
Vol. 29 ISMB/ECCB 2013, pages i217–i226
BIOINFORMATICS doi:10.1093/bioinformatics/btt245

Multitask learning for host–pathogen protein interactions
Meghana Kshirsagar1, Jaime Carbonell1 and Judith Klein-Seetharaman1,2,3,*
1Language Technologies Institute, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., PA
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ABSTRACT

Motivation: An important aspect of infectious disease research in-

volves understanding the differences and commonalities in the infec-

tion mechanisms underlying various diseases. Systems biology-based

approaches study infectious diseases by analyzing the interactions

between the host species and the pathogen organisms. This work

aims to combine the knowledge from experimental studies of host–

pathogen interactions in several diseases to build stronger predictive

models. Our approach is based on a formalism from machine learning

called ‘multitask learning’, which considers the problem of building

models across tasks that are related to each other. A ‘task’ in our

scenario is the set of host–pathogen protein interactions involved in

one disease. To integrate interactions from several tasks (i.e. dis-

eases), our method exploits the similarity in the infection process

across the diseases. In particular, we use the biological hypothesis

that similar pathogens target the same critical biological processes in

the host, in defining a common structure across the tasks.

Results: Our current work on host–pathogen protein interaction pre-

diction focuses on human as the host, and four bacterial species as

pathogens. The multitask learning technique we develop uses a task-

based regularization approach. We find that the resulting optimization

problem is a difference of convex (DC) functions. To optimize, we

implement a Convex–Concave procedure-based algorithm. We com-

pare our integrative approach to baseline methods that build models

on a single host–pathogen protein interaction dataset. Our results

show that our approach outperforms the baselines on the training

data. We further analyze the protein interaction predictions generated

by the models, and find some interesting insights.

Availability: The predictions and code are available at: http://www.cs.

cmu.edu/�mkshirsa/ismb2013_paper320.html

Contact: j.klein-seetharaman@warwick.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Infectious diseases are a major health concern worldwide, caus-

ing millions of illnesses and deaths each year. Newly emerging

viral diseases, such as swine H1N1 influenza, severe acute re-

spiratory syndrome (SARS) and bacterial infections, such as

the recurrent Salmonella and Escherichia coli outbreaks not

only lead to wide-spread loss of life and health, but also result

in heavy economic losses. To better navigate this landscape of

infectious diseases, it is important to not only understand the

mechanisms of individual diseases, but also the commonalities

between them. Combining knowledge from related diseases will

give us deeper insights into infection and host immune response,

will enhance our ability to comprehend new diseases and lead to

efficient development of therapeutics.
Key to the infection process are host–pathogen interactions at

the molecular level, where pathogen proteins physically bind

with human proteins. Via these protein interactions, the patho-

gen manipulates important biological processes in the host cell,

evades host immune response and multiplies within the host.

Interactions between host and pathogen proteins can be studied

using small-scale biochemical, biophysical and genetic experi-

ments or large-scale high-throughput screening methods like

yeast two-hybrid (Y2H) assays. Databases like PHI-base

(Winnenburg et al., 2008), PIG (Driscoll et al., 2009), HPIDB

(Kumar and Nanduri, 2010), PHISTO (Tekir et al., 2012) aggre-

gate host–pathogen protein interactions from several small-scale

and high-throughput experiments via manual literature curation.

These databases are valuable sources of information for develop-

ing models of the modus operandi of pathogens.
However, interaction datasets from these databases are not

only small but are available for only a few well-studied patho-

gens. For example, the PHI-base (Winnenburg et al., 2008)

database covers 64 diseases but has only 1335 interactions,

PIG (Driscoll et al., 2009) covers only 12 pathogens.

Computationally, this calls for techniques that combine datasets

and build joint models across several pathogens, which can then

be used to analyze the commonalities in the pathogens and also

to predict plausible interactions that are biased by this joint

understanding.
In our work, we study host–pathogen protein–protein inter-

action (PPI) where the host is fixed and the pathogens are vari-

ous bacterial species (Fig. 1A). The host species we consider is

human and the bacterial species are Yersinia pestis, Francisella

tularensis, Salmonella and Bacillus anthracis, which cause the dis-

eases bubonic plague, acute pneumonia, typhoid and anthrax,

respectively.
Some recent work on infectious diseases has alluded to the

hypothesis that different pathogens target essentially the same

critical biological processes in the human body. The analysis by

Chen et al. (2012) suggests that HIV infection shares common

molecular mechanisms with certain signaling pathways and can-

cers. Dyer et al. (2008) study bacterial and viral interactions with

human genes and find infection mechanisms common to multiple

pathogens. Experiments by Jubelin et al. (2010) show how vari-

ous bacterial cyclomodulins target the host cell cycle. The study

by Mukhtar et al. (2011) on plant pathogens, in particular,

Arabidopsis concludes that pathogens from different kingdoms

deploy independently evolved virulence proteins that interact

with a limited set of highly connected cellular hubs to facilitate

their diverse life cycle strategies. Figure 1B illustrates an example

depicting the commonality in various bacterial species, where*To whom correspondence should be addressed.
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they are targeting the same biological pathways in their human

host.
This biological hypothesis, which we henceforth call the com-

monality hypothesis, is exploited here to jointly learn PPI models

for multiple bacterial species. We translate the hypothesis into a

prior that will bias the learned models. We use a multitask learn-

ing–based approach, where each ‘task’ represents the interaction

of one bacterial species with human. The prior is represented in

the form of a regularizer that penalizes models to the degree that

the above hypothesis is violated.

2 BACKGROUND

The most reliable experimental methods for studying PPI are

often time-consuming and expensive,making it hard to investigate

the prohibitively large set of possible host–pathogen inter-

actions—for example, the bacterium B.anthracis, which causes

anthrax, has about 2321 proteins, which when coupled with the

25 000 or so human proteins gives approximately 60 million pro-

tein pairs to test, experimentally. Computational techniques com-

plement laboratory-based methods by predicting highly probable

PPIs—thereby enabling experimental biologists to focus on fewer

interactions and ruling out the vast majority of unlikely ones.
In particular, supervised machine learning–based methods use

the few experimentally discovered interactions as training data

and formulate the interaction prediction problem in a classifica-

tion setting, with target classes: ‘interacting’ or ‘non-interacting’.

Features are derived for each host–pathogen protein pair using

various attributes of the two proteins such as protein sequence,

gene expression, gene ontology (GO) etc. The general outline of

the supervised PPI prediction procedure is illustrated in

Supplementary Figure S1.

Most of the prior work in PPI prediction has focussed on

building models separately for individual organisms (Chen and

Liu, 2005; Qi et al., 2006; Singh et al., 2006; Wu et al., 2006) or

on building a model specific to a disease in the case of host–

pathogen PPI prediction (Dyer et al., 2007; Kshirsagar et al.,

2012; Qi et al., 2009; Tastan et al., 2009). The use of PPI data

from several organisms has predominantly been in the form of (i)

features derived from various PPI datasets, (ii) use of common

structural properties of proteins across organisms (Wang et al.,

2007) or (iii) methods that narrow down predicted interactions in

the organism of interest (Garcia et al., 2010). Some of these

methods use the concepts of ‘homologs’, ‘orthologs’ and ‘inter-

ologs’ to define a similarity measure between PPIs from various

organisms (Garcia et al., 2010).
There has been little work on combining PPI datasets with the

goal of improving prediction performance for multiple organ-

isms. Qi et al. (2010) proposed a semi-supervised multitask

framework to predict PPIs from partially labeled reference sets.

The basic idea is to perform multitask learning on a supervised

classification task and a semi-supervised auxiliary task via a

regularization term. Another line of work in PPI prediction

(Xu et al., 2010) uses the Collective Matrix Factorization

(CMF) approach proposed by Singh and Gordon (2008). The

CMF method learns models for multiple networks by simultan-

eously factorizing several adjacency matrices and sharing param-

eters amongst the factors. Xu et al. (2010) use these ideas in their

transfer learning setting, where the source network is a relatively

dense interaction network of proteins and the objective is to infer

PPI edges in a relatively sparse target network. To compute

similarities between the nodes in the source and target networks,

they use protein sequences and the topological structures of the

interaction networks.

3 APPROACH

Multitask learning is a family of machine learning methods that

addresses the issue of building models using data from multiple

problem domains (i.e. ‘tasks’) by exploiting the similarity be-

tween them. The goal is to achieve performance benefits for all

the tasks involved. This paradigm of building joint models has

been applied successfully in many areas including text mining,

computer vision, etc. Because bioinformatics datasets often rep-

resent an organism, a natural notion of a ‘task’ is an ‘organ-

ism’—for example, the work by Widmer et al. (2010) uses a

multitask learning approach for splice-site prediction across

many organisms. They use phylogenetic trees to incorporate

similarity between organisms (i.e. tasks). For a survey of multi-

task learning in computational biology, see Xu and Yang (2011).
Our multitask learning method is based on the task regular-

ization framework, which formulates the multitask learning

problem as an objective function with two terms: an empirical

loss term on the training data of all tasks, and a regularization

term that encodes the relationships between tasks. Equation (1)

shows the general form of such an objective, the term R being the

regularizer raised to the power p and with a q-norm. The work by

Evgeniou and Pontil (2004) is one of the early few to develop this

general approach. The function in Equation (1) represents a

simple multitask objective with a single regularizer R; many of

the formulations often involve a summation over multiple terms.

L ¼
P

i2tasks

Loss ðtaskiÞ þ �jjRjj
p
q ð1Þ

We optimize this function by modifying the regularizer R to

encode the biological hypothesis. Our approach differs greatly

from prior work because we propose a technique to translate a

A B

Fig. 1. (A) Host–pathogen PPI prediction where the host is human and

the pathogens are bacteria. (B) An example depicting the commonality in

the bacterial attack of human proteins. Pathway-1 and pathway-3 (high-

lighted) represent critical processes targeted by all bacterial species
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problem-relevant biological hypothesis into a task regulariza-
tion–based approach rather than applying existing general for-

malisms on a dataset. Our tasks try to capture a naturally

occurring phenomenon. While our framework is developed in
the context of a specific hypothesis, we also illustrate the incorp-

oration of other hypotheses with an example. The key contribu-

tions of our work are as follows:

� we present a novel way of combining experimental PPI data

coming from several organisms

� we incorporate domain knowledge in designing a prior that

causes the learned models to exhibit the requisite common
structure across the tasks

� to optimize the resulting non-convex objective function, we

implement a concave convex procedure (CCCP)-based

method

In the Methods section (Section 4), we describe details of the

PPI datasets and our multitask learning framework. The evalu-

ation metrics and description of experiments is in Section 6,
results and analysis in Section 7.

4 METHODS

4.1 Multitask pathway–based learning

In this section, we describe how we incorporate the commonality hypoth-

esis into our multitask classification framework formulating it as an

optimization problem.

We consider each human-bacteria PPI prediction problem as one task.

The predicton problem is posed as a binary classification task, with each

instance xi being a pair of proteins 5b, h4, where one protein is the

bacterial protein ‘b’ (e.g. Y. pestis) and the other ‘h’ is the host protein (i.e.

human). The class-label yi 2 fþ1, � 1g represents interacting and non-

interacting proteins respectively. Features are defined for every protein-

pair using various properties of the individual proteins and combining

them all into a single feature vector. The positive class in our training data

comprises the known human-bacterial PPI which are obtained from data-

bases like PHISTO (Tekir et al., 2012). The construction of the negative-

class data is explained in Section 5.

Our objective is to minimize the empirical error on the training data

while favoring models that are biased toward the commonality hypoth-

esis. To achieve this, we use a bias term in the form of a regularizer in our

objective function. For brevity and without loss of generality, we will

henceforth refer to each human–bacteria PPI prediction problem as a

‘task’ (We will also refer to a task by the name of the bacterial species

only, as the host species, i.e. human, is common across all tasks).

Our method first combines all tasks in a pairwise manner, and finally

aggregates the output from the pairwise models. Let fT kg
m
k¼1 be the set of

tasks to be combined, where m is the number of tasks. Consider two tasks

T s and T t. Let the training data for the task T s be Xs ¼ fx
i
sji ¼ 1 . . . nsg

where each example xis 2 R
ds . Similarly, the training data for T t is

Xt ¼ fx
i
tji ¼ 1 . . . ntg where x

i
t 2 R

dt . ns and nt are the number of training

examples and ds and dt denote the number of features in the two tasks.

Let ws 2 R
ds , wt 2 R

dt represent the parameter vectors, i.e. the models

for the two tasks. We now describe how we combine these two tasks.

Section 4.3 will show how such pairwise models are aggregated.

The pathway-based objective Biologists often represent the set of

human proteins involved in a particular biological process by a graph

called a ‘biological pathway’. One such example, the ‘glucose transport

pathway’ in human is shown in the Supplementary. To use this pathway

construct, we revise our hypothesis to ‘proteins from different bacterial

species are likely to interact with human proteins from the same biolo-

gical pathway’. Figure 1B illustrates an example where this hypothesis

holds. The pathway information for each human protein can be obtained

from pathway databases like Reactome (Matthews et al., 2009) and PID

(Schaefer et al., 2009). While pathways are generally represented as

graphs, for our current work we do not use the edges. We treat a pathway

as a set of proteins—a human protein h can be a member of several

pathways depending on the biological processes it is involved in. Let N

be the total number of pathways in human. For a protein pair

i ¼5b, h4, let pi 2 f0, 1gN be the binary ‘pathway vector’ indicating

the pathway membership of h.

The commonality hypothesis suggests that the pathway memberships

of human proteins from interactions should be similar across tasks. We

define a pathway-summary function S, which aggregates all pathway

vectors for a given task T s. Because our hypothesis is about interactions,

we only consider pathway vectors of positive examples. Let Xþs , X
þ
t rep-

resent the set of positive examples from tasks T s and T t; let n
þ
s , n

þ
t be

their sizes. In Figure 2, we depict the aggregation done by S.

Mathematically, we have

SðT sÞ ¼
1
nþs

P
i2Xþs

pis Iposðw
T
s x

i
sÞ ð2Þ

where pis is the pathway vector for example i, and IposðzÞ ¼ Iðz40Þ. S sums

up the pathway vectors of examples predicted to be positive.We normalize

using nþs to compensate for the different dataset sizes across tasks.

Let Ps ¼ fp
i
sji ¼ 1 . . . nþs g be a matrix containing all pathway vectors

for positive examples from task T s. Analogously, Pt 2 f0, 1g
N�nþt is a

matrix for the positive examples from task T t. Matrices Ps and Pt are

constant matrices and are known a priori. Let SðT sÞ and SðT tÞ be the

pathway summaries of the tasks. We want to penalize the dissimilarity

between these summaries. Our objective function thus has the following

general form:

Lðws,wtÞ ¼ lðwsÞ þ lðwtÞ þ �jjRjj
2
2 þ � ðjjwsjj

2
2 þ jjwtjj

2
2Þ

where R ¼ SðT sÞ � SðT tÞ:

ð3Þ

Here lðwsÞ and lðwtÞ can be any convex loss functions computed over

the two tasks. We use logistic loss in our work based on prior experience

with PPI datasets. The last two ‘2 norms over the parameter vectors ws

and wt control overfitting. The parameters � and � take positive values.

The indicator function Ipos is non-differentiable. So we approximate Ipos
with the exponential function, which is a convex upper bound of the

Fig. 2. A schematic illustrating the pathway summarizing function S for

a task T 1. On the left are the examples from the input predicted to be

positive, indicated by Xþ. The matrix P has the pathway vectors for each

example in Xþ. The summary function aggregates the pathway vectors to

get the distribution
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indicator function and will make optimization easier. Let �ðzÞ ¼ ez=C,

where C is a positive constant. This function, for various values of C has

been plot in Figure 3. Small positive values of z ¼ wTxi indicate positive-

class predictions that are closer to the decision boundary of the classifier.

Examples predicted to be positive with a high confidence have a large z.

With varying values of C, the function � gives varying importance to pre-

dictions based on their classifier confidence ‘z’. Negative values of z, which

correspond to examples predicted to be negative, are given close to zero

importance by �. The choice of an appropriate C is important so as to

ensure the proper behavior of the summary function S. A steeply increas-

ing curve (C¼ 1) is undesirable as it will assign too much weight to the

summary of only some of the examples. We chose a moderate value of

C¼ 30 for our experiments.

Replacing Ipos by � in Equation (2), our summary function S becomes

SðT sÞ ¼
1
nþs

P
i2Xþs

pis 4�ðw
T
s x

i
sÞ. Putting everything together, our object-

ive with the logistic loss terms, the pathway summary function and the ‘2
regularizer terms has the following form:

Lðws,wtÞ ¼
Xns
i¼1

log 1þ e�w
T
s x

i
sy

i
s

� �
þ
Xnt
j¼1

log 1þ e�w
T
t x

j
ty

j
t

� �

þ�
1

nþs

X
i2Xþs

pis�ðw
T
s x

i
sÞ �

1

nþt

X
j2Xþt

pjt�ðw
T
t x

j
tÞ

������
������

������
������
2

2

þR‘2 ðws,wtÞ

ð3Þ

where R‘2 ðws,wtÞ ¼ �ðjjwsjj
2
2 þ jjwtjj

2
2Þ

The objective in Equation (3) is non-convex, and with some algebraic

simplifications we can reduce it to a difference of convex functions (DC).

To optimize this function, we implement the CCCP algorithm, which was

originally introduced by Yuille and Rangarajan (2003).

4.2 Solving the optimization problem

The objective in Equation (3) is non-convex in the shown form.We tried to

optimize it directly using L-BFGS, but found that the objective does not

decrease consistently. Below, we show that (3) is a DC functions. The first

two log-loss terms [we abbreviate them henceforth as ‘ðws,wtÞ] and the last

R‘2 term are all convex and do not pose any problem with optimization.

PROPOSITION 1. The objective (3) is a DC functions.

Lðws,wtÞ ¼ Fðws,wtÞ � Gðws,wtÞ ð4Þ

PROOF. Expanding the pathway vectors pis and p
j
t and rewrit-

ing Equation (3) we get

L ¼ ‘ðws,wtÞ þ R‘2 ðws,wtÞ

þ �
XN
k¼1

ð
1

nþs

X
i2Xþs

pkis �ðw
T
s x

i
sÞ �

1

nþt

X
j2Xþt

pkjt �ðw
T
t x

j
tÞÞ

2

L ¼ ‘ðws,wtÞ þ R‘2 ðws,wtÞ þ �
XN
k¼1

ðfk � gkÞ
2, where

fk ¼
1

nþs

X
i2Xþs

pkis �ðw
T
s x

i
sÞ and gk ¼

1

nþt

X
j2Xþt

pkjt �ðw
T
t x

j
tÞ:

ð5Þ

Note that fk and gk are non-negative convex functions. This

follows because �ðzÞ ¼ ez=C is a positive convex function and the

matrices Ps and Pt are non-negative by construction. fk and gk
are both thus positive linear combinations of convex functions

and hence convex. We now decompose the squared term in

Equation (5) as follows.

PN
k¼1

ðfk � gkÞ
2
¼
PN
k¼1

2ðf2k þ g2kÞ �
PN
k¼1

ðfk þ gkÞ
2

ð6Þ

We further observe that f2k is convex. To derive this, we use the

following proposition: a composition of a monotonically increas-

ing convex function and a convex function is still convex. The

square function hðzÞ ¼ z2 is a monotonically increasing function

for z � 0, thus the composition with fk (i.e. hðfkÞ) is also convex

by the positivity of fk. Analogously, g2k is also convex. Further,

ðfk þ gkÞ
2 is also convex by the same argument. Substituting (6)

back into Equation (5) we get our result.

L ¼ ½‘ðws,wtÞ þ R‘2 ðws,wtÞ þ �
XN
k¼1

2ðf2k þ g2kÞ�

� ½�
XN
k¼1

ðfk þ gkÞ
2
�

L ¼ Fðws,wtÞ � Gðws,wtÞ

ð7Þ

To optimize this function, we use a CCCP algorithm (Yuille

and Rangarajan, 2003). Our approach is inspired by the work

from Yu and Joachims (2009) on learning structural SVMs. The

idea is to compute a local upper bound on the concave function

(�G) and instead of optimizing L from Equation (4) directly, use

an approximation based on the upper bound of �G. Equation

(7) shows this function Lapprox. Let w represent the concatenation

of the two parameter vectors ws and wt. Let w
k be the k-th iter-

ate. We have from Taylor’s first order approximation that

�GðwÞ � �GðwkÞ þ ðw� wkÞ
T
rG for all w. This allows us to

obtain the following approximation, which we get by substituting

the above bound in place of �G in Equation (4):

min
w

LapproxðwÞ ¼ min
w
½FðwÞ � GðwkÞ þ ðw� wkÞ

T
rG�

¼ min
w
½FðwÞ þ wTrG�

ð7Þ

since wk is a constant. The optimization problem in Equation (7) is now

convex and can be solved using conventional techniques like L-BFGS,

conjugate gradient, etc. The outline of our CCCP-based procedure is

shown in Listing 1.

Algorithm 1 CCCP procedure

1: Initialize w ¼ w0

2: repeat

3: Compute rG using wk

4: Compute current value Lapprox

5: Solve wkþ1 ¼ argmin
w

½FðwÞ þ wTrG�

6: Set k ¼ kþ 1

7: Compute new value L0approx
8: � ¼ Lapprox � L0approx
9: until �5�

Yuille and Rangarajan (2003) show that such a CCCP-based algorithm

is guaranteed to decrease the objective function at every iteration and to

converge to a local minimum or saddle point. We observe a similar be-

havior in our experiments. Computationally, this algorithm is efficientFig. 3. The exponential function ez=C for different values of C
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because the regularizer works on a subset of the data—only the positive

examples, which are a small fraction of the complete training data.

Stopping criteria The convergence criterion for algorithm 1 is �5�,
where � is a threshold. We used � ¼ 1 in our experiments. Smaller values

required a long time to convergence. The inner optimization (line # 5),

which uses L-BFGS, had a convergence threshold of 0.0001. This step

took more iterations initially and fewer iterations getting closer to

convergence.

4.3 Combining pairwise models

In the previous sections, we described how we combine two tasks. In

particular, Equation (3) involves pairwise learning, which results in two

models ws and wt. Because our current framework can combine only two

tasks at a time, for m tasks we perform
m
2

� �
pairwise learning experi-

ments and then combine their outputs. Each task will thus have m� 1

models as a result of pairing up with each of the other tasks. Let the set of

models for task T s beMs ¼ fws1 ,ws2 . . .wsm�1 g. We treatMs as an en-

semble of models for this task and aggregate the output labels from all

models to get the final labels on the test data. Let the output labels from

each model for a given test instance x be Ox ¼ fo1, o2 . . . om�1g. Then the

final output label y is computed by taking a vote and checking if it crosses

a threshold:

y ¼
1 if

�P
oj

Iðoj ¼ 1Þ
�
� v

�1 otherwise

8<
: ð8Þ

where v is a vote threshold that should be crossed in order for the label to

be positive. In our experiments, we found that the predictions for T s from

all models inMs overlapped greatly. Hence, we used v¼ 1, which implies

that x is an interaction if any one of our four tasks labels it as such.

5 DATASET AND FEATURES

For Salmonella typhi, we used the list of 62 interacting protein

pairs reported in Schleker et al. (2012), which were obtained by

the authors by manual literature curation. These interactions

come from small-scale experiments. The other three PPI inter-

action datasets were obtained from the PHISTO database. Most

of the reported interactions for these three bacterial species come

from a single high-throughput experimental study reported in

Dyer et al. (2010). While F.tularensis, S.typhi and Y.pestis are

gram-negative gamma-protobacteria, B.anthracis is a gram-posi-

tive bacteria. The number of unique proteins in each bacterial

species, the sizes of all datasets and the number of all possible

host–pathogen protein pairs are listed in Table 1.

5.1 Feature set

For each protein pair, we compute features similar to the work in

Kshirsagar et al. (2012). Some features use both proteins in the

pair, while some others are based on either the host protein or

the pathogen protein. While the features used for S.typhi were

obtained directly from the authors, those for the other three

datasets were derived from the following attributes of proteins

available in public databases: protein sequences from Uniprot

(UniProt Consortium, 2011), gene ontology from GO database

(Ashburner et al., 2000), gene expression from GEO (Barrett

et al., 2011), properties of human proteins in the human PPI

network. Owing to the lack of space, we briefly mention only

some of the prominent features here, and encourage the readers

to refer to the supplementary for details. The sequence features

count the frequency of amino acid–based n-grams or n-mers (for

n¼ 2, 3, 4, 5) in the protein sequence. The GO features count the

co-occurrence of host–pathogen GO term combinations. The

human PPI network-based features compute various graph prop-

erties like node-degree, betweenness-centrality, clustering coeffi-

cient of the human protein.
Our features define a high-dimensional and sparse space (the

number of features is listed in Table 1). Because our features are

derived by integrating several databases, some of which are not

complete, there are many examples and features with missing

values. In our current work, we eliminate all examples with

410% missing features. For the rest, we use mean value–based

feature imputation. Handling missing data effectively is an im-

portant aspect of the PPI prediction problem; however, it is not

the focus of this work. The remaining examples after elimination

and imputation are also shown in Table 1.

5.2 Negative class examples

The interactions listed in the table form the positive class. Because

there is no experimental evidence about proteins that do not inter-

act, we construct the ‘non-interacting’ (i.e. negative) class using a

technique commonly used in PPI prediction literature. We use

random pairs of proteins sampled from the set of all possible

bacteria–human protein pairs. The number of random pairs

chosen as the negative class is decided by what we expect the

Table 1. Characteristics of all four interaction datasets used

B.anthracis F.tularensis Y.pestis S.typhi

Total no. of bacterial proteins (‘reviewed’ protein set

from UniprotKB)

2321 1086 4600 3592

Total no. of human–bacteria protein pairs 59.4M 27.8M 117.7M 87.7M

No. of known interactions 3073 1383 4059 62

No. of interactions with no missing features 655 491 839 62

Size of training data with 1:100 class ratio 66 155 49 591 84 739 6262

No. of unique features in the training data 694715 468 955 886 480 349 155

Note: Total no. of human proteins: 25596; M, million. For each host–pathogen PPI dataset, the number of pathogen proteins, the size of the dataset and other such statistics

are shown.
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interaction ratio to be. We chose a ratio of 1:100 meaning that we

expect 1 in every 100 random bacteria–human protein pairs to

interact with each other. In general, there is no basis for choosing

a more meaningful ratio, as there are few known interactions. We

rely on previous work on better-studied organisms, where a ratio

of 1:100 was used, based on the number of known interactions.

Further, prior studies (Dyer et al., 2007; Tastan et al., 2009) also

use a similar ratio. This random selection strategy is likely to

introduce �1% false negatives into the training set.

5.3 Analyzing the known interactions

We analyze the known host–pathogen interactions from our

datasets. This analysis also motivates our choice of a multitask

approach that uses a pathway-based similarity across tasks. The

known PPIs are compared across datasets in two ways: (i) path-

way enrichment and (ii) presence of interologs.

(i) The human proteins involved in each interaction dataset

are used to obtain the human pathways that are enriched.

We use Fisher’s test (based on the hypergeometric distri-

bution) to compute the P-value of each pathway. We plot

these P-values for each pathway, and for each dataset in

the form of a heatmap shown in Figure 4. The heatmap

shows how there are several commonly enriched pathways

across the datasets (the black vertical lines spanning all

four rows). It also shows the difference in the enrichment

for the S.typhi dataset, which comes from small-scale PPI
experiments.

(ii) We analyze the similarity between the PPIs from various

datasets. A natural way to determine similarity is to check

if proteins known to interact in one dataset have homolo-
gous proteins that are also interacting in another dataset.

Such pairs of proteins, also called ‘interologs’, are defined

as a quadruple of proteins A,B,A0,B0, where A$ B

(interaction) and A0 $ B0. Further, A, A0 are homologs

and B, B0 are also homologs. The number of such inter-

ologs existing between the four datasets is shown in

Table 2. To compute homologs of a protein, we used

BLASTP sequence alignment with an e-value cutoff of
0.1. As evident from Table 2, there are few interologs

across the bacterial PPIs. None of the high-throughput

datasets have an interolog in the small-scale S.typhi data-

set. This seems to indicate that interolog-based approaches

to compute task similarity are not relevant here. The phe-

nomenon governing the similarity of these host–pathogen

interactions is probably at a much higher level, rather than

at the level of individual proteins. We explore one such

possibility—the ‘commonality hypothesis’.

6 EXPERIMENTS

We use 10-fold cross validation (CV) to evaluate the perform-

ance of all algorithms. Our evaluation criteria do not use accur-

acy, which measures performance on both the classes. Because

our datasets are highly imbalanced with a large number of nega-

tive samples, a naı̈ve classifier that always says ‘no’ would still

have a high accuracy. We instead use precision and recall com-
puted on the interacting pairs (positive class) because they can

deal with class imbalance.

Precision Pð Þ ¼
number of true positives

number of predicted positives
;

Recall Rð Þ ¼
number of true positives

total number of true positives in data
;

F1 score F1ð Þ ¼
2PR

Pþ R

The baselines that we compare against are briefly described

below.

Independent models (Indep.): We train models independently on

each task using two standard classifiers: Support Vector

Machines and Logistic regression with ‘1 and ‘2 regularization.

We used LibLinear (Fan et al., 2008) for these experiments and
found that logistic regression with ‘1 regularization performs the

Fig. 4. Heatmap showing pathways enriched in each bacterial–human

PPI interactions dataset. The horizontal axis represents the pathways

(about 2100 of them) and the vertical axis represents the four datasets.

Each entry in the heatmap represents the P-value of a pathway w.r.t one

dataset. Darker values represent more enrichment. The black columns

that span across all four rows show the commonly enriched pathways

Table 2. Conserved interactions in the form of interologs across the various host–bacterial datasets

Human–bacteria PPI datasets compared H-B versus

H-F

H-B versus

H-Y

H-B versus

H-S

H-F versus

H-Y

H-F versus

H-S

H-Y versus

H-S

Number of Interologs 2 3 0 3 0 0

Note: H-X: stands for human–pathogen where the pathogen ‘X’ can be B, F, Y and S referring to B.anthracis, F.tularensis, Y.pestis and S.typhi., respectively. The non-zero

entry ‘2’ for ‘H-B versus H-F’ means there are two PPIs in the H-B dataset that have interologs in the H-F dataset.
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best across all tasks. For conciseness, we report only the best
model’s performance.

Coupled models: This baseline was implemented so as to couple

the regularizer parameter across two tasks, thereby keeping the
basic framework similar to that in our technique. To achieve this

we optimize the function in Equation (9) and use the L-BFGS
implementation from Mallet. Note that the previous baseline has

separate regularization parameters for each task.

L ¼
Pns
i¼1

logð1þ e�w
T
s x

i
sy

i
s Þ þ

Pnt
j¼1

log
�
1þ e�w

T
t x

j
ty

j
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�
þ

�

�
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2
2 þ jjwtjj

2
2

� ð9Þ

Independent models with pathway features (Indep. Path.): This
baseline incorporates the pathway information from the pathway

vectors pi as features. For each example i, the feature vector is
appended by the pathway vector pi. While our method uses the

pathway vectors only for the positive class examples (via the
matrices Ps and Pt), this baseline uses the pathway information

for all examples via features. The performance of this baseline
will indicate whether using raw pathway information without

incorporating any biologically relevant coupling does well. We
learn independent models for each task as before, and find that

logistic regression with ‘1 regularization does the best (only these
results are reported).

Mean Multi-task Learning (Mean MTL): This is a logistic regres-

sion-based implementation of the multitask SVM model pro-
posed by (Evgeniou and Pontil, 2004). The important feature

of this work is the use of a regularizer that penalizes the differ-
ence between a model and the ‘mean’ model formed by averaging

over models from all m tasks. In the original paper, the loss
functions lðwiÞ were all hinge loss. Because we find that logistic

regression does better on our datasets, we replaced the original
hinge loss function by logistic loss. The objective we use is shown

in Equation (10).

L ¼
Pm
i¼1

lðwiÞ þ �
Pm
i¼1

wi �
1
m

P
j

wj

�����
�����

�����
�����
2

2

þ �
Pm
i¼1

jjwijj
2
2
ð10Þ

Multitask pathway-based learning: This refers to our technique,

which minimizes the sum of logistic loss over the two tasks with
an ‘2 regularization penalizing the difference between the path-

way summaries. We train two tasks at a time and compute the
performance for each task. Because we have four tasks, there are

six such pairwise learning experiments in all. While evaluating
performance during 10-fold CV, we obtain the F1 on 1-fold of a

task T t by averaging the F1 across all pairwise learning experi-
ments that involve T t (see Section 4.3 for details). The final CV

performance reported in our results is an average over 10-folds.

6.1 Parameter tuning

We followed an identical procedure for all algorithms. For the
10-fold CV experiments we train on 8-folds, use 1-fold as held-

out and another as test. The optimal parameters (i.e. the best
model) were obtained by parameter tuning on the held-out fold.

The test fold was used to evaluate this best model—these results

are reported in Section 7. The range of values we tried during the

tuning of the regularization parameter (�) were 150–10�4. For �,
the parameter controlling overfitting in multitask pathway–

based learning (MTPL), we used a fixed value of � ¼ 1. For

Mean MTL, we tune both � and �. To handle the high-class

imbalance in our data, we used a weight-parameter Wpos to in-

crease the weight of the positive examples in the logistic loss

terms of our function. We tried three values and found

Wpos ¼ 100 performed the best on training data.

7 RESULTS AND DISCUSSION

7.1 Overall performance

Table 3 reports for each bacterial species, the average F1 along

with the standard deviation for the 10-fold CV experiments. The

performance of all baselines is similar, and our method outper-

forms the best of the baselines by a margin of 4 points for

B.anthracis, 3.4 points for F.tularensis and 3.2 points for

Y.pestis and 3.3 for S.typhi. The overall performance of all meth-

ods on this dataset is twice as good as that on the others. We

believe that the difference in the nature of the datasets might

explain the above observations. While the S.typhi dataset com-

prises small-scale interaction studies, the other datasets come

from high-throughput experiments. Owing to its smaller size, it

has less variance making it an easier task. This dataset is also

likely to be a biased sample of interactions, as it comes from

focussed studies targeting select proteins.
The coupled learner (Coupled) performs slightly worse than

Indep. This is explained by the fact that Indep. has more flexi-

bility in setting the regularization parameter for each task separ-

ately, which is not the case in Coupled. It is interesting to note

that the independent models that use the pathway matrices Ps

and Pt as features (i.e. Indep-Path) show a slightly worse per-

formance than the Indep. models that do not use them. This

seems to suggest that the cross-task pathway similarity structure

that we enforce using our regularizer has more information than

simply the pathway membership of proteins used as features.

Precision-Recall curves: We also plot the P-R curves for

MTPL. Please see the Supplementary Section 3.

7.2 Paired t-tests for statistical significance

Given two paired sets of k measured values, the paired t-test

determines whether they differ from each other in a significant

Table 3. Averaged 10-fold CV performance for all methods for a posi-

tive:negative class ratio of 1:100

Method B.anthracis F.tularensis Y.pestis S.typhi

Indep. 27.8	4 25.7	 5.4 28.8	4 72.5	11.4

Coupled 27	3.9 25.5	 5 27.9	3.4 69.8	12.4

Indep. Path. 26.5	4.7 26.1	 6.9 26.7	4.3 69.1	12.7

Mean MTL 25.2	4.9 26.7	 4 27.5	6.3 69.4	12.1

MTPL 31.8	3.9 30.1	 5.8 32.1	2.5 75.8	12.1

Note: Accuracy is reported as the F1 measure computed on the positive class. The

standard deviation over the 10-folds is also reported. Bold values indicate the high-

est F1 value for each column (i.e. for that PPI dataset).
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way. We compare MTPL with Indep.—the best baseline from
the 10-fold CV results. Because the 10-fold CV results from the

previous section give insufficient samples (i.e. only 10 samples),
we instead use 50 bootstrap sampling experiments and use the

results to compute the P-values. Each bootstrap sampling experi-
ment consists of the following procedure: we first make two

random splits of 80 and 20% of the data, such that the class
ratio of 1:100 is maintained in both. The training set is then

constructed using a bootstrap sample from the 80% split and
the test data from the 20% split. A total of 50 models are thus

trained and evaluated. We do not tune parameters again for each
model and instead use the optimal setting of parameter values

from our 10-fold CV experiments. The F1 is computed for each
experiment thereby giving us 50 values, which will be our samples

for the hypothesis test.
Because t-tests assume a normal distribution of the samples,

we first did a normality test on each set of 50 F1 values. We
performed the Shapiro–Wilk test with a significance level of

� ¼ 0:00001 and found that our samples satisfy normality.
The averaged F1 over the 50 bootstrap experiments for the

four tasks with MTPL and Indep. has been tabulated in the

Supplementary Table S1. We observe that MTPL does better
than Indep. for the three high-throughput datasets and margin-

ally underperforms for the S.typhi. dataset. Table 4 shows the
P-values on applying the paired t-tests to the 50 F1 values. For

three of the four tasks, the performance improvement by MTPL
is clearly statistically significant. For the fourth task, which in-

volves S.typhi., the baseline has a slightly better averaged per-
formance but the P-value does not indicate statistical

significance. Hence we can say that the performance of MTPL
and Indep. is similar for this task.

7.3 Pairwise performance of tasks in MTPL

The previous section gave a summary of the aggregated perform-
ance of MTPL for every task. Here we present the performance

of every pairwise learning experiment of MTPL in Table 5. This
gives an idea of how various tasks benefit from being paired up

with other tasks. For each task, we check the task-pairing that
gave the best performance (best F1 for each task is shown in

bold). For instance, the best F1 of 32.3 for Y.pestis was obtained
in the pairwise model learned with S.typhi. It is evident that

coupling a model with one additional task seems to improve
the performance over the baseline.

7.4 Feature importance across tasks

To get an understanding of inter-task model similarity, we com-
pared the parameter vectors ‘w’ of all tasks with each other (each

w was learned on the entire training data). Because the number
of features is large, we computed the cosine similarity between

them. Note that we only use features that are common across
tasks for this comparison. Gene expression features for instance

were not used as they vary with regard to the number of expres-
sion time points, the experiment protocol, etc.

We found that the feature weights vary greatly across
models—the cosine similarity ranges between 0.1 and 0.13. We

also analyzed which features had the highest absolute weight. We
found that the node-degree feature (computed using the human

PPI graph) has a high positive weight across all tasks. Gene

expression features have large negative weights across all tasks.

In general, the GO and protein sequence–based n-gram features

have different weights across tasks.

This seems to imply that having similar parameter values

across models is not particularly important for this multitask

problem. This explains why one of our baselines: the Mean

MTL method, which penalizes differences between parameter

vectors, does not perform well. Instead, regularization using the

pathway summaries seems key in giving a better performance.
Sparsity of weights: We use ‘2 regularization in our optimiza-

tion function, which does not produce sparse weight vectors. We

observe that �50% of the features have 0 weight in all tasks.

About 75–80% of the features have small weights in the range of

(0.001 to �0.001).

7.5 Analysis of predictions

The F1 measure gave us a quantitative idea of the performance

of each method on training data. In this section, we present a

qualitative analysis of the new interactions that our models pre-

dict. We first construct, for each task ‘T t’, a random set Rt of

protein pairs that is disjoint from the training dataset. We train

the pairwise models on the training data and obtain predictions

on Rt. The method described in Section 4.3 is used to aggregate

predictions from all pairwise models. The subset of Rt labeled as

‘positive’ is used for the analysis described below.

Table 5. Pairwise model performance of MTPL

Pairwise tasks F1

Task-1, Task-2 Task-1 Task-2

B.anthracis, F.tularensis 31.4 30.1

B.anthracis, S.typhi 32 76.3

B. anthracis, Y.pestis 31.6 32

F.tularensis, S.typhi 30.3 73

F.tularensis, Y.pestis 30 32.1

S.typhi, Y.pestis 74.2 32.3

Note: F1 computed during 10-fold CV of various pairwise models from MTPL.

Positive: negative class ratio was 1:100. The best F1 achieved for each task (i.e. for

each bacterial species) is shown in bold. For example, B.anthracis has the best

performance of 32 when it is coupled with S.typhi.

Table 4. P-values from pairwise t-tests of statistical significance

B.anthracis F.tularensis Y.pestis S.typhi

P-value 4.1e-04a 9.1e-04a 2.2e-07a 0.1b

Note: We compare MTPL with the best baseline ‘Indep.’, using results from 50

bootstrap sampling experiments. The null hypothesis is ‘there is no significant dif-

ference between the performance of MTPL and Indep.’.

Null hypothesis: MTPL¼ Indep.
aAlt. hypothesis: MTPL4Indep.
bAlt. hypothesis: MTPL5Indep.
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Enriched human pathways We perform enrichment analysis on
the human pathways from the positive predictions of MTPL. We

use Fisher’s exact test with the hypergeometric distribution. We

intersect the top enriched pathways that satisfy P-value � 1e-07

from each task to get the commonly enriched pathways. The

sizes of the various intersections are shown in Figure 5.

Seventeen pathways are commonly enriched across all four

tasks. One hundred four pathways are enriched across the

three high-throughput datasets, which is a significant fraction

of the total number of pathways considered. This result indicates

that the bias produced by our regularizer does produce predic-

tions satisfying the commonality hypothesis.
Table 6 shows some of the common enriched pathways. The

‘Integrin alpha IIb beta3 (�IIb �3) signaling’ pathway is enriched
only in B.anthracis and Y.pestis in the training data. However, in

the predictions it is enriched in all four bacterial datasets.

Integrin-�IIb �3 is a transmembrane receptor expressed in

mast cells and plays an important role in innate immune re-

sponses against pathogens.
We also analyze the overlap between the pathways enriched in

the gold-standard positives and those enriched in the predictions.

Please see the Supplementary Section 5 for details.

7.6 Incorporating other biological hypotheses

The regularizer in Equation (3) uses the pathway information

matrix to enforce pathway-level similarity. The matrix can be

used to represent any other common structure. For example,

consider the hypothesis ‘all pathogens target hub proteins in the

host’, which implies that bacterial proteins are often found to

interact with host proteins that have a high node degree in the

PPI network of the host. We tried two variants to incorporate

this hypothesis—(i) we identify ‘hubs’ in the human PPI graph

and use the binary vectors pi as an indicator of the ‘hub’ protein

targeted by the bacterial protein, (ii) instead of a discrete ‘hub’/

‘not hub’ indicator we use pi to represent the node degree [each

component of pi represents one node-degree bin say (10–20)]. We

found that using (i) gives us an improvement of upto 2.5F points

over the baseline methods.

8 CONCLUSION

We presented a method that uses biological knowledge in jointly

learning multiple PPI prediction tasks. Using a task regulariza-

tion–based multitask learning technique, we were able to encode

a biological hypothesis into the optimization framework effect-

ively, thus enabling the commonality hypothesis to be tested. Our

results indicate that the tasks benefit from this joint learning and
we see an improvement of 4F points over the baseline methods.

While our current results were presented on four bacterial spe-

cies, we plan to extend our analysis to several other pathogens.
Another direction to explore is the case where the pathogen is

fixed and the hosts are different.

Our current approach integrates multiple tasks in a pairwise
manner, which is inefficient because it does not scale well while

integrating several PPI datasets. The most straightforward way

of extending Equation (3) to learning m tasks simultaneously

involves loss terms for each of the tasks and Oðm2Þ pairwise

regularization terms, which unfortunately makes the optimiza-

tion problem more complex and inefficient. A more promising

and efficient direction would be to consider model selection at
the task level where only the most relevant and useful tasks are

used for multitask learning.
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