDN-DF on egg glycoproteins from the blood
or urine via ELISA (243, 250, 251).

Molecular detection of trichinellosis identifies antibodies to the
TSL-1 glycoprotein, of which β-tyvelose is the immunodominant
epitope. Synthetic tyvelose outperformed worm ES antigens in
detection of these antibodies via ELISA (9, 72, 252). The cestode
Echinococcus multilocularis, which causes rare but serious infec-
tion in humans, is detected by ultrasonography and antibodies

to the Em2 glycoprotein (9, 253). Recently, it was shown that
the immunodominant Em2 epitope is a unique O-linked glycan
capping structure, Galpα1-4Gal, and that antibodies to this struc-
ture were highly sensitive and specific for detection of infected
patient sera via ELISA (254, 255). The same group has also
identified a novel glycoprotein for detection of E. multilocularis
infection in dogs, which may be an important source of human
acquisition (253).

Modern glycan microarray technology is also being used to
identify new glycan candidates for diagnosis of helminths. Stud-
ies have shown that LDNF, which is more easily produced in the
lab than tyvelose, is also a sensitive indicator of T. spiralis infec-
tion (256). Similarly, results from glycan microarray analyses have
shown that the sheep nematode H. contortus possesses Galα1-
3GalNAc, which is antigenic and uncommon among nematodes
and trematodes (257). These new microarray technologies have
the promising ability to screen a single sample for antibodies to
multiple glycans from different helminth species, many of which
are co-endemic, in a microscale assay. Thus, glycan arrays have
enormous potential to define the diagnostic antigens of the future.

Development of resistance to anti-helminthics, especially in the
face of MDA, has long been of concern. Reduced susceptibility to
praziquantel has been reported in some human schistosomiasis-
endemic areas, and it is possible to generate resistant schistosomes
in the lab (258). Only one new anti-helminthic, tribendimidine,
has become available in the last 30 years (259, 260). However, its
mechanism is similar to two existing anti-helminthics, and little
research is taking place to discover novel mechanisms and drug tar-
gets (6, 261). Donations of such drugs are currently meeting only
5 and 49% of the global need for schistosomiasis and hookworms,
respectively, and these drugs do not interrupt the chain of trans-
mission, owing to variable efficacy rates, animal reservoirs, and
frequent re-infections in children (3, 5, 7, 242). Clearly, vaccines
that expedite the development of immunity are a much-needed
intervention in control of helminths.

Animal models of vaccine-induced immunity to helminths
have used attenuated parasites and worm lysates or other worm
products. Due to the difficulty of maintaining a complex life cycle
in large scale, and the danger associated with manufacturing this
type of vaccine, it is unlikely to be a practical solution. Mod-
ern vaccine development for parasitic helminths has focused on
recombinant proteins but not on glycoproteins, which represent
the major targeted antigens of infection. In the mid-1990s, six
S. mansoni proteins, studied in various labs, were chosen by the
WHO to undergo independent laboratory testing. None of these
reached the required 40% effectiveness required to move past ani-
mal testing (262). Two candidates have more recently reached the
clinical phase. Bilhvax (Sh28-GST) has progressed through phase
I, II, and III trials, however, there has been a more than 10-year
delay in publishing the results (263). Another candidate schisto-
somiasis vaccine, Sm14, may enter clinical trials this year, and at
least two more candidates are progressing through the pre-clinical
pipeline (264). The N. americanus protein ASP2 was clinically
tested for prevention of hookworm, but recipients of the vac-
cine developed hives (265, 266). Currently two more hookworm
candidates, GST1 and APR1, are being developed and clinical
testing for GST1 should start soon (8, 265, 267). These studies
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highlight the difficulty of identifying effective targets and inducing
the proper character of immune response for helminth vaccines.
Modern methods of producing recombinant glycoproteins may
allow future targeting of specific glycoprotein antigens for vaccine
studies.

Localization of target proteins may be one of the problems with
early vaccine candidates for schistosomiasis. Several of the pro-
tein candidates were later identified in the worm tegument, but
only one was found in apical membrane preparations (14, 268).
A newer strategy is to use proteomic studies to identify protein
candidates which are exposed on the worms’ surface, accessible to
immune effectors, and vital for worm functions such as membrane
assembly and blood feeding (8, 269, 270). One of these studies
used biotinylation reagents to label accessible adult S. mansoni
tegument proteins. Only a small subset of proteins was identified,
suggesting that many surface proteins are shielded from immune
attack by the glycan and lipid-rich membranocalyx (8, 270). In
light of the difficulties faced in developing recombinant protein
candidates as schistosome vaccines, we suggest taking advantage of
the rich collection of non-protein antigens surrounding vulnerable
stages of the worms.

Given the rapid turnover of helminth surface antigens, varia-
tion in their expression among life stages, a successful vaccine may
need to target more than one epitope. Glycan epitopes offer the
advantage of being densely distributed on numerous glycoconju-
gates on the parasite surface, and expressed throughout multiple
life stages. The schistosome is a well-characterized demonstration
of this observation. Our group has shown that LDN and LDNF
are expressed on the surface of S. mansoni cercariae, schistoso-
mula, and adult worms as well as in SEA (122), and that LDNF
is expressed on all three major schistosome species (223). Other
fucosylated variants which are not shared by mammalian hosts,
such as LDN-DF and FLDNF, have been localized to eggs, cercariae,
adult gut, and tegument, and appear on numerous distinct glyco-
proteins and glycolipids as detected by ELISA, Western blotting,
and immunofluorescence of whole parasites and parasite sections
(20, 271). An additional advantage is that because glycan structure
is not linearly encoded in the genome, selective pressure is less
likely to result in the escape of glycosylation mutants than is the
case for proteins.

Vaccination experiments have also demonstrated that eukary-
otic glycoconjugates are viable vaccine targets. Vaccination of
lambs with alhydrogel-adjuvant excreted/secreted products of the
nematode H. contortus conferred a high level of protection which
was correlated with IgG antibodies to LDNF and Galα1-3GalNAc
(257, 272). Other studies that used natively purified activation-
associated secreted proteins (ASPs) from the cattle nematode O.
ostertagi also afforded protection, and showed that the recombi-
nantly produced ASPs from E. coli were unable to induce protec-
tion or any antibodies to native ASPs (273). Hybrid-type N -glycan
structures were characterized on the native protein and, while
antisera were not directly reactive with the glycan structures, it
was hypothesized that they were necessary for proper folding
of the native antigen. Another approach taken was to explore
an anti-idiotype vaccine, which was found to be protective in
rats and to generate immunity to a 38-kDa glycoprotein anti-
gen mentioned above (222). A vaccine against a P. falciparum

glycosylphosphatidylinositol (GPI) induced IgG that was able to
neutralize parasite pathogenesis in vitro (274).

Further studies are needed to better define the glycan antigen
structures of helminths, to develop novel methods of producing
and presenting eukaryotic glycans in an immunogenic fashion,
and to discover the glycosyltransferases necessary to generate the
worm glycan structures that are foreign to mammals. The cen-
tral role of glycans in adaptive immunity to helminths and these
early studies into their protective capacity indicates that, with
further innovation, glycan-based diagnostics and vaccines may be
an important intervention in the control of helminth infection.

GLYCAN INTERACTIONS WITH INTERMEDIATE HOSTS
As previously stated, schistosomes synthesize a complex array
of glycan structures on both membrane and secreted glycocon-
jugates. Many of these glycans have been found to be potent
antigens in vertebrate hosts, but their roles in snail infections are
poorly understood (275–277). Emerging evidence suggests that
schistosome glycoconjugates play a pivotal role in both cellu-
lar and humoral immune interactions between their molluscan
intermediate hosts and the infecting larval stages (277–279).

There appears to be a role for fucosylated carbohydrate epitopes
expressed by larval and adult schistosomes in parasite evasion in
intermediate and definitive hosts (275, 280, 281). During invasion
of the snail body, the miracidia penetrate the epithelium allowing
for direct interaction of the snail tissues with the miracidial gly-
cocalyx. The carbohydrate epitopes present on the surface of the
miracidium during this time may be of prime importance dur-
ing the invasion process. Recently, it was shown that B. glabrata
synthesizes a broad battery of N -glycans on multiple glycoproteins
comprising at least two carbohydrate determinants that cross-react
with glycoconjugates from S. mansoni eggs (282).

It is well known that S. mansoni glycan expression is devel-
opmentally and stage-specifically regulated, but until recently, the
glycan epitopes expressed in miracidia and sporocysts were largely
unknown. Using a mass spectrometry approach for glycomic
profiling, Hokke et al. found evidence for expression of multi-
fucosylated, LDN-terminating di- and tri-antennary structures,
as well as the presence of the truncated trimannosyl and core-
xylosylated/core-α-1,3-fucosylated N -glycans in miracidia (283).
Lehr et al. demonstrated the surface expression of FLDN, FLDNF,
LDNF, and LDN-DF in miracidia and the presence of these, as well
as non-fucosylated LDN, and Lex glycans in secondary sporocysts
(275, 282, 283). Alpha-1,3-fucosylated LDN structures (FLDN,
FLDNF, LDNF) are prominently expressed on the larval surface
and amongst glycoproteins released during larval transformation
and early sporocyst development. This stage-specific expression
implies a role for these glycans in snail–schistosome interac-
tions. Also, sharing of specific glycans FLDN and trimannosyl
N -glycans with B. glabrata suggests an evolutionary convergence
of carbohydrate expression between schistosomes and their snail
host (275).

Larval glycans and/or their associated glycoconjugates might
also be serving as PAMPs that interact with lectin-like PRRs (284).
PRRs, such as Toll receptors, C-type lectins, galectins, nucleic
acid-sensing receptors, and the intracellular nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) occur both
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extracellularly and intracellularly, with the galectins notably found
in both the cytoplasm and extracellularly (285). In terms of gly-
coconjugates in helminth infections and their interactions with all
types of PRRs, little is known, and the most well-studied interac-
tions involve C-type lectins and galectins. There is also evidence
that glycans may be important in the intermediate hosts’ innate
immunity and PRR recognition and may involve novel PRRs. Dur-
ing their development in the molluscan intermediate host, S. man-
soni sporocysts release excretory/secretory glycoproteins that bind
to lectin PRRs on the surface of the snail host hemocytes and are
believed to modulate the ability of the hemocytes to interact with
the developing larvae (279). The binding of glycoconjugates to B.
glabrata hemocyte lectins can trigger the generation of parasite-
killing reactive oxygen species, thereby mediating innate immune
responses to invading miracidia (10, 275, 277, 280, 281, 284).

Glycans may also be the targets of humoral immune responses
mounted by the molluscan hosts against larval infection. B.
glabrata snails respond to infection by secreting humoral factors
into their hemolymph that bind and precipitate larval excre-
tory/secretory antigens. These factors contain N- and C-terminal
domains with similarities to immunoglobulin super-family pro-
teins and fibrinogen, respectively, and are called fibrinogen-related
proteins (FREPs) (277, 284, 286). To counteract FREPs, devel-
oping primary sporocysts envelope themselves in a glycan-rich
environment comprised mainly of glycoproteins and other gly-
coconjugates referred to as larval transformation products (LTPs)
(284, 287). LTP glycoconjugates released during transformation
are able to alter patterns of shared glycan epitopes by either
binding and blocking, or by exposing them. This is a possible
mechanism by which molecules released from early developing
larvae may impact initial immune interactions at the host-parasite
interface and shows the potent immune modulating effects of
LTPs (284, 288).

CONCLUSION AND FUTURE PERSPECTIVES
Molecular insights into the innate and adaptive immune responses
to glycoconjugates of parasitic helminths are providing new direc-
tions for developing diagnostics, therapeutics, and potential vac-
cines toward these organisms. Developing evidence indicates that
parasitic helminths utilize a wide variety of glycosylated molecules
to successfully infect their vertebrate and often invertebrate hosts.
The parasite glycans are characterized by their complex structures

that are often multifucosylated and rich in unusual monosaccha-
rides and modifications, making them strong targets for adaptive
immune responses. Such unusual glycans also demonstrate strong
recognition and signaling by DCs and MΦs, through lectins, TLRs
and CLRs, and other antigen-processing cells that serve to limit
inflammation and promote parasite survival. The cross talk that
occurs from these glycan-dependent signals is important in initi-
ation of the adaptive immune response, but could also contribute
to the overall polarization of immunosuppressive responses to
the parasite infections. Many glycoconjugates of parasites are
potent immune modulators which have the potential to be chan-
neled into effective immunoregulatory therapies with potential
for treating multiple chronic inflammatory diseases, such as MS
or Crohn’s disease. While glycans are targets in natural infections,
much remains to be learned about the expression and functions of
parasite-derived glycans, and their potential role in resistance to
infection. While some glycans are useful in diagnostics and mon-
itoring, none of the specific glycans of these parasites has yet been
translated into molecular targets for vaccines.

Some of the key questions that need to be addressed in helminth
glyco-immunology are: what is the full range of unique helminth
glycans and how is their expression on glycoconjugates regu-
lated? What is the full repertoire of glycan-binding proteins or
receptors on host cells that function to respond to helminth gly-
cans? Which glycans are responsible for the immunosuppressive
effects of helminth products? What signaling pathways mediate
the complex cross-talk among CLRs and other PRRs? What are the
vaccine design considerations for utilizing parasite glycan antigens,
which are structurally distinct from repeating bacterial polysac-
charide antigens? Which anti-glycan antibody isotypes/arms of
effector immunity are protective in helminth infection? Can gly-
cans be used as diagnostics to differentiate among co-endemic
helminth infections and active versus cured infections? And could
glycan-based interactions with intermediate hosts be exploited for
transmission control? Given the growing realization that the par-
asite glycome is active in pathogenesis and resistance, it will be
exciting to see the coming results from future research in this key
area of biomedical importance worldwide.
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