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Abstract

Background: Population health attributes (such as disease incidence and prevalence) are often estimated using sentinel
hospital records, which are subject to multiple sources of uncertainty. When applied to these health attributes, commonly
used biased estimation techniques can lead to false conclusions and ineffective disease intervention and control. Although
some estimators can account for measurement error (in the form of white noise, usually after de-trending), most
mainstream health statistics techniques cannot generate unbiased and minimum error variance estimates when the
available data are biased.

Methods and Findings: A new technique, called the Biased Sample Hospital-based Area Disease Estimation (B-SHADE), is
introduced that generates space-time population disease estimates using biased hospital records. The effectiveness of the
technique is empirically evaluated in terms of hospital records of disease incidence (for hand-foot-mouth disease and fever
syndrome cases) in Shanghai (China) during a two-year period. The B-SHADE technique uses a weighted summation of
sentinel hospital records to derive unbiased and minimum error variance estimates of area incidence. The calculation of
these weights is the outcome of a process that combines: the available space-time information; a rigorous assessment of
both, the horizontal relationships between hospital records and the vertical links between each hospital’s records and the
overall disease situation in the region. In this way, the representativeness of the sentinel hospital records was improved, the
possible biases of these records were corrected, and the generated area incidence estimates were best linear unbiased
estimates (BLUE). Using the same hospital records, the performance of the B-SHADE technique was compared against two
mainstream estimators.

Conclusions: The B-SHADE technique involves a hospital network-based model that blends the optimal estimation features
of the Block Kriging method and the sample bias correction efficiency of the ratio estimator method. In this way, B-SHADE
can overcome the limitations of both methods: Block Kriging’s inadequacy concerning the correction of sample bias and
spatial clustering; and the ratio estimator’s limitation as regards error minimization. The generality of the B-SHADE
technique is further demonstrated by the fact that it reduces to Block Kriging in the case of unbiased samples; to ratio
estimator if there is no correlation between hospitals; and to simple statistic if the hospital records are neither biased nor
space-time correlated. In addition to the theoretical advantages of the B-SHADE technique over the two other methods
above, two real world case studies (hand-foot-mouth disease and fever syndrome cases) demonstrated its empirical
superiority, as well.
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Introduction

Important disease attributes include incidence, prevalence and

mortality [1,2]. For example, the adequate understanding of

incidence distribution across space-time plays a key role in disease

causation, pattern description, trend prediction, outbreak identi-

fication, medical resources allocation, and drug treatment

assessment [3,4,5,6,7]. Exhaustive population surveys are often

too expensive and time consuming, especially when timeliness is a

critical issue in infectious disease control. As a result, the incidence

distribution is often estimated with the help of sentinel hospital-

based surveillances. Conventional and spatial sampling techniques

[8,9] are well established in a probability setting. The World

Health Organization (WHO), for example, has published a

comprehensive sampling design manual [10] based on simple

random sampling. Although it is relatively easy to use them, the
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manual’s techniques have exhibited low sampling efficiency [9].

Mainstream statistical sampling methods used in epidemiology,

frequently assume randomly collected samples at the global or the

local scales [10]. However, the estimation of a population health

attribute (and its confidence limits) is strongly affected by sample

selection and the statistical technique implemented. For sampling

purposes, sentinel hospitals can be chosen randomly, systemati-

cally, or by stratified analysis, either in the attribute or in the

spatial domains [8,9]. Area population incidence estimates are

then generated from the spatial sample using a statistical technique

[8,9,10,11]. However, these sample estimates can be biased if the

randomness assumption is not valid in real world situations, in

which case the expected estimation error is known as bias [12].

Sentinel hospital-based incidence estimates are often biased, for

several reasons. First, hospitals with advanced electronic manage-

ment systems (which allow quick and high quality reporting) are

much more likely to be selected as sentinel for data ‘‘cherry-

picking’’ purposes [13]. Second, poor management or a hospital’s

lack of capacity may cause significant underreporting [3]. Third,

the sampling strata approach may not reflect major population

variation features [11]. For example, HBsAg (Hepatitis B surface

antigen) prevalence is often surveyed based on geographical

stratification, even though prevalence of this disease is strongly

stratified by age in China. This mismatch results in biased

prevalence estimation. Other sources of bias in epidemic studies

may be due to classification and measurement inaccuracies, and

unfair comparisons. For example, the reliability of verbal autopsy

(which assigns a probable cause of death based on interviews with

families regarding the deceased’s symptoms) may include a built-in

bias [4]. Correction of sample selection bias in the case of linear

regression has been extensively studied in econometrics [5], and

more recently in terms of machine learning algorithms. Further-

more, a number of epidemic studies have explicitly dealt with bias

issues [6,14]. The most common techniques of bias correction

involve assumptions about missing probability, training error

reweighting [5], or using empirical sample-population ratios

[6,14]. Network connections between hospitals and spatial

dependence models have the potential to further improve

surveillance efficiency [9,15,16].

In this paper we introduce a new technique, called the B-

SHADE (Biased Sentinel Hospital based Area Disease Estima-

tion) technique, which generates best linear unbiased estimates

(BLUE) of health attributes using biased hospital samples. Note

that the B-SHADE technique can be used to study any health

attribute that varies across space-time. This technique incorpo-

rates the ‘‘vertical’’ relationship of ratios between hospital

samples and the overall disease incidence to treat sampling bias,

as well as the ‘‘horizontal’’ correlation between all hospitals to

increase the efficient sample size and reduce estimation variance.

The structured network model takes into account the links

between data streams, in addition to isolated streams. Thus, B-

SHADE is a model-assisted and data-driven technique, which

corrects sample bias by means of a data adaptive process using

fewer assumptions and without requiring a deeper knowledge of

the bias mechanism. Empirical examples will be considered below

that provide valuable insight and demonstrate the merits of the

new technique.

Methods

The objective of the present study is to estimate the number of

disease cases in an area based on incidence reports from sentinel

hospitals. In particular, the actual number of cases in the entire

area per time unit (weekly, say) is given in theory by

Y~
XN

i~1
yi, ð1Þ

where the hospital sample includes n sentinel hospitals out of a

total number of N (wn) hospitals in the area; and yi is the weekly

number of cases reported by the i-th hospital. The actual Y must

be estimated from the available sentinel hospital records (yi,

i~1,:::,n). These reports are properly weighted to correct for

possible bias, the fact that nvN, and also to take into account

correlations among all hospitals (which can increase the effective

sample size), as follows,

y(w)~
Xn

i~1
wiyi, ð2Þ

where wi denotes the weight (contribution) of the i-th sentinel

hospital report to the incidence estimate of interest. Otherwise

said, the y(w) in Eq. (2) is an estimate of the actual (but unknown) Y

in Eq. (1). As should be expected, the two properties of the

incidence estimate of Eq. (2) are: unbiasedness, i.e. E(y(w)) = E(Y),

where E denotes statistical expectation; and minimum estimation

variance, i.e. minw½s2
y(w)~E(y(w){Y )2�.

Associations between Hospitals
The number of disease cases reported by the hospitals is one of

the most important inputs of incidence estimation during routine

surveillance and in case of a disease outbreak. This population

health characteristic is usually estimated in terms of the (direct or

indirect) links between regional population and sentinel hospitals.

Underlying these links is an intricate social network of individual

and hospital across the region of interest. In Figure 1, bi is the ratio

between the sample incidence (yi) and the population incidence (Y);

and Cij denotes the dependency of disease records yi and yj in the

hospitals i and j, respectively, as measured by the covariance

function between the incidences at hospital pairs, i.e. Cij = C(yi, yj).

The relationships between hospital records (solid lines in Figure 1),

as well as between sentinel hospital records and the total number

of disease cases in the study area (dashed lines in Figure 1) are

taken into account.

Systematic Modelling
As mentioned earlier, an objective of the current study is to

derive incidence BLUEs across space-time based on biased

sentinel hospital records. This objective is similar to that of Block

Kriging that generates BLUEs for spatially varying phenomena

[11,15,17]. Block Kriging represents the disease distribution as a

random field [15] with spatially homogeneous covariances that are

functions of the spatial distance (i.e., the spatial metric assumed is

Euclidean). However, these assumptions are not satisfied in the

case of sentinel hospital records. Similar is the case of spatial

regression techniques [18]. Indeed, the hospitals are discretely

distributed in space and it may not be appropriate to assume that

the disease cases reported by them are spatially homogeneous in

the continuous random field sense. Moreover, the sentinel hospital

records are often subject to sample selection bias; and spatial

covariances between hospitals are not necessarily functions of the

distance between them (i.e., the metric maybe non-Euclidean). In

view of the above considerations, the B-SHADE technique

assumes an empirical non-Euclidean metric that is appropriate

for the specific study objectives, and it can correct for sample bias.

As we saw earlier, the number of disease cases Y in an area is

estimated in terms of the weighted sample total y(w) that satisfies

two conditions: it is an unbiased estimate of Y, and it minimizes the

B-Shade Estimator
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mean squared estimation error. The first condition implies that

(File S1)

Xn

i~1
wibi~1 ð3Þ

where bi~E(yi)=EY represents the bias of hospital i with respect

to the total number of hospitals, and the weight wi expresses the

contribution of each hospital i to disease estimation. The second

condition implies that these weights are calculated by minimizing

the estimation variance of Eqs. (1)–(2), i.e.

s2
y(w)~E(y(w){Y )2~C(y(w),y(w)){2C(y(w),Y )zC(Y ,Y ): ð4Þ

Minimizing s2
y(w) with respect to the weights wi (i~1,:::,n) and

taking into account the unbiasedness Eq. (3) gives,

C(y1,y1) . . . C(y1,yn) 1

..

.
P

..

. ..
.

C(yn,y1) . . . C(yn,yn) 1

b1 . . . bn 0

2
66664

3
77775

w1

..

.

wn

m

2
66664

3
77775
~

PN
j~1 C(y1,yj)

..

.

PN
j~1 C(yn,yj)

1

2
666664

3
777775

, ð5Þ

where m is a Langrange multiplier (File S1). The minimized

estimation error variance can be then written as,

s2
y(w)~(rn{1)

Xn

i~1

Xn

j~1
wiwjC(yi,yj){2m ð6Þ

where rn~
XN

i~1

XN

j~1
C(yi,yj)=

Xn

i~1

Xn

j~1
wiwjC(yi,yj) is

the ratio of the summation of correlations among all hospital

records over the summation of the sample-based estimates.

Actually, the bi’s and rn express the contributions of the n sentinel

hospitals (relative to the total number N of hospitals) to the

incidence mean and incidence correlation, respectively. The

empirically significant parameters bi and rn can be computed

using temporal observations. The part
Xn

i~1

Xn

j~1
wiwjC(yi,yj)

of Eq. (6) expresses sentinel hospital associations across space

computed in real time. The C(yi,yj), bi and rn can be estimated

empirically from historical data.

In sum, the area incidence estimation procedure is as follows: (a)

The covariance values C(yi, yj) are calculated from the sentinel

hospital records (see, also, Figure 1). (b) Given these values, Eqs. (5)

are solved with respect to wi (i~1,:::,n) and m. (c) The calculated

wi and m are substituted in Eqs. (2) and (5) to find the desired

incidence estimate and the associated estimation error variance,

respectively.

Results

Study Region
Two cases will be used to compare the B-SHADE’s perfor-

mance in Pudong District of Shanghai. The Shanghai 2010 World

Expo took place in the Pudong District of Shanghai (China), from

April 30 through October 30, 2010. The Chinese Center for

Disease Control and Prevention (CDC) and the Pudong CDC

were responsible for health surveillance in the surrounding area

during this major event. Daily incidences of hand-foot-mouth

disease (HFMD) at all 53 hospitals were collected in the Pudong

District from January 1, 2009 to September 9, 2010. These data

are used in the present study to evaluate the performance of the B-

SHADE technique vs. other methods. Figure 2 shows the locations

and levels of the 53 hospitals in the District, and also indicates the

9 sentinel hospitals recommended by the Chinese CDC, as well as

the 9 sentinel hospitals chosen by the B-SHADE technique.

Algorithm
The flowchart of B-SHADE estimation is shown in Figure 3a.

The historical weekly incidence records (Figure 3b) are used as

repeated samples to compute the bi coefficients and the

covariances Cij = C(yi, yj). The bi is assigned to hospital i, and

Cij links the records at the hospitals i and j. Both bi and Cij are

metric (distance)-independent. Given the required number n of

sentinel hospitals (n[ (1, N)), we list all combinations of n out of

a total of N = 53 hospitals in the Pudong District, Shanghai. For

each one of the CN
n combinations, the weights wi and m were

computed in terms of Eq. (5). In practice, an optimization

scheme is usually adopted to accelerate the speed of calculation

convergence [19]. Subsequently, the estimated total number of

cases y(w) and the associated estimation error variance s2
y(w)

were computed by means of Eqs. (2) and (6). Among all

outcomes of the CN
n combinations, that with the smallest error

variance and absolute estimation error was selected as the best

sentinel hospital choice for the given number n. For illustration,

Figure 3b gives a sample of data input (historical records) for the

B-SHADE technique.

Figure 1. Relationship between hospitals and relationship between hospitals and area incidence.
doi:10.1371/journal.pone.0023428.g001

B-Shade Estimator

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23428



It is noteworthy that the Cij between all hospitals are estimated

using the historical weekly records between all hospitals rather

than by fitting a standard covariance model (as is done, e.g., in

Block Kriging). Otherwise said, B-SHADE is a network-based

technique that does not depend on the form of the Euclidean

distance, as is generally the case with the regression family of

techniques [15]. Covariance calculations can be improved if the

dependence structure of disease incidences between consecutive

time intervals is taken in to account. The above goals can be

achieved by means of the Kalman filtering and the BME

techniques [1,15,20].

Performance
The B-SHADE technique was compared with two other

commonly used techniques, as follows:

(1) B-SHADE technique, y(w) (t), see File S1;

(2) Ratio estimator technique, yratio(t)~
Xn

i~1
yi(t)

½
PN

i~1 yi(t’)=
Pn

i~1 yi(t’)�, see File S2;

(3) Simple random estimator technique, ys(t)~
N

n

Xn

i~1
yi(t),

see File S3.

Let yest(t) denote the estimated number of disease cases during

week t. Herein, for convenience the yest may denote y(w), ys or yratio.

The performance of these three techniques is measured by means

of the absolute error

AE(yest)~
1

m

Xm

t~1
jyest(t){Y (t)j ð7Þ

where m is the number of weeks considered. In the case of a new

sampling project, the Y may be unknown, in which case the

precision of an estimate yest is measured by means of the error

variance of Eq. (6), which is an interesting property that B-

SHADE shares with Block Kriging.

As already mentioned, the B-SHADE technique provides

BLUEs of area disease incidences. Table 1 summarizes the

average absolute error (AE) weekly cases estimated by the three

techniques above using 9 hospitals during the period of the 3rd–

34th weeks of 2010. The 9 sentinel hospitals are the Shanghai East

Hospital, Gongli Hospital, Punan Hospital, People’s Hospital,

Sanlin Community health service center, Pudong Hospital of

Traditional Chinese Medicine, Shanghai Children’s Medical

Center, Shanghai Seventh People’s Hospital, and Shuguang

Hospital, Pudong (Figure 2). Similarly, Figure 4 shows the average

number of weekly cases and the corresponding standard deviations

estimated by the three techniques. Figure 5 displays the average

Figure 2. Study region and sentinel hospitals.
doi:10.1371/journal.pone.0023428.g002
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absolute estimation error of weekly cases obtained by the three

techniques using the same set of sentinel hospitals records during

the same time period. Also, the B-SHADE technique consistently

exhibits the smallest estimation error variance among all three

techniques. Table 1 clearly shows that,

AE(B� SHADE estimator)vAE(Ratio estimator)

vAE(Simple estimator)

The B-SHADE technique outperforms the other two techniques in

the empirical example considered above. In Figure 4 the average

numbers of disease cases obtained by the three techniques seem to

be close to each other, but the B-SHADE exhibits significant

smaller statistical standard deviations. B-SHADE uses a smaller

number of samples than the other two techniques in order to meet

the required precision (this is illustrated in Table 1 and Figure 5).

For example, if one draws a horizontal line at 1.25AE (Figure 5), it

can be seen that 5, 6 and 8 sentinel hospitals are needed by the B-

SHADE, ratio and simple estimators, respectively, in order to

meet the required precision.

The Fever Syndrome Case Study
The B-SHADE technique was also applied to another real

world case study, namely, the space-time estimation of fever

syndrome cases in the same study region as above, from April 30

to October 28, 2010. The actual total number of fever syndrome

cases during this period was more than 50,000 as reported by 35

hospitals. To reduce computation time, 9 hospitals (with case

numbers less than 50 during the 26-weeks period) were removed.

The total number of fever syndrome cases at these 9 hospitals was

175. Among the remaining 26 hospitals, 18 of them were selected

as sentinel hospitals by the Shanghai CDC. The fever syndrome

cases during the first 16 weeks were selected. These data were then

used by the B-SHADE technique to estimate the total case

numbers. The average absolute errors of the derived disease

estimates for the 3, 6,…,18 sentinel hospitals (listed in Table 2)

show that the B-SHADE technique performed well in this case

study too.

Discussion

Historically, Snow’s work in 1855 [21] was the first study to

clearly show that public health measures can have enormous

contributions to population health. In addition to its significance in

population health risk assessment, the information obtained by

statistical epidemiology could be used to improve clinical practice.

For example, the natural history of an individual’s health state, the

most important element in evidence-based medicine [22], are

estimated in terms of the more stable states of stratified population.

Individual’s health risk may be judged by means of the prevalence

and incidence of populations with similar characteristics, from a

spatiotemporal synthesis perspective [23].

Important health assessment attributes, like area disease

incidence, can be estimated from biased sentinel hospital records.

A simple random estimator technique is frequently used in

practice, which is BLUE only if the population health distribution

is independent and identically distributed (iid) [8,24]. For spatially

correlated phenomena, the Block Kriging technique [12] capital-

izes on spatial dependences to estimate population incidences in

terms of weighting coefficients that minimize the estimation error

variance. However, the BLUE feature of Block Kriging could be

inadequate if its spatial homogeneity assumption is not realistic

and the samples are biased. The ratio estimator technique can be

used to derive unbiased estimates using a biased sample [6,14], but

the technique is unable to handle estimation errors.

Figure 3. Flowchart of selected sentinel hospitals using B-SHADE. (a) B-SHADE algorithm; (b) Historical records as B-SHADE input.
doi:10.1371/journal.pone.0023428.g003
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In sum, the above techniques have different limitations when

applied to population health assessment. These two techniques

have been blended by the B-SHADE technique in a way that their

relative limitations are eliminated. In the B-SHADE setting, the

efficient sample size is improved by taking into account spatial

correlations between hospitals. The coefficients bi offer a simple

way to correct the bias of sentinel hospital records. Observation

models of the bi with varying levels of sophistication may be

constructed. A fact contributing to its generality is that the B-

SHADE technique reduces to Block Kriging if the bi is the same

for all hospitals; it reduces to the ratio estimator technique if there

are no horizontal correlations between hospitals; and it reduces to

the simple random estimator technique when the between

hospitals correlation is weak and the sample is unbiased.

In addition to the two useful B-SHADE features above (namely,

the BLUE property and the correction of sample bias), as a result

of its mathematical formulation the technique has two more

important properties: resistance to spatial clustering of sentinel

hospitals and data stream surge. In epidemiology, population

surges have been found to affect multiple data streams in a similar

manner, but the relationships among the various data streams are

not significantly affected [25]. Thus, the population interaction

network and its parameters are rationally assumed to be stable

over time and are estimated based on previous records. B-SHADE

is a hospital network-based technique that outperforms historical

models especially since it can fluctuate with the unpredictable

incidence shifts (e.g., population surges during big events such as

the Olympics and the World Expo [16]) by rigorously modelling

the interactions between the hospitals and real time samples. This

technique also outperforms traditional spatial models. For

example, the B-SHADE technique avoids superficial geometrical

clustering of sample data because it depends on the hospital

network rather than on the Euclidean distance between hospitals.

Two different real world applications involving the Shanghai

World Expo 2010 showed that the B-SHADE technique can be

easily applied to real time disease surveillance, and that it works

well in the sense of producing small absolute errors. The technique

can be also used to select the best sentinel hospitals for the

specified area incidence BLUEs purposes. The precision of the B-

SHADE technique relies on the strong and stable relationships as

well as the spatial correlations between hospitals, which are

adequately represented by the theoretical structure of the

technique and its empirical parameters.

Figure 4. Average number of cases and associated standard deviation estimated by the three estimators.
doi:10.1371/journal.pone.0023428.g004

Figure 5. Average absolute error of weekly Hand-Foot-Mouth
Disease cases estimated by the three estimators.
doi:10.1371/journal.pone.0023428.g005

Table 1. Average Absolute Error of Weekly Hand-Foot-Mouth
Disease Cases Estimated by the Three Estimators.

Number of
hospitals B-SHADE Ratio estimator Simple estimator

2 8.64 10.63 49.24

3 5.89 10.65 48.38

4 1.71 2.00 6.32

5 1.33 1.48 5.06

6 1.10 1.58 4.65

7 0.68 1.09 2.85

8 0.52 1.03 2.53

9 0.37 0.69 0.65

doi:10.1371/journal.pone.0023428.t001

B-Shade Estimator
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Vertical representations and horizontal correlations between

hospitals (in terms of bi and Cij, respectively) together with the BLUE

objective (expressed by s2
y(w)) make up the framework of network-

based statistics. Under the assumption that the hospital network

characteristics at the present time are similar to those at other times

in the network’s history, the parameters of the B-SHADE technique

are estimated using historical data. When the hospitals have long

enough records (say, 10 or more), they are used as repeated samples

for parameter estimation purposes. If only a fraction of the hospitals

have historical data or the datasets are not long enough, the

estimation of bi and Cij for all hospitals needs further investigation.

Unbiasedness is a statistical property that is usually sought when

estimating a disease attribute or designing a sampling scheme

[5,8,10]. This is also the case with the B-SHADE technique. The

Kalman filter technique seeks a minimum variance estimate,

without this being necessarily an unbiased one [15]. Precision

losses due to unbiasedness and their implication in epidemic

studies deserve further investigation.

While the ratio estimator and the B-SHADE techniques treat

sample bias by means of the coefficients bi (regardless of the bias

causes), the technique suggested by Hechman (1979) handles

selection bias in terms of two equations: one models observations

and another one models the selection mechanism, aiming at

reaching an unbiased estimate (although not a BLUE one). The

Hechman estimator is a good option if the bias mechanism is

known and the historical dataset is not rich. Hierarchical Bayesian

(HB) modelling [9] may handle the sample bias by setting the bias

rate as latent variable with a probability distribution. When

probability distributions assume statistical independence, it is

necessary to first modify the distributions to incorporate

correlations between hospitals, and then HB is applied to the

correlated phenomena. On the other hand, the BME technique

[1,15,23,26] considers unbiasedness in a knowledge synthesis

framework, and shows that it is a space-time estimation property

that may depend on the substantives features of the real world

situation. So, in some cases the estimate that on average is equal

with the actual mean is appropriate (unbiasedness), whereas in

some other cases biasedness maybe desirable in order to include

valuable prior information in the space-time estimation process.

The above are issues that deserve further investigation.

Supporting Information
The readers are referred to the detailed flowchart of Figure 3 in

order to develop their own B-SHADE algorithm and apply it to the

dataset of their interest. The readers can contact us for any

assistance they may need in the process of developing and applying

a B-SHADE algorithm (wangjf@igsnrr.ac.cn or humg@lreis.ac.cn).

We expect that an interactive B-SHADE package will be released

on the Internet in the near future for public use (free of charge).

Supporting Information

File S1 Derivation of the main B-SHADE equations.

(DOC)

File S2 A brief review of the ratio estimator.

(DOC)

File S3 A brief review of the simple random estimator.

(DOC)
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adjust for selection bias in cohort studies. American Journal of Epidemiology

171: 602–608.

15. Christakos G (1992) Random field models in earth sciences. San Diego, CA:

Academic Press.

16. Reis BY, Kohane IS, Mandl KD (2007) An epidemiological network model for

disease outbreak detection. PLoS Medicine 4: e210.

17. Saito H, McKenna SA, Zimmerman DA, Coburn TC (2005) Geostatistical

interpolation of object counts collected from multiple strip transects: Ordinary

Kriging versus finite domain Kriging. Stochastic Environmental Research and

Risk Assessment 19: 71–85.

18. Harris P, Brunsdon C, Fotheringham AS (2011) Links, comparisons and

extensions of the geographically weighted regression model when used as a

spatial predictor. Stochastic Environmental Research and Risk Assessment 25:

123–138.

19. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms

and complexity. New York: Dover Publications.

20. Orton TG, Lark RM (2007) Accounting for the uncertainty in the local mean in

spatial prediction by BME. Stochastic Environmental Research and Risk

Assessment 21: 773–784.

21. Snow J (1855) On the model of communication of cholera. London: Chunchill.

22. Rosenberg W, Donald A (1995) Evidence based medicine: an approach to

clinical problem solving. BMJ 310: 1122–1126.

Table 2. Average Absolute Error of Weekly Fever Syndrome
Cases Estimated by the Three Estimators.

Number of
hospitals B-SHADE Ratio estimator Simple estimator

3 499 6422 713

6 247 5258 275

9 160 3169 182

12 121 1830 143

15 119 1130 167

18 88 641 122

doi:10.1371/journal.pone.0023428.t002

B-Shade Estimator

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23428



23. Christakos G (2010) Integrative problem-solving in a time of decadence. New

York: Springer-Verlag.
24. Wang J, Haining R, Cao Z (2010) Sample surveying to estimate the mean of a

heterogeneous surface: reducing the error variance through zoning. Interna-

tional Journal of Geographical Information Science 24: 523–543.

25. Reis BY, Kohane IS, Mandl KD (2009) Longitudinal histories as predictors of

future diagnoses of domestic abuse: modelling study. BMJ 339: b3677.
26. Yu H, Yang S, Christakos HY (2010) A spatio-temporal climate-based model of

early dengue fever warning in southern Taiwan. Stochastic Environmental

Research and Risk Assessment 25: 485–494.

B-Shade Estimator

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23428


