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INTRODUCTION

Suicide is considered one of the most serious and urgent 
public health and social issues in Korea.1 The suicide rate in 
Korea is the highest among the Organization for Economic 
Cooperation and Development (OECD) countries, with about 
36 people taking their own lives every day.2 Korea also has a 
higher rate of suicide behaviors compared with other coun-
tries.3 According to a 2016 survey of mental disorders in Ko-
rea, 15.4% of Koreans have thought about suicide and 2.4% 
have attempted suicide at some point in their lives.4 Moreover, 
it is estimated that 2.9% of Koreans have experienced suicide 
ideation and 0.1% have attempted suicide at least once in the 
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previous year.4 In recent years, other national and community 
surveys have estimated the 1-year prevalence of suicide ide-
ation to be 5.1–9.0%, and that of suicide attempt to be 0.4–
1.4%.5,6

Several known socio-demographic, physical, and psycho-
logical factors influence suicide mortality.3 Suicide behaviors 
including suicide ideation and attempts are regarded as a ma-
jor predictor of death by suicide. Even though individuals who 
think about suicide do not all subsequently commit suicide, 
people experiencing persistent and severe suicide ideation 
are at increased risk of attempting suicide.7,8 Moreover, a his-
tory of suicide attempts is a strong predictor of future attempts 
and completed suicides.9,10 Therefore, predicting the individ-
uals who have engaged in suicide ideation or who have attempt-
ed suicide by screening the risk factors would be effective in 
preventing suicide.

Several risk factors have thus been identified for suicide be-
haviors, which need to be interpreted in an integrated way. Ma-
chine learning, a branch of artificial intelligence in which a 
computer generates predictive rules based on raw data, may 
provide a powerful tool to efficiently predict suicide risk and 
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implement suicide prevention strategies.11,12 Some studies have 
attempted to predict suicide risk in a clinical setting using ma-
chine learning approaches. Passos et al.13 distinguished sui-
cide attempters from non-suicide attempters among patients 
with mood disorders with an accuracy of 64.7–72.0%, using 
machine learning algorithms based on demographic and 
clinical data. Oh et al.14 classified individuals with a history of 
suicide attempts among patients with depression or anxiety 
disorders by applying artificial neural networks to multiple 
psychiatric scales and sociodemographic data, achieving an 
accuracy of 87.4–93.7%.

We originally attempted to develop machine learning mod-
els to predict suicide behaviors in the general population. How-
ever, the low prevalence of such behaviors in the general pop-
ulation could be an obstacle to the building of predictive models. 
Therefore, we planned to develop our models through a step-
wise approach, progressing from low to high risk. In our pre-
vious study, we applied a machine learning algorithm to pub-
lic health data and identified individuals experiencing suicide 
ideation among the general population with an accuracy of 
78.1–82.1%.15 Following our previous study, here we aimed to 
develop models to predict which individuals have a history 
of recent suicide attempts, and thus are at increased suicide risk, 
among those who have experienced suicide ideation. This 
phased approach to the prediction of suicide risk using ma-
chine learning models may efficiently screen individuals at 
high risk for suicide in the general population.

METHODS

Study population
This study was performed with data from the Korea Na-

tional Health and Nutrition Examination Survey (KNHANES), 
which was conducted between 2007 and 2012 (total n=50,405). 
The KNHANES is a nationwide survey of the health and nu-
tritional status of non-institutionalized civilians in Korea, and 
is conducted every year by the Korea Center for Disease Con-
trol and Prevention.16 Each year, the survey uses a stratified and 
multistage probability sampling design to include a new sam-
ple of about 8,000 individuals. All KNHANES participants pro-
vide written consent to participate in the survey and for their 
personal data to be used.

Among the 38,005 individuals aged over 19 years, 35,116 
subjects answered the following survey question about suicide 
ideation: “During the past year, have you ever felt that you were 
willing to die?” Among the 35,116 respondents, 5,814 (16.6%) 
reported experiencing suicide ideation (suicide ideators). Among 
them, 5,773 responded to the following survey question about 
suicide attempts: “Have you ever attempted suicide in the past 
year?” Only 331 (5.7%) of the 5,773 suicide ideators reported at-

tempting suicide (suicide attempters), while the remaining 5,442 
(94.3%) denied any suicide attempt (non-suicide attempters).

The institutional review board of the National Center for 
Mental Health approved the protocol of this study (IRB ap-
proval number: 116271-2018-36).

Data preprocessing and set assignment
We manually selected 47 variables likely to be related to sui-

cide risk. Subsequently, we imputed missing data with the Mul-
tiple Imputation by Chained Equations (MICE) method, and 
numeric data were normalized by z-scoring. The MICE is an 
imputation algorithm that works by running multiple regres-
sion models, and conditionally modeling each missing value de-
pending on the observed values.17,18

Inputting all data into a classifier to build a learning model 
will usually lead to a learning bias towards the majority class, in 
this case non-suicide attempters (a phenomenon known as the 
“class imbalance problem”).19 Therefore, to obtain a more bal-
anced dataset, we undersampled the non-suicide attempters by 
randomly selecting 1,330 of them, and oversampled the suicide 
attempters, increasing their number from 331 to 1,324, using 
the Synthetic Minority Over-sampling Technique (SMOTE). 
SMOTE is one of the most popular methods for addressing 
class imbalance, and the general idea is to generate synthetic 
cases from the minority class using the information available 
in the data.20,21 Thus, a total of 2,654 samples (1,324 suicide at-
tempters and 1,330 non-suicide attempters) were finally in-
cluded in this study. Then, we randomly assigned the 2,654 sam-
ples to a training set (n=1,858, 70%) and a test set (n=796, 30%), 
while preserving the ratio between the two classes (Figure 1).

Machine learning analysis
We used the random forest algorithm, which builds numer-

ous classification trees in bootstrapped samples and generates 
an aggregate tree by averaging across them.22 To select the 
smallest subset of features that most accurately classifies sui-
cide attempters, we performed recursive feature elimination. 
For model development, 10-fold cross validation was used to 
avoid overfitting and to increase the generalization of the mod-
el. In 10-fold cross validation, data in the training set are par-
titioned into 10 equally sized folds, and each fold is used once 
as a validation set, while the other 9 folds are used for train-
ing (Figure 1). Hyperparameter optimization was performed 
using the grid search method.

The fitted model was then used to predict the classes in the 
test sets, and the predicted class was compared with the actu-
al class. The model performance in predicting the classes was 
evaluated using the area under the receiver operating charac-
teristic (ROC) curve (AUC). We also calculated accuracy, sen-
sitivity, specificity, positive predictive value, and negative pre-
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dictive value from the confusion matrix. In addition, in order 
to confirm the generalized performance of the fitted model, 
we randomly divided the test set samples into 10 subsets, pre-
serving the class ratio, and calculated the respective prediction 
scores. After 10 iterations of this process, the prediction scores 
of the 100 subsets were averaged.

All analyses were conducted in R (version 3.4.3, https://www.
r-project.org/) and its packages, including “DMwR,” “mice,” 
and “caret.”

RESULTS

Model training and validation
The feature selection process showed that a model trained 

with 41 features (Table 1) achieved the highest value of Kappa 
(0.705) (Figure 2). The top 10 features in order of importance 
were the following: “days of feeling sick or in discomfort,” “Al-
cohol Use Disorders Identification Test (AUDIT) score,” “amount 
of daily smoking,” “average work week,” “household composi-
tion,” “EuroQoL-Visual Analogue Scale (VAS),” “age,” “frequen-
cy of drinking,” “number of household members,” “depressed 
mood over two weeks”. After model training and validation, the 
fitted model achieved an accuracy of 0.865 in the training set.

Model testing
In the whole test set, the fitted model showed very good 

Table 1. Selected features (in order of decreasing importance)

1 Days of feeling sick or in discomfort
2 AUDIT score

3 Amount of daily smoking

4 Average work week

5 Household composition

6 EQ-VAS

7 Age

8 Frequency of drinking

9 Number of household members

10 Depressed mood over two weeks

11 Days of walking per week

12 Average sleep time

13 Level of education

14 Reasons for unemployment

15 Father’s level of education

16 Amount of drinking

17 Days of moderate physical activity per week

18 Marriage stability

19 Stress level in daily life

20 Subjective body perception

21 Subjective health status

22 Mother’s level of education

23 EQ-5D: anxiety/depression

24 National basic livelihood security

25 Type of health insurance

26 EQ-5D: usual activities

27 EQ-5D: pain/discomfort

28 Household income

29 Job position

30 Smoking preference

31 Weight change

32 Home ownership

33 EQ-5D: self-care

34 EQ-5D: mobility

35 Limitation of daily life and social activities

36 Feeling sick or in discomfort

37 Economic activity status

38 Being in bed sick in the last month

39 Arthritis

40 Sex
41 Hypertension
AUDIT: Alcohol Use Disorders Identification Test, EQ-5D: Euro-
Qol-5D standardized instrument for use as a measure of health 
outcome, VAS: Visual Analogue Scale 

5,773 suicide ideators:
5,442 non-suicide attempters and 331 suicide  
  attempters

Resampling via SMOTE:
1,330 non-suicide attempters (under-sampling)
and 1,324 suicide attempters (over-sampling)

set assignment

test set (N=796)
training set (N=1,858)

model validation and testing

model test

10-fold cross validation
9 training folds, 1 validation fold×10 times

random forest

…

1:1 ratio between classes

Figure 1. Schematic representation of the development of the 
prediction model. SMOTE: Synthetic Minority Over-sampling 
Technique.
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performance (AUC=0.947) in predicting suicide attempters 
(Figure 3), with accuracy 0.889 {95% CI: 0.866–0.910, no in-
formation rate=0.501, p value [accuracy>no information rate 
(ACC>NIR)]<0.001}, sensitivity 0.859, specificity 0.920, pos-
itive predictive value 0.914, and negative predictive value 0.868 
(Table 2). The model also showed very good performance in 
the 100 subsets used to assess its generalized performance, with 
mean AUC=0.947±0.001, mean accuracy 0.892±0.001, mean 
sensitivity 0.862±0.002, mean specificity 0.921±0.001, mean 
positive predictive value 0.918±0.002, and mean negative pre-
dictive value 0.872±0.002.

 

DISCUSSION

In this study, application of a machine learning algorithm 
to public health data achieved good performance and high ac-
curacy in distinguishing individuals with a history of suicide 
attempt from those with suicide ideation without suicide at-
tempt. This result suggests that machine learning approaches 
may be useful to detect suicide risk in the general population. 
In particular, using machine learning techniques, we selected 
several variables related to physical health, substance use, and 
socioeconomic status as important features for detecting sui-
cide attempters. In the previous studies using classical statis-

Table 2. Performance of model predicting suicide attempters in 
the test set (N=796)

Confusion matrix

Predicted class
Actual class

Total
Suicide attempt + Suicide attempt -

Suicide attempt + 341 32 373

Suicide attempt - 56 367 423

Total 397 399 796

Prediction scores

Accuracy* 0.889

Sensitivity 0.859

Specificity 0.920

Positive predictive value 0.914

Negative predictive value 0.868

*95% CI: 0.866–0.910, p value (ACC>NIR)<0.001. CI: confidence 
interval, ACC: accuracy, NIR: no information rate 
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Figure 3. Receiver operating characteristic (ROC) curve. AUC: 
Area under ROC curve.

Figure 2. A plot of feature selection by recursive feature elimination.
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tical methods, these suicide risk factors have been explored in-
dividually. However, the present study showed that machine 
learning approaches enable to predict individuals at high risk 
for suicide by analyzing various suicide risk factors in an inte-
grated way.

The 1-year prevalence rate of suicide attempt is rather low, 
less than 1%,5,6 so it is very difficult to directly detect suicide at-
tempters among the general population. However, those who 
experienced suicide ideation, especially in a mild or fleeting 
form, are relatively more common than those who attempted 
suicide. Moreover, the proportion of suicide attempters is high-
er in those who have experienced suicide ideation than in the 
general population. Therefore, we assumed that it would be 
more efficient to identify suicide ideators in the general popu-
lation first, and then to classify them into suicide ideators and 
attempters. For this reason, we adopted a 2-step method to de-
tect those who have suicide risk in the general population. In 
our previous work, we had already developed a machine learn-
ing model predicting suicide ideators in the general popula-
tion with an accuracy of 78.1–82.1%.15 As the next step, in this 
study, we developed models classifying suicide attempters 
and ideators by applying a machine learning algorithm to the 
KNHANES data. When predicting suicide attempters in the 
test sets, the machine learning model showed very good per-
formance (AUC=0.947) with an accuracy of 88.9%.

This study used a resampling method different from the 
one we used in our previous study predicting suicide ideators. 
Also in this study we faced a class imbalance problem, which 
had to be handled prior to the development of the prediction 
model. As mentioned in the Methods section, the number of 
suicide attempters (n=331) in the data was very low compared 
with that of non-suicide attempters (n=5,442). Such an im-
balance between two classes can lead to biased learning in fa-
vor of the majority class (non-suicide attempters). The prob-
lem can be attenuated by resampling methods, which produce 
class-balanced data. It is known that undersampling is gener-
ally helpful, while random oversampling is not.20 Therefore, in 
order to balance the two classes, we used the SMOTE algo-
rithm, which is an oversampling approach that creates syn-
thetic minority class samples.20,21 Undersampled non-suicide 
attempter data (n=1,330) and oversampled (partially synthet-
ic) suicide attempter data (n=1,324) constituted the input used 
to train the models.

In this study, features for physical health (days of feeling sick 
or in discomfort, days of walking per week), substance use (AU-
DIT score, amount of daily smoking), and socioeconomic sta-
tus (average work week, household composition) played an 
important role in classifying suicide attempters and suicide ide-
ators. However, in our previous model predicting suicide ide-
ators among the general population, features such as depressed 

mood, stress level, and quality of life showed greater impor-
tance.15 This difference suggests that suicide ideation might be 
mainly induced by internal and psychological factors, while 
suicide attempt might be triggered by external and environ-
mental factors.23,24 In addition, the features we identified for the 
prediction of suicide attempters have been previously report-
ed to be risk factors for suicide attempt in the Korean popula-
tion.25 In particular, it is noteworthy that variables related to 
alcohol use and smoking status, such as the AUDIT score and 
amount of daily smoking, were selected as highly important 
features in our prediction model. A recent study analyzing the 
KNHANES data reported that the combination of alcohol use 
and smoking was associated with greater suicide risk than al-
cohol or smoking separately.26

This study has some methodological limitations. First, the 
data from the KNHANES include information about suicide 
risk and psychological status obtained through very simple 
questions and scales, which might affect model performance. 
Second, we used only one machine learning algorithm, namely 
a random forest. Additional analyses are needed to compare the 
model performance with other machine learning algorithms, 
such as support vector machines and artificial neural networks. 
Third, our prediction model was built with class-balanced data 
including synthetic samples generated by a resampling algo-
rithm. Further studies are needed to confirm the model’s per-
formance on actual data affected by biased class ratio.

In conclusion, our results demonstrate that machine learn-
ing models based on public health data can successfully de-
tect individuals at high risk for suicide in the general popula-
tion. Further studies are needed to apply our models to the 
prediction of individuals at high risk for suicide in clinical or 
community settings.
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