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Null IFNAR1 and IFNAR2 alleles are surprisingly
common in the Pacific and Arctic

Isabelle Meyts'®

In this issue of JEM, Bastard et al. (2022. J. Exp. Med. https://doi.org/10.1084/jem.20220028) show that a loss-of-function
IFNARLI allele is common in western Polynesians, while Duncan et al. (2022. J. Exp. Med. https://doi.org/10.1084/jem.20212427)
report that a loss-of-function IFNAR?2 allele is common in Inuits. Homozygotes lack type | IFN immunity but are selectively
vulnerable to influenza, COVID-19 pneumonia, and complications of live-attenuated viral vaccines.

Upon binding of type I IFNs to IFN-a re-
ceptor 1 (IFNARI1) and IFN-a receptor 2 (IF-
NAR2), tyrosine kinase 2 (TYK2) and JAK2
phosphorylate STAT1 and STAT2, which
associate with IFN regulatory factor 9
(IRF9) to form IFN-stimulated gene factor 3
(ISGF3), which regulates the transcription
of genes. Type I IFN signaling has been
shown to be essential for immunity to var-
ious viruses in the few inbred mice studied,
but studies of rare human individuals with
inborn errors of type I IFN immunity have
challenged this view. The range of severe
viral disease in patients with autosomal
recessive (AR) complete IFNARI, IFNAR2,
TYK2, STAT1, STAT?2, or IRF9 deficiency is
narrower than predicted. AR TYK2 defi-
ciency impairs, but does not abolish, cellular
responses to type I IFN, accounting for the
few viral diseases, and their mildness, in
these patients (Kreins et al., 2015). By con-
trast, patients with AR deficiencies of STATI,
STAT?2, or IRF9 suffer from life-threatening
disease with live-attenuated viral vaccine
(LAV) and natural viral infections. AR defi-
ciency of STAT2 or IRF9 is clinically more
severe than TYK2 deficiency, at least because
ISGF3-dependent responses to type I IFNs,
and possibly also to type III IFNs, are abol-
ished. AR STATI deficiency is even more
severe, probably because responses to STAT-
dimer-dependent responses to all three types
of IFN are also abolished (Table 1).

Patients with deficiencies of IFNARI or
IFNAR2 suffer from an unexpectedly nar-
row range of viral infections, similar to that
of patients with STAT2 or IRF9 deficiency.
In the cells studied, mostly peripheral blood
monocytes and fibroblasts, IFNAR1 and IF-
NAR?2 deficiencies abolish the responses to
the one or two type I IFNs tested. Assuming
that the defect affects all cell types, and all 17
type I IFNs, it is remarkable that the 13
confirmed patients from 11 kindreds de-
scribed to date suffered only from measles,
mumps, rubella vaccine (MMR) disease
(Duncan et al., 2015; Gothe et al., 2022;
Hernandez et al., 2019; Passarelli et al.,
2020; Zhang et al., 2020), yellow fever
vaccine (YFV) disease (Bastard et al., 2021b;
Hernandez et al., 2019), influenza, her-
pes simplex encephalitis (HSE; Bastard
et al., 2021a), and more recently, criti-
cal COVID-19 (Abolhassani et al., 2022;
Khanmohammadi et al., 2022; Zhang et al.,
2020). Furthermore, penetrance is even
incomplete for most of these viral diseases
(Table 1). Two previously healthy adults
suffered only from critical COVID-19 pneu-
monia, with this infection leading to the
diagnosis of AR IFNARI deficiency (Zhang
et al,, 2020). Many viruses therefore seem
to be controllable without type I IFN, but is
this presumption correct? Given the small
number of patients reported, there is almost
certainly ascertainment bias. It remains
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possible that many more individuals have
died from infection with these or other
viruses or LAV than have been reported.
Alternatively, these gene defects may be
compensated for by other alleles or im-
mune mechanisms.

Two papers in this issue of JEM provide
surprising evidence for a high frequency of
null alleles of IFNARI in western Polynesians
and IFNAR2 in Inuits. These null alleles are
common in these remote populations, in
which they have an estimated allele fre-
quency >1% (3.4 and 1.25% respectively) but
are absent or extremely rare elsewhere
(Bastard et al., 2022; Duncan et al., 2022).
They were identified through genetic stud-
ies of five patients in the Arctic and seven
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patients in the Pacific population with life-
threatening natural viral infections or post-
LAV infections, with MMR or MMR-V
(measles, mumps, rubella varicella vaccine)
disease the most frequent presentation
(observed in 10 of the 12 patients). The IF-
NARI p.Glud86* variant is not expressed at
the cell surface and is loss-of-function for
luciferase activity in response to IFN-a2
when overexpressed. In patient-derived
cells, the impaired IFN-stimulated gene
(ISG) induction in response to IFN-cl, IFN-
w, and IFN-B, but not IFN-y, was rescued by
introduction of the WT allele (Bastard et al.,
2022). The IFNAR2 p.Ser53Pro variant is
not expressed at the cell surface either, and
neither patient-derived peripheral blood
mononuclear cells nor fibroblasts displayed
an upregulation of ISG expression in re-
sponse to IFN-a. Complementation with the
WT IFNAR2 allele restored both ISG induc-
tion and cell surface expression (Duncan
et al., 2022). The authors point out that
about 1 in 1,539 individuals in Greenland
and 1in 6,450 in Samoa are homozygous for
these alleles and, therefore, are at risk for
life-threatening LAV disease or natural viral
infection (Bastard et al., 2022; Duncan et al.,
2022).

These findings confirm the high, yet in-
complete, penetrance of susceptibility to
life-threatening disease due to LAV in pa-
tients with IFNARI1 and IFNAR2 deficiency,
with only 10/12 patients reporting illness
following MMR vaccination (Bastard et al.,
2022; Duncan et al., 2022). These reports
also highlight, for the first time, the role of
live-attenuated varicella vaccine as a cause
of disease in both IFNARI and IFNAR2 de-
ficiencies (Bastard et al., 2022; Duncan et al.,
2022). Moreover, the development of acute
respiratory distress syndrome due to influ-
enza A infection in one patient, and of se-
vere COVID-19 disease in several others,
points to the possibility of fatal disease fol-
lowing infection with these viruses. It is
tempting to speculate that WT measles and
VZV, just like COVID-19 and influenza,
could potentially be fatal. Finally, the find-
ing of a high HSV-1 viremia in a patient with
MMR disease suggests the non-redundant
role of type I IFN signaling for controlling
HSV-1, as revealed by the description of a
patient with HSE (Bastard et al., 2021la;
Duncan et al.,, 2022). Interestingly, two pa-
tients received oral LAV without developing
disease: a rotavirus vaccine in one patient
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IFNAR2 p.Ser53Pro AF 0,034
5 patients from 4 kindreds

IFNAR1 p.Glu386* AF 0,01
J%r’ 7 patients from 5 kindreds

IFNAR1- (dots) and IFNAR2-deficient (squares) patients around the world. White symbols represent
alleles with a frequency > 1%; gray symbols represent previously described rare variants.

(IFNAR2-deficient), and the oral polio vac-
cine in the other (IFNARI-deficient). Nei-
ther resulted in disease. It is not possible to
draw definitive conclusions from these two
observations, but it is possible that the ac-
tion of type III IFNs may have compensated
for the type I IFN deficiency.

Despite the high frequency of these del-
eterious alleles in these distant and isolated
populations, and despite LAV disease un-
covering IFNARI1/2 deficiency, the need to
continue MMR vaccination efforts cannot be
overstated. Immunologically, individuals
with IFNARI or IFNAR2 deficiency would be
expected to be highly susceptible to life-
threatening disease due to natural measles,
mumps, rubella or VZV infection. Indeed, a
recent outbreak of measles in Samoa re-
sulted in high mortality. The findings of
these papers call for a population-specific
approach, in which targeted sequencing of
the deleterious allele in neonates should be
envisaged. A similar strategy has been em-
ployed in Manitoba to detect a common
deleterious IKBKB allele that results in se-
vere combined immunodeficiency in First
Nation communities (Rubin et al., 2018).
Nevertheless, the incomplete penetrance of
the diverse clinical phenotypes of IFNAR1
and IFNAR?2 deficiencies, together with the
reality that homozygous IFNARI- and
IFNAR2-deficient patients are probably
living normal lives in these populations,
makes it harder to make any clear rec-
ommendations. Careful medical and ethics
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appraisal is required, together with a judi-
cious weighing up of the benefits and
drawbacks of long-term treatment with
intravenous immunoglobulin or acyclovir
relative to consistent adherence to the
population-wide vaccine schedule, with
early anti-inflammatory and/or antiviral
intervention upon disease manifestations.

Ascertainment bias notwithstanding,
these findings suggest that human type I
IFNs are more redundant than initially
thought. Type I IFN-independent restriction
factors may act against many viruses in
human tissues, as reported before (RNA
lariat debranching enzyme [DBR1], small
nucleolar RNA H/ACA box 31 [SNORA31],
epidermodysplasia verruciformis-calcium-
and-integrin-binding protein 1 [EVER-CIBL];
Casanova and Abel, 2021). Nevertheless, we
can also anticipate an expansion of the
spectrum of viral susceptibility with the
description of increasing numbers of
individuals with IFNAR1 or IFNAR2 de-
ficiency. In geographically isolated pop-
ulations, such as those of the Arctic or the
Pacific, genetic drift has probably been
at work, with serial founder effects, iso-
lation, or bottlenecks followed by rapid
expansions of the population (Quintana-
Murci, 2019). There is no reason to suspect
that these loss-of-function alleles have been
subject to positive selection. Moreover, in
both the Inuit and western Polynesian
populations, exposure to some viruses is
recent, resulting in little negative selection.
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These findings corroborate previous ob-
servations of rare patients and suggest that
type I IFN is redundant for host defense
against most viruses, in most humans. This
is not inconsistent with the negative selec-
tion acting on the IFNARI1 and IFNAR2 loci
and with complete AR IFNARI and IFNAR2
deficiencies being extremely rare, reported
to date in only nine patients from eight
unrelated kindreds for complete AR IFNARI
deficiency and four patients from three
unrelated kindreds for AR complete IFNAR2
deficiency, respectively. Indeed, vulnera-
bility to one or a few viruses may be suffi-
cient to exert negative selection.
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