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Abstract

Background: The decreasing costs of sequencing are driving the need for cost effective and real time variant calling
of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing
resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers
also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant
calling strategies either fail to scale up to large datasets or abandon joint calling strategies.

Results: We present a high throughput framework including multiple variant callers for single nucleotide variant (SNV)
calling, which leverages hybrid computing infrastructure consisting of cloud AWS, supercomputers and local high
performance computing infrastructures. We present a novel binning approach for large scale joint variant calling and
imputation which can scale up to over 10,000 samples while producing SNV callsets with high sensitivity and
specificity. As a proof of principle, we present results of analysis on Cohorts for Heart And Aging Research in Genomic
Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole
genome samples was produced in under 6 weeks using four state-of-the-art callers. The callers used were SNPTools,
GATK-HaplotypeCaller, GATK-UnifiedGenotyper and GotCloud. We used Amazon AWS, a 4000-core in-house cluster at
Baylor College of Medicine, IBM power PC Blue BioU at Rice and Rhea at Oak Ridge National Laboratory (ORNL) for the
computation. AWS was used for joint calling of 180 TB of BAM files, and ORNL and Rice supercomputers were used for
the imputation and phasing step. All other steps were carried out on the local compute cluster. The entire operation
used 5.2 million core hours and only transferred a total of 6 TB of data across the platforms.

Conclusions: Even with increasing sizes of whole genome datasets, ensemble joint calling of SNVs for low coverage
data can be accomplished in a scalable, cost effective and fast manner by using heterogeneous computing platforms
without compromising on the quality of variants.
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Background
Large cohort studies are extremely useful for discovering
genotype phenotype associations and to characterize vari-
ation with great public health significance [1–4]. The de-
creasing costs of sequencing are increasingly making it
possible to sequence whole genomes in the millions in the
coming years [5]. The past decade has also seen the devel-
opment of many joint calling approaches for genomic data
produced with low coverage whole genome sequencing

[6–8]. Joint calling is necessary for low to medium cover-
age sequencing projects (~10×) as it further reduces false
positives rate especially at the rarer end of the site fre-
quency spectrum. It is also clear that improving the yield
of variants from sequenced data across the whole spectrum
of variants requires the deployment of diverse statistical
and algorithmic approaches [9–11]. It is also important to
correct for algorithmic biases to ensure high fidelity vari-
ants [12]. Consensus strategies on ensemble calling of low
coverage sequencing data in the 1000Genomes project [1]
has produced variants with high sensitivity and low false
discovery rate (FDR). Imputation strategies have also been
shown to improve the variant discovery power of variant
calling pipelines analyzing low coverage data [11, 13]. For
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example, the 1000Genomes Phase 3 (1000GP3) Project
used multiple joint callers for site discovery, followed by a
genotype likelihood step and an imputation and phasing
step [1] for ~2500 whole genome low coverage samples.
Given the projected growth in sequenced data in the com-
ing years, variant calling pipelines will have to adapt to a
computational footprint of an unprecedented scale and
make it tractable both in terms of time and costs. It will re-
quire an extremely generous data storage facility and a
massive number of cores. Variant calling of ~ 2500 whole
genome samples in the 1000GP3 project took multiple in-
stitutions to collaborate over months to produce the final
results. Huang et al. [14] estimate 1–2 months of exclusive
access on a typical Local High Performance Compute
Cluster (LHPC) to accomplish Single Nucleotide Variant
(SNV) calling using SNPTools [8] for the 1000GP3 dataset.
The advent of cloud computing framework [15] has

significantly boosted the ability to tackle problems of
scale, with several existing cloud based solutions to
process genomic data [16–21]. There has been some
past work on porting state-of-the-art variant calling
pipelines [22] for targeted whole exome sequencing of
thousands of samples to the Amazon Web Services
(AWS) [15] cloud [19, 21], but a cloud based ensemble
calling workflow for thousands of whole genomes is
lacking. Instance limits on data storage is a serious
limitation for joint calling of large cohorts in the AWS
environment, which is typically not a problem in an
LHPC environment with sufficient capacity. Scaling up
the LHPC infrastructure to meet the computational
needs can prove to be costly as the cost of maintaining
just a 100 node cluster can run up to 100,000$ a month
[23, 24]. Large supercomputers typically deployed in
computing centers and Department of Energy leadership
computing facilities provide systems with large number
of computing cores with specialized integer and floating
point arithmetic, memory capacity, low-latency and
high-bandwidth network, and high-capacity IO [25, 26].
However, most of these systems limit the execution time
of a job to a few tens of hours. This is a major limitation
to workloads such as joint calling of a large cohort of
WGS samples, whose jobs are typically hundreds of
hours [24].
In this work, we show that variant calling pipelines

using a hybrid computational environment can leverage
the strengths of each architecture to process cohorts with
thousands of whole genome samples in real-time while
minimizing operational costs. As a proof of principle, we
present performance metrics of SNV calling on the Co-
horts for Heart and Aging Research in Genomic Epidemi-
ology WGS freeze 3 dataset (CHARGES-F3) [4] using
three different computational environments. There are
5297 whole genome sequenced (WGS) samples in this
dataset sequenced with 6 × –10× coverage for a total of

180 TB of aligned BAM file data. The variant calling
workflow is divided into four stages, where Stage A is de-
fined as the variant site identification stage involving four
callers, Stage B as the consensus site filtering step, Stage
C as the genotype likelihood step and Stage D as the im-
putation and phasing step. For the CHARGES-F3 dataset,
Stage A, Stage B, Stage C and Stage D were completed on
AWS [10], LHPC at Baylor College of Medicine, AWS
and the large supercomputers at ORNL [20] and Rice [21]
respectively. The four joint callers used in Stage A are
SNPTools [8], GATK HaplotypeCaller (GATK-HC) [6],
GATK UnifiedGenotyper (GATK-UG) and GotCloud [7].
The SNPTools genotype likelihood module and imput-
ation and phasing module are used for Stage C and D re-
spectively. We developed a tool called genomic Single
Nucleotide Analysis Pipeline (goSNAP) for this project.
There were approximately 72 million SNVs called in

CHARGES-F3 dataset, with approximately 50 and 60 %
novel with respect to 1000GP3 and dbSNP141 databases
respectively. Using a strategy which includes all sites
which have been called by at least 3 callers (consensus
3of4), we ensured false discovery rate (FDR) < 3.34 %
and specificity of over 99 % in the final callset with re-
spect to a golden dataset consisting of whole exome se-
quenced samples with 80–100× coverage. The entire
operation was finished in 50 days with a total core hour
usage of ~ 5.2 million across all the infrastructures (see
Table 2). Each aligned BAM file was split into 1 Mbp re-
gion for joint calling on AWS. This created a cache data
footprint of 360 TB with a time to live not exceeding
14 days. Only 6 TB of data was transferred across all
platforms. The goSNAP pipeline is designed to minimize
egress charges, data storage charges and data transfer
costs. It optimizes on concurrent core usage to be cost
effective and fast. To the best of our knowledge, ensem-
ble calling on a WGS cohort with over 5000 samples has
not been done before and this approach can be easily
scaled to 10,000 samples (see Discussion).

Results
The workflow for the goSNAP pipeline has been de-
signed to address the scalability challenges in large scale
genomic computing, and to minimize egress charges and
computational time, while ensuring high quality results
in variant calling. When scaling up, the major computa-
tional bottlenecks are the joint calling and imputation
and phasing step. To address these challenges, we have
designed and tested a hybrid computational paradigm,
which consisted of (1) a Local High Performance Cluster
(LHPC) made up of commodity hardware; (2) Amazon
Web Service (AWS) [15]; and (3) and the supercom-
puters at ORNL (e.g. Titan, Rhea) [25] and at Rice Uni-
versity (Blue BioU) [26]. In this study, we demonstrated
the feasibility of using a hybrid computational paradigm
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in processing large-scale genomic datasets by applying
this to the CHARGE WGS data consisting of 5297 sam-
ples (Methods and Additional file 1).

Challenges in scalabilities for large-scale genomic data
processing
Limitations
Most LHPCs with typical research environments have few
PBs of storage and millions of core-hours per month and
are constrained by hardware limits on data storage, com-
puting power and data transfer bandwidth (see Fig. 1a) to
carry out large computes. Scalability is not a problem for
the AWS computing environment as it allows flexibility to
increases the compute and data resources with a ‘pay per
use’ model [27]. However, the outbound data transfers in-
curs a cost which scales linearly with the amount of data
transferred (see Fig. 1a). It is also necessary to optimize on
all aspects of the compute including memory bandwidth
and capacity (RAM), computing cores (CPU) and IO cap-
acity and bandwidth (HDD) to make optimal use of the
instances and achieve cost-effectiveness. For projects in-
volving big data, there is an additional cost of implement-
ing data parallelization to overcome the limitations of
local instance on HDD space. The large supercomputing
infrastructure has an extremely large data store, premium
hardware optimized for high IO bandwidth, low-latency
and high bandwidth network, and dedicated hardware and
software support for CPU-intensive operations, but com-
puting jobs have to finish within hard wall time limits. For
example, Titan at ORNL [25] requires all jobs to finish

within 24 hrs. Scheduling delays in allocating large num-
ber of resources can add to the turnaround times.

Challenges
Executing the entire pipeline in Fig. 1b on any single plat-
form can be challenging for many reasons. The storage
and compute requirements of Stage A are beyond the cap-
acity of most LHPCs. Implementing Stage A in the AWS
environment requires a workflow which minimizes egress
charges apart from splitting and replication of data for
joint calling to contend with limited per instance HDD
space. Doing Stage A on supercomputers is not scalable as
memory intensive variant calling jobs get in the way of
achieving high concurrency on uniform hardware (see
Fig. 1b). For example, our profiling suggests that GATK-
UG needs approximately 16GB of RAM per joint calling
job across 5000 samples. On a supercomputer like Rhea
[25] with 256 nodes, and 64GB memory per node, no
more than 1000 jobs can be scheduled concurrently. Un-
anticipated batch failures in the presence of maintenance
downtimes and fair share scheduling policy can also ad-
versely affect turnaround times for the whole project.
Variation in coverage can cause job failures across all the
infrastructures.
Stage D does not require IO, RAM or HDD space, but

LHPC resources are still inadequate for Stage D. Using the
AWS environment for Stage D will be an inefficient
utilization of the instances as they are billed for the entire
configuration and not just processing power. In our profil-
ing step, best practices configuration for SNPTools

Fig. 1 a A resource constraint analysis diagram of computing resources with respect to the three available architectures. In this diagram feasibility
is measured in terms of cost, time and resource bounds. b A resource constraint analysis diagram of the variant calling stages for CHARGES-F3
dataset. Feasibility is measured in terms of cost, time and limited computing infrastructure in the AWS cloud environment, Supercomputer and
LHPC respectively. The measure of feasibility is for illustration purposes only and does not conform to any data
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imputation module failed to finish within the maximum
24 hrs wall time limit on Titan [25]. While Blue BioU [26]
was successful in finishing the imputation and phasing step
within 24 hrs on a sample bin, it did not have sufficient
capacity to ensure timely completion of the entire Stage D
computation.

Solution
After extensive profiling and analyzing all the pros and
cons of the three infrastructures, the goSNAP pipeline
ported Stage A on AWS, Stage B on LHPC, Stage C on
AWS and Stage D on Rhea and Blue BioU (see Fig. 2). In
the rest of this section, we first present SNV calling results
and then present performance metrics of the goSNAP
pipeline on the hybrid computational environment.

Results of SNV calling on 5297 low coverage whole
genomes
In Table 1, the results for joint calling of 5297 low cover-
age whole genomes is presented. All sites which have
been called by at least three callers (consensus 3of4) are
included for further analysis. There are approximately
72.9 million bi-allelic SNVs which have been called using
consensus 3of4 approach from the four variant callers
GATK-HC, GATK-UG, SNPTools, and GotCloud. The
transition-to-transversion ratio (Ti/Tv) of 2.12 is consist-
ent with past results [1]. While consensus 2of4 strategy
gave ~86 millions SNVs, the FDR is 11.29 % with respect
to WES gold standard dataset (see Table 1). The consen-
sus 3of4 callset only has a FDR of 3.34 % with the same
gold standard dataset. The sensitivity is greater than 95

% for allele count >5 (see in Additional file 1: Figure S2),
whereas the sensitivity is ~43.1 and ~72.2 % for single-
tons and doubletons respectively. The consensus 3of4
callset has higher specificity and lowest FDR when com-
pared to all the callers. The number of SNVs recovered
in 1000GP3 and dbSNP141 is also the highest among all
the callers. All callers have unique variants in their call-
set (see in Additional file 1: Figure S1), with GotCloud
having the lowest number (~580,000) of unique variants
with respect to the CHARGE-F3 cSNP dataset. The
genotype concordance is 98.7 % for (Ref/Ref ), 84.1 % for
(Ref/Alt) and 99.3 % for (Alt/Alt) when compared to
CHARGE cSNP array gold standard dataset.

Application of our hybrid computational paradigm to
variant calling of 5297 WGS dataset
In our computational model, 5297 aligned WGS BAM
files (~180 TB) are uploaded to the AWS environment. In
the slicing and repacking stage, we slice the BAM of each
sample into windows of size 1 Mbp and repack the sliced
BAM from all samples in the same window into the one
data package (see Method) for joint calling. This size is
empirically determined (see Methods) to fit into AWS in-
stances with HDD space not exceeding 320GBs for the
joint calling jobs, as well as to reduce the number of inter-
mediate files, which improves the efficiency of data access
and transfer between EC2 and S3. Both the slicing and
repacking jobs use “xargs” parallelization to make full use
of the instance CPU cores, which ensure that none of the
cores remain idle and improves the runtime by up to 8
fold whenever possible. Several configurations were tested
in the xargs mode ranging from 1 to 32 cores for the

Fig. 2 goSNAP pipeline workflow minimizes egress charges. Variant calling (Stage A) and genotype likelihood (Stage C) calling is done on the
AWS cloud, consensus filtering and imputation preprocessing is accomplished in the LHPC (Stage B) and Imputation and Phasing (Stage D) is
done at the supercomputers at Rice and Oakridge National labs
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slicing stage, and the most cost effective instance had 8
cores, 16GB RAM and 160GB solid state HDD space (see
Table 2). The repacking stage predominantly uses in-
stances with 1660GB of HDD space to accommodate the
data across all the samples (see Methods). The slicing and
repacking of 200 TB whole genome BAMs takes 2 and
3 days, respectively (74,000 core hours). During this
process, the data is temporarily duplicated twice, and the
cache data copy is removed after the joint calling.
In the joint calling stage, the four variant callers, namely

GATK-HC, GATK-UG, SNPTools and GotCloud are
grouped into one AWS compute job to call variants in
each 1 Mbp region. Each caller is employed in joint calling
mode, and any caller specific per sample processing, for
instance gVCF calling in GATK-HC and effective base
depth (EBD) calculation in SNPTools, is fully parallelized,
which effectively reduces the runtime of the joint calling
step by approximately 5-folds. The joint calling of 5297
genomes only took 2 weeks (1.4 million core hours), with
an average 60 hrs per 1 Mbp region.
The average concurrency is 8000 cores per hour, with

the peak concurrency 10,000 cores per hour. Since any
failure that occurs during the long-running instance jobs
is very costly, we run all the tools in the failure checking
and retry mode (see Method). The average proportion of
runtime taken by GATK-UG, GATK-HC, GotCloud and
SNPTools is 40 %, 30 %, 20 % and 10 % respectively. Nine

types of instances (in Additional file 1: Table S1) are used
in the joint calling stage, of which 56 % of the jobs use an
instance with 8 cores, 61GB RAM and 160GB HDD space.
96 % of the jobs used instances less than 320GB of HDD
space, with four configurations each using at least 18 % of
the total number of jobs. These instances are cores = 8,
RAM= 61GB, HDD= 160GB (34 %); cores = 16, RAM=
122GB (22.5 %), HDD =320GB; cores = 8, RAM= 15GB,
HDD= 160GB (21.5 %); cores = 16, RAM= 30GB, HDD=
320GB (18 %). The remaining instances were used to ac-
commodate the variation of sliced BAM size due to depth
variation across the whole genome. To reduce the egress
charge in the cloud, we split the joint calling results into
two parts, the essential data, containing the multi-sample
VCFs from all callers, and the auxiliary data, containing
intermediate files, like per sample gVCFs or EBD files.
The total amount of output from the whole genome joint
calling is 120 TB, of which only 2 TB of essential data are
downloaded to LHPC for site level consensus filtering and
quality control purpose. All auxiliary data are archived for
future research project.
The site level consensus and quality control is per-

formed on the LHPCs, and a union variant site list is
generated, which is uploaded back to AWS for genotype
likelihood calculations (GL) using SNPTools (see Fig. 2).
The computational resources required for the GL step is
not challenging for most of the infrastructures, but since

Table 1 Variant calling sensitivity and specificity for the consensus 3of4 approach ensures high specificity and FDR without a loss of
sensitivity

Consensus 3of4 Consensus 2of4 GATK-HC GATK-UG GotCloud SNPTools

# SNVs 72,945,834 86,233,412 103,439,411 104,649,069 78,483,824 66,290,585

Ti/Tv 2.12 2.08 2.00 2.00 2.09 1.99

% in 1000G 50.22 % 43.75 % 36.35 % 36.54 % 46.91 % 51.17 %

% in dbSNP 40.25 % 35.31 % 28.88 % 29.53 % 37.93 % 41.91 %

sensitivity 63.80 % 68.98 % 68.51 % 69.99 % 64.17 % 51.26 %

specificity 99.92 % 99.70 % 99.30 % 99.54 % 99.86 % 99.13 %

FDR 3.34 % 11.29 % 22.91 % 16.16 % 6.12 % 33.11 %

The gold standard dataset consists of 4612 samples with 80–100 × coverage. All the four callers are necessary for increasing the yield of SNVs

Table 2 Summary performance metrics of goSNAP pipeline

Stage # of core
hours

Time
(days)

Data (TB)
generated

Data (TB) (upload/
download)

Median execution time /unit # of parallel
execution threads

Optimal instance
(core/mem)

Slicing /Repack ~48 k/~26 k 5 360 180/0 ~1.15 h/sample (slicing)/
~22 h/bin (repacking)

5297 (slicing) 300
(repacking)

8 cores, 16GB/
4 cores, 4GB

Calling ~1.4 million 14 120 0/2 ~60 hrs/bin 2797 8 cores, 16GB

Genotype Likelihood ~15.6 k 1 6 0/2 ~1.5 h/BAM 5297 2 cores, 8GB

Imputation and Phasing ~3.7 million 30 2 2/2 ~30 h/bin @ Rhea
~13 h/bin @ Blue BioU

265 k 32 cores

Total ~5.2 million 50 488 182/6 – – –

The pipeline finished in 50 days and only transferred a total of 6 TB of data starting from a raw data footprint of 180 TB. Cache data of 360 TB was live only for
14 days. Intermediate results amount to 120 and are archived for future use
The pipeline used 5.2 million core hours
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the input whole genome BAM files are stored in the
cloud, doing this stage (Stage C) on the cloud prevents
egress charges. The per sample genotype likelihood data
is only 2 TB. It is downloaded to Rhea and Blue BioU
for imputation and phasing. Compared to 200 TB align-
ment data, 120 TB variant calling data, only 4 TB calling
and GL data is downloaded and charged (see Table 1).
Imputation and phasing is the most compute intensive

stage. We take the GL data as input and run the imput-
ation and phasing on Rhea and Blue BioU using SNPTools
imputation engine (see Methods). The optimal imputation
window size is decided taking into account the population
diversity and the imputation runtime without exceeding
the wall time limit of the supercomputer. The imputation
jobs are scheduled according to the specification of each
compute node, in order to make full use of computing re-
sources and reduce the job scheduling overhead. The ref-
erence independent imputation of 5297 samples took
4 weeks, with 3.7 million core hours (see Table 1) includ-
ing the system maintenance downtime and scheduling de-
lays due to fair-share policy. The average runtime of
imputing a bin with 512 SNVs is approximately 13 hrs on
Blue BioU and 30 hrs on Rhea.

Discussion
Ensemble joint calling of 5297 WGS samples is an un-
precedented undertaking to the best of our knowledge.
The limitations of joint calling tools for a sample size of
this scale had not been tested for, and a successful com-
pletion of the whole compute requires all protocols to
be robust to resource allocation failures and silent faults
[28]. Non uniform coverage of the samples can contrib-
ute to unanticipated failures and data replication costs
can adversely affect the operational costs. For example,
five bins with large sizes were removed from further
analysis in the goSNAP pipeline, because the jobs did
not finish even after 120 hrs of runtime. The entire pipe-
line only replicated the data in Stage A (~360 TB) for
14 days and it is easy to reduce the cache data size to
less than 200 TB by using a strategy where sliced bins
are deleted as soon as the repacking stage finishes on
the sliced bins. Using multiple callers can add to the
challenges due to scale, but are necessary to ensure
higher sensitivity as all the callers used in our pipeline
have distinct algorithmic strategies. In the goSNAP pipe-
line all the callers contributed unique variants at the end
of Stage A when compared to the highly polymorphic
cSNP array (see in Additional file 1: Figure S1). Three
callers have higher sensitivity compared to consensus
3of4 approach but the smallest FDR value (GotCloud)
among the callers is ~6 % which is almost twice that of
the consensus 3of4 approach (see Table 1). SNPTools
has lower sensitivity than consensus 3of4 but recovers
most common variants (1000G, dbSNP) compared to

the other callers at only 10 % of the computation re-
source cost. Using some combination of three callers
may only improve the sensitivity by a maximum of 7 %
but the FDR might also be very high, as the FDR statis-
tics for the consensus 2of 4 approach indicate. Suppose
we add one more caller and use 4 of 5 consensus strat-
egy, the sensitivity may at best reach the sensitivity of
GATK-UG (69.99 %), a maximum gain of 7 % compared
with the sensitivity of 3 of 4 consensus (63.80 %) as in
Table 1, but the FDR of 4 of 5 is not likely to be much
lower than that of 3 of 4 consensus (3.34 %), compared
to the FDRs of all four callers currently employed. On
the other hand, the computation cost scales at best
linearly with number of callers used. Therefore the strat-
egy of using four callers for variant site identification
followed by consensus filtering was necessary for our
project to ensure high sensitivity while maintaining low
FDR statistics. In general, the decision to include more
callers should depend on a number of factors such as,
number of samples, depth of coverage, computing
budget and project deadlines.
The yield of novel variants compared to 1000GP3 and

dbSNP are also likely to be of a high quality because the
Ti/Tv ratio of 2.12 is consistent with past results [1]. Se-
quencing errors can lead to a decreased Ti/Tv ratio due to
introduction of random noise, especially at the rarer end
of the site frequency spectrum. All the four callers in our
pipeline have a Ti/Tv ratio less than the consensus 3of4
approach (see Table 1) and higher FDR statistics, thereby
indicating that consensus filtering strategy reduces ran-
dom noise. The site level consensus filtering minimizes
the need of any tool specific filters (e.g. VQSR in GATK
and SVM in GotCloud) as the FDR of the consensus 3of4
approach is at least half as low as any individual caller
(GotCloud). While the overall sensitivity is only 63.80 %,
the sensitivity is over 95 % for allele frequency > 0.001 (see
in Additional File 1: Figure S2). This behavior is consistent
with past work in detecting singletons and doubletons
from low coverage data [20, 29]. The yield of SNVs from
our pipeline is less than that of 1000GP3 (~84 million) [1]
even though the number of samples is almost twice as
large, but that can be attributed to the relatively homoge-
neous ancestry of our samples compared with 1000GP3.
In a previous paper [30] on ~1000 samples from our data-
set, the yield of SNVs was ~ 24 million, which is less than
that of a comparable sample size of 1000Genomes Phase 1
project. Even the UK10K SNV callset [2] has only ~42 mil-
lion SNVs whereas the number of unrelated samples in
that project exceeds that of 1000GP3.
A cloud based joint calling framework has been dis-

cussed in Shringarpure et al. [20] where a single joint
caller is used to call 1000GP3 dataset. In their work,
samples for the same population are grouped together
for joint calling and calling is done one chromosome at
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a time. This strategy may fail with increasing sample
sizes even with the most powerful instances. For ex-
ample, the CHARGES-F3 dataset has been sequenced
with higher per sample coverage than 1000GP3 dataset
and the sample size of EuAm (~3700) alone exceeds that
of 1000GP3 (~2500). The data footprint of Chr22 in the
CHARGES-F3 dataset is 4 TB and of Chr1 is 18 TB
which can only be accommodated on the D2 Dense stor-
age instances in AWS [31]. Our binning strategy pro-
vides a more scalable alternative, as 96 % of the nodes
used in our work used HDD space less than 320GBs and
can scale easily to much larger sample sizes. We did not
face any scheduling delays which could be an issue when
using high memory nodes on AWS instances [32]. In
our binning strategy, all mapped read mates, unmapped
read mates and 10 Kbp mapped reads in the buffer re-
gion are included in the sliced 1 Mbp bin for joint call-
ing. Since many indel callers like GATK-HC and GATK-
UG use this information to call high quality indels, our
binning strategy minimizes errors in indel calling espe-
cially near the ends of the bins.
Joint calling approaches on typical LHPCs and super-

computing infrastructures has also been studied in the
past. In [27], the authors use a supercomputing platform
with ~16,000 cores and 72 hrs wall time to do joint calling
using GATK-HC on 437 whole genomes with an average
of ~30× coverage. They estimate a quadratic increase in
resource usage consumption as sample size increases, and
to make it feasible on their supercomputing platform, they
perform group variant calling on subsets of their entire
cohort in an ancestry dependent fashion. However, com-
paring the effective number of reads per ethnicity group
in their work (less than 400 samples each with 30× reads),
with the one in our dataset, about 3000 samples in a single
population with 8× average coverage, our effective num-
ber of reads in the joint calling is at least doubled. This
renders it less feasible to perform per population joint
calling with our sample size scale on a supercomputing
platform, as the resource consumption scales quadratically
with the sample size. In the paper [27], the authors also
include performance analysis of aligning raw read data as
part of their computational footprint. In our workflow, we
assume that the raw sequencing data is aligned and
uploaded to AWS as it is sequenced, as storing raw se-
quencing data of over 5000 samples (>200 TB) can be
infeasible for an LHPC environment attached to a sequen-
cing facility. Aligning and uploading to AWS in batches
also minimizes data transfer bottlenecks across computing
infrastructures and can be readily tuned to match sequen-
cing throughput. The rate limiting step in the alignment
and sequencing stage is likely to be sequencing through-
put, as the expected time to sequence ~5000 whole gen-
ome samples with the current sequencing capacity far
exceeds the turn around time of the entire goSNAP

pipeline. Since the alignment is usually performed at the
per sample level and the computation time scales linearly
with the sequencing depth, we consider sequencing and
alignment as a single stage with well controlled turn-
around time. Hence the alignment can be performed grad-
ually as the sequencing reads are available, on a local
cluster at the sequencing center, and the aligned data can
be uploaded to the cloud for joint calling, where the com-
putational resources are more abundant.
In the context of variant calling, the advantages of using

an LHPC environment do not supersede the remaining two
resources (Fig. 1b) for any stage and an argument can be
made to design future variant calling pipelines which are ei-
ther solely based on an AWS environment or on a large
supercomputer. However, in this project, all the real time
QAQC and job tracking was carried out on an LHPC envir-
onment. Despite the limited resources on an LHPC, the
flexible computing environment aids in the rapid develop-
ment of QAQC tools which in turn mitigates risk by ensur-
ing the integrity of the goSNAP pipeline at the start and at
the end of each stage. Several current tools for genomic
data have been already designed for an LHPC environment
but have to be ported for use in an AWS or supercomput-
ing environment, thereby adding to the timelines of a large
project like CHARGE. Even though we did not use LHPC
for variant calling on any bin in the CHARGE dataset, a
scenario can be anticipated where variant calling on some
regions of the genome may only be feasible on an LHPC,
with execution parameters different than the rest of the
pipeline. Changing the execution parameters on some se-
lected bins may make it infeasible to execute on either the
AWS or supercomputing environment without additional
development and testing of software.
There are several challenges in scaling up the analysis to

even larger samples sizes. In the joint calling stage, increas-
ing sample sizes will require instances with much larger in-
stance HDD space. In the current implementation, the
sliced per region per sample BAM files are grouped to-
gether using tar compression. This helps to significantly re-
duce the number of input files. But the downside of tar
compression is that it requires almost double the HDD
space for the decompression. To work around with the in-
stance storage limitation and to cope with the upcoming
larger sample size, we propose an in-place compress-
decompression strategy, by binary concatenating small tar-
balls together for input/output data transfer, and binary
truncating the data chunks before decompression. The
turnaround decompression space is expected to be as large
as the small tarball size. This is an important direction for
the future work. However, even with the current binning
size parameters, increasing the sample size to 10,000 sam-
ples would increase the size of the bins to only 120GB for
80 % of the bins. This can be scheduled with the existing
goSNAP release version, as 96 % of the instances used in
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this run had 320GBs of HDD space and 60 % of instances
used less than 62GB of RAM. It can be projected that with
10,000 samples, the RAM requirements will double at
most, and the configuration with 122GBs of RAM and
320GBs of HDD space will suffice for 60 % of the bins.
Implementing the new strategy with trunc can further alle-
viate HDD space constraints. Furthermore, a strategy in-
volving a smaller bin size can be used to mitigate the
adverse effects due to using costly instances when scaling
up to large sample sizes. For example, in our simulations
we observe a 1.5× increase in run time on 100 Kbp bins
with respect to 1 Mbp bins, with each bin taking approxi-
mately 9 hrs on each 100 Kbp region for approximately
3000 samples (see Methods). With 10,000 samples and a
bin size of 100 Kbp this run time is projected to last for at
most 40 hrs for most of the bins and twice the memory re-
quirement of the current run. The number of jobs to man-
age will scale by 10 times for a sample size of 10,000
samples and bin size 100 Kbp but should not cause any
performance degradation on the AWS system. The imput-
ation and phasing module scales linearly with sample size
and can finish easily within the 120 hrs wall time limit of
Rhea. Reducing the bin size for imputation and phasing
could be challenging for a diverse cohort, but the current
bin size estimation will hold for a larger dataset with a
homogeneous population. Though the number of burn-in
iterations cannot be changed for larger sample sizes, the
number of SNVs/bin can be optimized to fit into the wall
time restrictions. Since all the data transferred in the goS-
NAP pipeline is variant information, increasing sample
sizes will only increase egress charges proportional to the
variant information in the samples.
Single sample calling for low coverage data will give a

very high FDR [29], therefore joint calling is necessary for
minimizing FDR and to improve sensitivity of variant dis-
covery for low coverage datasets, even when the variant
calling pipelines do not include Stage D. Even though deep
coverage sequencing also does not have perfect recovery of
singletons and doubletons [32], single sample calling gives
comparable SNV callsets to multisample calling for high
coverage datasets [29]. However, for calling indels and
mnp variants, joint calling approaches may still be better
than single sample calling. This is particularly relevant in
the case of clinical sequencing, where increasing the sensi-
tivity in calling indels may have prognostic significance.
The binning strategy can be used to scale up to sample

sizes of 10,000 and beyond. However, to effectively use the
computing infrastructures, the tools have to evolve to
emerging architectures and data sizes. First, to efficiently
use the supercomputers the tools have to be adapted for
heterogeneous supercomputers. A significant number of
highly scalable supercomputers, including Titan at ORNL
are heterogeneous computers i.e., they use computing ac-
celerators such as GPUs and Intel Many Integrated Core

Architectures for achieving computation and power effi-
ciency. Titan is the fastest supercomputer in the United
States and it uses GPUs as computing accelerators. As this
trend in supercomputer architecture continues [33], it be-
comes important for all tools to evolve to heterogeneous
architectures. Second, as the data size increases with sam-
ple sizes, it is important to have data transfer protocols to
exchange data among multiple points of computation that
are geographically separate. Though our data transfer
times in the current work were always less than 2 days, we
anticipate the data transfer times becoming a bottleneck
as we scale up to larger samples. Third, a smart job sched-
uler that can schedule jobs on hybrid computing infra-
structure which includes Cloud, Supercomputers, and
local computing infrastructure can decrease the burden
on researchers to schedule and manage jobs.

Conclusions
With increasing number of genomic datasets freely avail-
able on the AWS cloud [34], the next generation of vari-
ant calling pipelines will also be increasingly common in
the AWS environment. While the costs of storage and
compute cores in the AWS environment is declining, it
may still be prohibitively costly to carry out many steps
of standard variant calling workflow on the cloud. A hy-
brid computational approach involving multiple HPC
systems may be an important future direction to explore.
Our work on the goSNAP pipeline demonstrates that
using a hybrid computation strategy can be cost effective
and fast even with thousands of individual genomes.

Methods
Sequencing and alignment
There are 5297 WGS samples in the CHARGE-F3 dataset.
They were sequenced using the ILLUMINA HiSeq 2000/
2500 with an average depth of coverage ranging between
7× and 10×. The raw data was aligned using the Mercury
pipeline [21]. The mercury pipeline used BWA to align
the raw data to the human hg19 reference genome. The
samples consist of three cohorts CHS [35], FHS [36] and
ARIC [37] with 3396 samples belonging to European
American (EuAm) ancestry and 1901 with African
American (AfAm) ancestry.

Golden datasets for comparisons
There are two golden datasets which are used in this
paper. In Table 1 the golden dataset consists of 1782 and
2830 whole exome sequenced (WES) data from the
AfAm and EuAm ancestry respectively. The WES data-
set has been sequenced with 80–100× coverage. The
WES gold standard dataset was aligned with the
Mercury pipeline [21] in single sample mode. The sec-
ond gold standard dataset which we refer to as cSNP,
consists of 3533 samples genotyped with HumanExome
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BeadChip v1.0 (Illumina, Inc., San Diego, CA) querying
247,870 variable sites using standard protocols suggested
by the manufacture at the University of Texas Health
Science center at Houston [38]. There are 1683 EuAm
samples and 1850 AfAm samples in the gold standard
dataset. All true negative sites with missing genotype
data are removed from the gold standard. For the sensi-
tivity calculations, all sites common to WGS dataset
with greater than 5 % missing genotypes are also re-
moved from further analysis.

Description of computing infrastructure
Local HPC at Baylor HGSC
The local compute cluster available at the Human Genome
Sequencing center consists of 3800 cores with an average
memory of 6GB per core. There is an aggregate of 4.5PB of
live storage. There are no wall time limitations.

Rhea at ORNL
Rhea is a 512 nodes commodity type cluster located at the
Oakridge Leadership Compute Facility [25]. Each node
consists of two 8-core Intel Xeon processors which gives 32
concurrent threads of execution using hyper-threading. It is
connected to 32PB Luster file system Atlas [25]. For the
data processing of CHARGE project imputation, we had
access to 256 nodes with a wall time limitation of 120 hrs.

DNAnexus AWS
DNAnexus is an automated AWS EC2 management
platform providing a web based and command line
interface to the AWS cloud infrastructure [39]. The spe-
cification of the EC2 instances used in the CHARGE
processing is described in the Additional file 1. There is
no wall time limit to the computing jobs. The backend
data storage uses the AWS S3 service, with no storage
limit but subject to storage cost.

Deployment of goSNAP Pipeline
The slicing/repacking stage, the variant calling stage and
genotype likelihood calculation (Stage A and C in Fig. 1b)
were accomplished on AWS cloud system using the
DNAnexus platform. The consensus site list was gener-
ated on the LHPC at BCM-HGSC with minimal egress
costs (see Table 1). Imputation and phasing were accom-
plished on Rhea [25], an Oakridge leadership compute
window is used as input of four variant callingFacility
system and on Blue BioU [26], an IBM Power PC super-
computing facility at Rice University (see Fig. 2). All
intermediate realtime QAQC was carried out on the
LHPC at BCM-HGSC. This local compute facility was
also used to monitor the jobs and to transfer data across
infrastructures.

Slicing and Repacking
In the slicing stage, the BAM file and index file of each
sample is copied to an EC2 instance with 8 CPU cores,
16GB RAM and 160GB of hard disk storage (see Table 1).
It is then sliced into 2897 BAMs, each with 1 Mbp region
plus additional 10 Kbp of flanking regions which overlap
with adjacent regions. We use “samtools view” to slice the
BAM and “xargs” to parallelize the slicing jobs to make
full use of all CPU cores. Every ten adjacent 1 Mbp BAMs
and the index files are further compressed into a 10 Mbp
tarball in parallel and transferred back to S3 data storage.
The grouping of 10 regions reduces the count of inter-
mediate files by over 50 k-folds between the slicing and
repacking stage, which significantly improves the S3
bucket file access efficiency. At the end of slicing stage, we
have three hundred 10 Mbp region directories, each con-
taining 5297 per-sample tarballs of sliced BAMs and BAIs.
The average size of a 10 Mbp tarball is 110MB per sample,
which allows for an ECS instance with moderate disk stor-
age to hold 5297 such tarballs for repacking. At the end of
this stage, we have doubled the data footprint in S3.
In the repacking stage, 10 Mbp region tarballs of all

5297 samples are transferred from S3 into an ECS in-
stance with 4 CPU cores, 4GB of memory and 800GB of
disk space. The per sample 10 Mbp tarballs are decom-
pressed and recompressed in parallel into 10 tarballs,
each with BAMs and BAIs in the same 1 Mbp region
from all samples. The parallelization is done using xargs.
The repacked 1 Mbp BAM tarball with average size
60GB is stored in S3. Out of a total of 2897 regions, 163
one Mbp regions are empty as they intersect with
centromere and telomere regions of the genome. The
remaining 2734 one Mbp BAM tarballs are generated as
input for joint variant calling.

Choice of joint calling window size
We profiled the joint calling runtime of 10 random
1 Mbp regions and 10 random 100 Kbp regions using 4
types of EC2 instances. The minimum runtime is
9.83 hrs with 100 Kbp window size (8cores, 16GB RAM)
and 60 hrs with 1 Mbp window size (8cores, 16GB
RAM). The results of our profiling step for the goSNAP
pipeline are presented in Additional file 1: Table S3.
Joint calling with 100 Kbp window size increases the

overall runtime by approximately 50 %. For 1 Mbp re-
gions, our profiling suggests that GATK-UG alone uses up
approximately 40 % of the runtime of the entire goSNAP
pipeline (see in Additional file 1: Table S4). The maximum
window size of a region is limited by the instance storage.
Since the average size of 1 Mbp input compressed BAM
tarball is ~60GB, we use ECS instance with 160GB storage
for the joint calling of most of the regions. Larger window
size renders the process less scalable, as the high perform-
ance instance type with 500GB or larger, is either more
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costly on-demand or more scarce in spot instance mode.
Therefore we take 1 Mbp as the optimal window size for
joint calling for CHARGE Freeze 3 dataset.

Joint calling
The repacked tarball of all sliced BAMs in the same 1 Mbp
window is used as input of four variant calling pipelines,
namely GATK-HC [6], GATK-UG [6], GotCloud [7] and
SNPTools [8]. While SNPTools, GotCloud and GATK-HC
are used to call variants in the whole 1 Mbp region, GATK-
UG is called in a series of 10 windows of 100 Kbp size with
maximum 20 retries in each window to prevent the job
from quitting due to a known sporadic error [40]. A naive
scheduling methodology based on tarball size is used to as-
sign instances to bins as a first step (Additional file 1: Table
S2). A complete list of type of instances used for the joint
calling is given in Additional file 1: Table S1. The essential
site level VCFs from each caller are downloaded to the
LHPC for further consensus filtering, while the auxiliary
variant calling results are archived using AWS. GATK-UG
and GATK-HC also called indels as part of the pipeline.

Choice of imputation window size
Imputation and phasing was profiled using SNPTools
imputation engine over 3176 samples on Titan, Rhea,
Blue BioU and LHPC. We profiled the imputation run-
time of 1024 SNVs per window and 512 SNVs per win-
dow, both with 56 iterations, which is empirically
determined to be sufficient for the SNPTools Markov
Chain Monte Carlo (MCMC) algorithm to converge to a
stationary distribution. While no simulation on Titan
[25] could be finished due to wall time constraints, it
took approximately 20 hrs, 58 hrs and 35 hrs on Blue
BioU, Rhea and LHPC respectively, with 1024 SNVs per
window, and 10 hrs, 24 hrs and 18 hrs on Blue BioU,
Rhea and LHPC, respectively, with 512 SNVs per win-
dow. While 1024 SNVs/bin with 100 MCMC iterations
is considered the best practices for SNPTools imputation
for the 1000 Genomes samples with much higher popu-
lation diversity, the relative homogeneity of the popula-
tions in the CHARGES-F3 samples allows for more
relaxed requirements on the window size, with the same
phasing accuracy. Therefore we choose 512 SNVs per
window as the optimal imputation window size.

Imputation and phasing
Imputation is accomplished using SNPTools [8] deployed
on Rhea Supercomputer at ORNL [25] and Blue BioU
high performance cluster at Rice University [26], the win-
dow size used for imputation and phasing is 512 SNVs per
window with an overlap of 256 SNVs between adjacent
windows. Across the autosome, there are a total of
285,000 imputation windows. The Monte Carlo Markov

Chain step in each window was executed for 56 iterations
on a single core with 55 burn-in iterations.

Availability of supporting data
Project name: goSNAP
Project home page: http://sourceforge.net/projects/

gosnap/
Archived version: 01d767
Operating system (s): Linux
Programming language: Python3, bash
Other requirements: Python3.2 or higher
License: Apache License v2.0
Any restrictions to use by non-academics: license needed

Additional file

Additional file 1: Figure S1. Venn Diagram of number of SNPs called
by GATK-HC, GATK-UG, SNPTools and GotCloud and the FDR using
HumanExome BeadChip array with 3533 shared samples as control.
Figure S2. Rediscovery rate of SNP in the Exome region as function of
alternate allele frequency using CHARGE WES variant call set as gold
standard. The rediscovery rate exceeds 95% when alternate allele
frequency f>=5x10-4 (AC>=5). Table S1. The choice of AWS instances
used to deploy goSNAP for CHARGE WGS variant discovery in Stage A.
All the jobs were scheduled via DNAnexus platform. Note that this list
does not include the jobs for slicing and repacking in Stage A. Table S2.
Instance specs in the “cost-effective” and “time-sensitive” mode of running
goSNAP. Table S3. Profile of goSNAP runtime (in hour) with different region
size, 100 Kbp and 1 Mbp, and different instance specifications. Table S4.
Profile of GATK-UG runtime (in hour) with different region size, 100 Kbp and
1 Mbp, and different instance specifications. (DOCX 232 kb)
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