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Abstract

In this article, we compare the maximum likelihood estimate (MLE) and the maximum prod-
uct of spacing estimate (MPSE) of a stress-strength reliability model, 6 = P(Y < X), under
adaptive progressive type-Il progressive hybrid censoring, when X and Y are independent
random variables taken from the inverse Weibull distribution (IWD) with the same shape
parameter and different scale parameters. The performance of both estimators is com-
pared, through a comprehensive computer simulation based on two criteria, namely bias
and mean squared error (MSE). To demonstrate the effectiveness of our proposed meth-
ods, we used two examples of real-life data based on Breakdown Times of an Insulated
Fluid by (Nelson, 2003) and Head and Neck Cancer Data by (Efron, 1988). It is concluded
that the MPSE method outperformed the MLE method in terms of bias and MSE values.

Introduction

In many life-testing experiments, the experimenter faces different challenges to control the test
time and to conserve experimental units while estimating efficiently and this can be achieved
by stopping the experiment before all units fail by using censoring schemes that are carried out
by removing active units from the experiment.

During these experiments, units may be lost or removed for different reasons, and this is
where the importance of progressive censoring arises in which units are removed under a life
test experiment at some predetermined or random time points during the experiment.

Many models of progressive censoring have been discussed throughout the years. The
majority of these models can be traced back to one of two sources: progressive type-I censor-
ing, which terminates the experiment after a prefixed time point, or progressive type-II censor-
ing, which terminates the experiment after a prefixed number of observed failures. Both
censoring schemes give the experimenter more flexibility by allowing the removal of test units
at non-terminal time points during the experiment.

In progressive type-I censoring, the total time of the experiment is predetermined, and the
censoring occurs at prefixed time points Ty, T5, . . ., T,. A prefixed number of active units are
removed during the experiment at the end of each specified time intervals, making the number
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of observed failure lifetimes random. Hence, in type-I progressive censoring one might
observe a few, if any, failures when units under the test have long lifetimes.

In progressive type-II censoring scheme, only m units are completely observed until failure,
out of n units placed on a life-test. When the first failure occurs, R, active units are removed
from the n — 1 remaining units. After the second failure, R, active units are removed from the
n — Ry — 2 remaining units. Lastly, at the m-th failure, all the remaining n — R; — R,...—R,,,
units are removed and the experiment is terminated. since the time of the experiment is ran-
dom, when units undertaking the life test have long life times it results in a long test duration,
which is considered a disadvantage for progressive type-II censoring.

Two progressive hybrid censoring schemes were proposed by [1] by stopping a progressive
type-II censoring experiment at time T*. In type-I progressive hybrid censoring scheme, T* =
min(X,,.,, T)such that, X,,,., is the time of the m-th failure and T 'is a stopping time that is pre-
determined by the experimenter. In this case, we may have fewer than m observations when
units undergoing the test have long failure times. In type-II progressive hybrid censoring
scheme, T* = max(X,,.,, T), we may have at least m observations but a long test duration.

In real-life experiments, having a fixed censoring scheme may not be convenient because
the censoring scheme may change, intentionally or unintentionally, during the experiment. [2]
proposed a newer model (see Fig 1), which allows changing the censoring scheme during the
experiment. Such model is called the adaptive type-II progressive hybrid censoring, in which a
threshold time T is used to switch from the initially planned censoring scheme to a modified

one.
Withdrawn Withdrawn Withdrawn Withdrawn
R1 R2 Rm-1 Rm
R S | [ Ses —
X1:mn X2:m:n . Xm-1:m:n - Xmm:n T
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/ / / / S
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Fig 1. Adaptive type-1I progressive hybrid censoring model as proposed by Ng et al., (2009). (a) Experiment ends before time T. (b) Experiment
ends after time T.

https://doi.org/10.1371/journal.pone.0277514.g001
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In a sample of size n, m failures will be observed, after a threshold time T, the censoring
number R}, j = max(i, X;. . » < T), will adaptively change based on the previous failure times
as well as the censored samples before the j-th failure. That is, after the first observed failure
time that exceeds the threshold time T, the applied censoring scheme will be changed to

R =(R,,...,R,0,...,0,n —m — - R)). The initially planned progressive censoring
scheme is used as long as the failures occur before time T (see Fig 1(a)). Otherwise, when time
T occurs before the m-th failure, no units are withdrawn after time T except for the time of the
m-th failure where all remaining surviving units are removed (see Fig 1(b)). By setting T = co
and T = 0, we get type-II progressive censoring and type-II censoring, respectively.

Failure times of units under a life-testing experiment are assumed to be identically distrib-
uted and follow a lifetime distribution. One of the most widely used lifetime distributions to
model progressive censoring schemes is the Weibull distribution (WD), named after the Swed-
ish mathematician Waloddi Weibull.

If a random variable T follows the WD with a shape parameter o and a scale parameter f3,

then the probability density function (PDF) is given by Eq 1
f(t;o, B) = afe e+ t>0,0,8>0 (1)

and the hazard function (HF), which measures the probability of failure of a unit at a given
time, is given by Eq 2

h(t;o, ) = afp "t 1" t>0 (2)

The HF of the WD given in Eq 2 can not be used to model life time data with a bath tub
shaped hazard function, since it is increasing, decreasing, or constant as shown in Fig 2. This is
considered a drawback for the WD.

The Inverse Weibull distribution (IWD), also known as the type-II extreme value distribu-
tion or the Frechet distribution [3], is used to model a variety of failure characteristics such as
infant mortality (early failure), useful life, and wear-out periods (the increase of the number of
failure occurrences after a certain usage period) [4].

The HF of the IWD given in Eq 4, is uni-modal, see Fig 3. Having a uni-modal hazard func-
tion is essential in many practical situations where the risk increases and then decreases as the
study continues, like the process of recovery after a patient undergoes a surgery.

HF of the WD
h(x)
10
0.8f
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a=1
a=3
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Fig 2. HF of the WD. The HF of the WD with scale parameter 3 = 4 and different values for the shape parameter a.
https://doi.org/10.1371/journal.pone.0277514.9002
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Fig 3. HF of the IWD. HF of the IWD with a shape parameter a = 1.5 and different values for the scale parameter f3.
https://doi.org/10.1371/journal.pone.0277514.9003

If X = £, then X follows the IWD with PDF, cumulative distribution function (CDF), and
HF given by Eqs 3, 4 and 5 respectively.

flx; o, B) = afe " x 1 x>0,0,8>0, (3)

o

o f)=e?" x>0, ()

s f) = P 6

Figs 4 and 5 show the PDF and CDF of the IWD for different scale parameter values £.
Many studies have considered the IWD under progressive censoring, see for example [5]
estimated the unknown parameters of the three-parameter IWD and as a result obtained a the-
orem on the existence of the least squares estimates, [6] considered statistical inferences about
the unknown parameters of the IWD based on progressively type-II censoring using the maxi-

mum likelihood, least squares estimators, and the approximate maximum likelihood estima-
tors as well as the Bayes estimators using Lindley’s approximation method and symmetric and
asymmetric loss functions, and for recent references, see [7-9].
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Fig 4. PDF of the IWD when. o = 1.5.
https://doi.org/10.1371/journal.pone.0277514.9004
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Fig 5. CDF of the IWD when. o = 1.5.
https://doi.org/10.1371/journal.pone.0277514.9005

The estimation of a stress-strength reliability (SSR) model P(Y < X) was first introduced by
[10], who used properties of the Mann and Whitney statistic to estimate P(Y < X) where X
and Y are random variables with continuous cumulative probability functions. The Mann and
Whitney Statistic is based on the ranks of observations on X and Y in a joint sample.

In this model, a failure will occur when a component with relatively low strength X is paired
off with a high-stress Y. The stress Y could be mechanical, temperature, or voltage stress, while
the strength X could be any resisting physical property like hardness, melting point, or adhesion.
P(Y < X) is then used to measure the probability of the system not failing under the applied
stress. P(Y < X) can also be used to measure the probability of a random sample Y having shorter
survival times than a random sample X. Many applications of this model can be found in [11].

Statistical inference of the SSR model under complete sample case and progressive censor-
ing using classical and Bayesian approximation methods was studied by many authors such as:
[12-17].

The main interest of this study is to compare different methods of estimation of a stress-
strength model 8 = P(Y < X), where X and Y are two independent IWD variables under adaptive
type-II hybrid progressive censoring with the same shape parameter and different scale param-
eters. Where X represents the strength of a unit and Y represents the stress applied to the unit.

Estimation methods
Maximum likelihood estimation

Suppose X ~ IWD(a, ;) and Y ~ IWD(a, 3,) are two independent random variables repre-
senting the strength and stress components, respectively. Then, the SSR model is given by Eq 6.

0=PY<X) = /Uoof(x|oc,ﬂl)P(Y < x)dx
- / " f(ada, B)F(xlet, By)dx

= / (xﬂlx*(lﬂ)e*(/f1+/f2)x7“dx
0

B
S
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Since 0 is a function of B; and f3,, one can obtain the MLE of 0 (0, 5) using the invariance
property of the MLE by calculating the MLE of 8, and B, (B, ., B,,..)-

LetX = (X X with {X < Xoyon, < oo < X | DEAD
adaptive type-II hybrid progressive censoring sample from IW(e, ;) under the censoring
scheme {n,,m,R,,...,R,,0,...,0,R, =n —m — S R;} such that
X <T <X

Limying 7X2:m1:n1 7t ml:ml:nl) Limyng

Jiamying Ji+Llimying®
SimllarlY’ let Y= (Y1:m2:n2’ YZ:mZ:ng’ Tt YmZJleing) Wlth {Yl 1My:hy < Y2 My:ng <...< sz iMmy: nq}
be an adaptive type-II hybrid progressive censoring sample from IW(e, 3,) under the scheme
{nQ,mQ,S],...,S,Z,O,... 0,S, =n,— Z, 1S} such that Y g < Ty <Y} tymy
For simplicity, let X, = X, and Y, = Y,m ny- The joint hkehhood function of the adap-

tive type-1I hybrid progressively censored sample (see [18]) can be written as shown in Eq 7.

L(x, By, BoX,Y) = C,G[1 - F(x,, mIHfl H F,(x,)]"

R U0 ) (0%) ) (X

Where,
C,=n(n —R —-1)(n, —R —R,—2)...(n, =R —R,—...— R, , —m +1)
Co=mny(n, =8 —1)(n, =8 =8-2)...(n, =8, =8, —... =S, —my+1)
filx;o, By) = afex x> 0,0, > 0.
Lo, By) = afe > "yt y>0,0,8,>0

o

F (x;0,f,) = e P~ x>0

E,(y;2, B,) = e y>0

After simplifying Eq 9, the likelihood function can be written as shown in Eq 8.

my it

LB BuXX) = Cormomapy (1 = ety T (e ) [0 - e Py
i=1 i=1

(8)

my Jo

Cﬁmzl—eﬁ)me H [f)y”yl‘Hﬂ_eﬂgy)

i=1 i=1
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The log-likelihood function, based on Eq 8 is given in Eq 9.
(o, By, Bo|X,Y)  =1In C +1n C, + (m; + my)ln o+ m; In B, +m, Inf,

TR, In (1—eP) — (14 2)Y In(x) — Y 5
i=1 i=1

Ut
+ZRi In(1 —ehs") + S,., In(1 — e Pm)

i=1
my Moy Jo »
—(1+ O‘)Z In(Y;) — ﬁ?Z}{i + ZS,- In(1 —e ™)
i=1 i=1 i=1

If the shape parameter « is known, the maximum likelihood estimators f3, and 3, are
derived by maximizing the log-likelihood function, it is computationally easier to maximize by
deriving Eq 9 with respect to B; and f3, and equating both resulted equations to zero.

—Brxm —a m N —plx® 4
ol :ﬂ+e lRm‘xml—leﬂJere Plx; Rix,-‘:() (10)
op, B 1—e o = e
oy _ . : —
ol B @ e B2V szymz my J2 e P Slyl—oc

— y,-’“—i-z =0 (11)

_ By
i=1 i=1 L —e

— = +
B, B, 1—efom
It is noted that both Eqs 10 and 11 do not yield explicit forms. Therefore, we apply numeri-
cal methods to find f§ 1, and ﬁ%m and hence, 0, .

Maximum product of spacing estimation

The MPSE method was first introduced by [19, 20] for estimating the parameters of continu-
ous uni-variate distributions. They introduced the MPSE method as an alternative to the MLE
approach by replacing the likelihood function with a product of spacing. They also showed
that MPSE method has the same asymptotic properties as the MLE in the case where the den-
sity function’s support limits are known and when the density function’s support limits are
unknown, MPSE method has better properties than the MLE.

[21] showed that the numerical behaviour of the MPSE is better than that of the likelihood
and it can replace the likelihood function in Bayesian inference.

Many recent studies have been done on the MPSE method. See, for example, [22-24].

According to the model proposed by [19, 20] and the adaptive model by [25], the joint
product spacing under adaptive type-II hybrid progressive censoring, ignoring the constant
term, can be given by Eq 12:

m+1 my+1l ]y

Lypse = HD"H(l - Fl(xi))Rx(l - F1(xm1))le HCiH(l - Fz()’i))Si(l - FQ()’mQ))S > (12)

i=1

where,
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and
C,=F(@); i=1
C = C.=F,(y)—-FE{U._,); i=2,...,m,
CkH:l—F?(me); i=m,+1

such that ™" D, = 1and 372" C, = 1.
It is important to point out that if two observations are repeated, i.e., x; = x;_;, the spacing
D; would be zero. In this case, one should substitute f{x;) for D; in Eq 12 as suggested by [20].

Based on Eq 12, the likelihood function is given by Eq 13

Lypse = eiﬁlxlﬁ(l - e—ﬂlx,ﬁ)ﬁ(e—ﬂlx;“ - e_ﬂlx'j)ﬁ(l - e_ﬂ]X;“)Ri(l — e P )le
i=2 i]:l (13)
M 2
—Boy " (1 — p P2y —Poy;* _ =Py _ o Bi\Si (1 _ By \Smg
ePn’(1—e z)g(e e l)gu e PN (1 — e
The log of Eq 13 is given by Eq 14
my Ji
hapse = =B +In(1—e i) £ " In(e M7 — e M) £ ) R In(1 — e 1)
=2 i=1

my
+R, In(1 — e Pty — B,yr* +1In(1 — e Py Z In(e#7" — P (14)
=2

>
—l—ZS,. In(1 —e ™) + S, In(1 — e P

i=1

To obtain the normal equations for the unknown parameters, we differentiate Eq 14 par-

tially with respect to the scale parameters 5, and 3, and equate them to zero. The estimators
By @0d B, can be obtained by solving Eqs 15 and 16

—o =B ~0 o= B1%m] i —o i
m = x4+ Xm © lexmle + Rix; e ™
aﬁl 1 1— e_ﬂlx;ri( 1— e—/fl";lf — 1— e—ﬁlez
=

(15)

m o ,—P1X % a0 =P 4
X;_,€ i-1 xX;e Xt 0
+ 7!; x*% 7/} x*(l -
—y —e M-l e
—

9 lMPSE B B y;qzcefﬁzy&z szy;q:e*ﬂzy;qz J2 Siy;ae*ﬂz}’:u
- N Byl —Boyl _ o B?
ap, 1—e™m 1 —e™m 1 — e
(16)
my

—x e Py by
+Zy171 yl yl — 0
i=2

—e P 4 e Pu”

The nonlinear equations Egs 15 and 16 can’t be solved analytically, so f,  and f,  can

be obtained using numerical methods, and hence the MPSE of 6 can be obtained as follows

— Pryps

MPSE ﬁlMPSE +/}2MPSE
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Simulation study
Simulation criteria

In this section we test, by simulation, the considered estimates of the SSR model under adap-
tive type-II hybrid progressive censoring. The following steps are used to find estimates of the
stress and strength parameter 6 using Mote Carlo Simulation from adaptive progressive type-
IT hybrid censored data at stopping time T using the method suggested by [2].

1. Generate two independent type-II censored samples X, . X, . ..., X _  and
Jmyamy ey 1-my-ny
Yyt Youmgmys -+ 3 Yonyomyony, ft0m the IWD with shape parameter a and scale parameters S,

and f3, respectively with censoring schemes (R,,R,,...,R,, ) and (S,,S,,...,S,, ) as pro-
posed by [26].

2. Determine the values of J; and J,, such that X and

Jymyn
Y, <T,<Y,

Joima:ng Jo+1:mg:ing?

<T <X
1

Ji+1:my g

then remove X X andY) ,....,Y,

Ji+20 0 mypmy iy my:my:ng *

f(x)

3. Generate the first m; — j; — 1 order statistics from the truncated distribution o) 3
XJ) +1:my iy

X omims s X, and the censoring scheme will change to
J1+2:my iy my:myng
(Ry,---,R;,0,...,0,R, =n —m — !l R)). Similarly, generate the first m,—j, — 1
order statistics from the truncated distribution % C SPRRPPND S Lol |
— ]2+1:m2m2) o+2:my:ng myimy:hy

the associated censoring scheme will change to
J>
(Slﬁ"'vs]Z?Oa"'707Sm2 = 1’12 - m2 - Zi_:lsi)

4. Calculate estimates of the scale parameters 3; and f3,. The MLE and MPSE are both calcu-
lated using Newton Raphson method.

5. Calculate 0 using Eq 6).

6. After 3000 replications, calculate the Bias and the MSE to compare the estimated 6 (§) with
the exact value of the previously determined SSR parameter 8,,,. for each estimation
method as follows:

« Bias = |0, — 0,,,,|, where 0, is the average of the 3000 values of 6; for both estimates.

3000 . .
(0;Oesacr)”

o MSE = 2ot Vet

3000
In this article, the simulation has been performed by considering the shape parameter o =
1.5, without loss of generality, and three cases for 0,,,, namely; 0.4, 0.6, and 0.9.
Three main stopping times are considered in this study that are chosen to be in three differ-
ent time points during the experiment: T, = X Ty = X, and after the failure of the last

unit T5 = X,,,+ 2, in this case the adaptive censoring will be type-II progressive censoring.
Three censoring schemes (C.s) are used in the simulation:

o Cs1: {n — m,0"™ Y}, which is known as First-step censoring, i.e., n-m units are removed
just after the first failure

o Cs2: {0"™Y 1 — m}, which is known as Right censoring, i.e., n-m units are removed after
the last failure

o Cs3: {152, 02 2-m} When removals take place at the beginning and at the end of the

experiment, i.e., *5* units are withdrawn just after the first failure and after the last failure
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Table 1. Bias and MSE of @ with T, = X,j,, for different censoring schemes when 0 = 0.4..

n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00732 0.00712 0.00774 0.00758 60,18 1 0.00083 0.00078 0.00232 0.00230
2 0.00262 0.00261 0.00557 0.00545 2 0.00091 0.00090 0.00139 0.00138
3 0.00370 0.00352 0.00657 0.00634 3 0.00011 0.00014 0.00170 0.00167
20,10 1 0.00252 0.00240 0.00414 0.00406 60,30 1 0.00055 0.00056 0.00148 0.00147
2 0.00015 0.00011 0.00351 0.00344 2 0.00039 0.00045 0.00112 0.00111
3 0.00232 0.00234 0.00389 0.00381 3 0.00072 0.00066 0.00132 0.00131
40,12 1 0.00051 0.00050 0.00310 0.00305 100,20 1 0.00112 0.00112 0.00190 0.00189
2 0.00026 0.00025 0.00217 0.00213 2 0.00083 0.00084 0.00104 0.00103
3 0.00068 0.00057 0.00248 0.00242 3 0.00175 0.00172 0.00134 0.00132
40,20 1 0.00145 0.00135 0.00216 0.00214 100,50 1 0.00152 0.00149 0.00091 0.00091
2 0.00177 0.00177 0.00175 0.00173 2 0.00011 0.00008 0.00063 0.00063
3 0.00012 0.00010 0.00192 0.00190 3 0.00029 0.00029 0.00074 0.00073

https://doi.org/10.1371/journal.pone.0277514.t001

For brevity, we use the notation 0 * to denote k successive zeros. Thus, the scheme {9, 0, 0,
0, 0, 0} is denoted by {9, 0°}.
The sample sizes of the strength and stress components are chosen to be n = n; = n, = {20,

40, 60, 100} and the values of the effective sample sizes m, m, are chosen with a ratio of 0.2
and 0.5 of the sample sizes, i.e., when n = 20, m = 4 with a ratio of 0.2 and m = 10 with a ratio
of 0.5, etc. Results of the simulation are summarized in Tables 1-9 as follows:

o Tables 1-3 provide the estimates at three stopping times and three censoring schemes when

0=04.

o Tables 4-6 provide the estimates at three stopping times and three censoring schemes when

0=0.6.

« Tables 7-9 provide the estimates at three stopping times and three censoring schemes when

0=0.9.

Table 2. Bias and MSE of 0 with T, = X,,, for different censoring schemes when 0 = 0.4.

n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00315 0.00305 0.00699 0.00685 60,18 1 0.00158 0.00161 0.00230 0.00229
2 0.00317 0.00307 0.00548 0.00537 2 0.00156 0.00155 0.00138 0.00137
3 0.00484 0.00467 0.00635 0.00616 3 0.00157 0.00154 0.00163 0.00160
20,10 1 0.00312 0.00308 0.00440 0.00432 60,30 1 0.00158 0.00161 0.00230 0.00229
2 0.00274 0.00275 0.00338 0.00331 2 0.00156 0.00155 0.00138 0.00137
3 0.00367 0.00364 0.00380 0.00372 3 0.00157 0.00154 0.00163 0.00160
40,12 1 0.00061 0.00064 0.00315 0.00310 100,20 1 0.00112 0.00119 0.00189 0.00188
2 0.00010 0.00011 0.00212 0.00209 2 0.00014 0.00016 0.00098 0.00097
3 0.00159 0.00161 0.00241 0.00237 3 0.00131 0.00128 0.00126 0.00124
40,20 1 0.00128 0.00132 0.00222 0.00220 100,50 1 0.00008 0.00010 0.00092 0.00092
2 0.00027 0.00027 0.00168 0.00166 2 0.00122 0.00121 0.00064 0.00064
3 0.00079 0.00086 0.00191 0.00189 3 0.00115 0.00116 0.00077 0.00077

https://doi.org/10.1371/journal.pone.0277514.t1002
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Table 3. Bias and MSE of 6 with T; = X,,, + 2 for different censoring schemes when 0 = 0.4.

n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00418 0.00414 0.00690 0.00676 60,18 1 0.00172 0.00175 0.00220 0.00220
2 0.00261 0.00255 0.00541 0.00529 2 0.00037 0.00037 0.00138 0.00136
3 0.00228 0.00229 0.00645 0.00625 3 0.00087 0.00089 0.00176 0.00173
20,10 1 0.00230 0.00235 0.00419 0.00412 60,30 1 0.00137 0.00138 0.00146 0.00146
2 0.00095 0.00099 0.00339 0.00332 2 0.00027 0.00028 0.00109 0.00108
3 0.00363 0.00356 0.00380 0.00373 3 0.00156 0.00158 0.00136 0.00135
40,12 1 0.00146 0.00139 0.00318 0.00313 100,20 1 0.00058 0.00068 0.00197 0.00197
2 0.00192 0.00190 0.00224 0.00221 2 0.00067 0.00065 0.00097 0.00096
3 0.00065 0.00058 0.00254 0.00249 3 0.00010 0.00012 0.00127 0.00126
40,20 1 0.00098 0.00104 0.00218 0.00216 100,50 1 0.00106 0.00107 0.00092 0.00092
2 0.00092 0.00089 0.00178 0.00175 2 0.00011 0.00008 0.00064 0.00063
3 0.00122 0.00118 0.00196 0.00193 3 0.00002 0.00001 0.00073 0.00072
https://doi.org/10.1371/journal.pone.0277514.t003
Table 4. Bias and MSE of 6 with T, = X, for different censoring schemes when 6 = 0.6.
n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00301 0.00295 0.00740 0.00726 60,18 1 0.00229 0.00228 0.00217 0.00215
2 0.00134 0.00132 0.00552 0.00540 2 0.00054 0.00049 0.00136 0.00135
3 0.00513 0.00496 0.00624 0.00604 3 0.00018 0.00017 0.00171 0.00168
20,10 1 0.00179 0.00184 0.00436 0.00427 60,30 1 0.00110 0.00110 0.00147 0.00147
2 0.00218 0.00213 0.00355 0.00347 2 0.00015 0.00015 0.00112 0.00111
3 0.00184 0.00190 0.00389 0.00382 3 0.00066 0.00068 0.00125 0.00124
40,12 1 0.00064 0.00055 0.00335 0.00330 100,20 1 0.00020 0.00024 0.00193 0.00192
2 0.00195 0.00187 0.00220 0.00216 2 0.00030 0.00029 0.00103 0.00102
3 0.00125 0.00124 0.00248 0.00243 3 0.00119 0.00118 0.00126 0.00125
40,20 1 0.00179 0.00170 0.00212 0.00210 100,50 1 0.00021 0.00021 0.00089 0.00089
2 0.00102 0.00101 0.00180 0.00177 2 0.00069 0.00070 0.00063 0.00062
3 0.00006 0.00008 0.00130 0.00128 3 0.00006 0.00008 0.00077 0.00077
https://doi.org/10.1371/journal.pone.0277514.t004
Table 5. Bias and MSE of 6 with T, = X,, for different censoring schemes when 6 = 0.6.
n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00261 0.00262 0.00719 0.00704 60,18 1 0.00100 0.00097 0.00229 0.00227
2 0.00034 0.00027 0.00556 0.00543 2 0.00077 0.00076 0.00140 0.00138
3 0.00485 0.00463 0.00632 0.00613 3 0.00025 0.00023 0.00175 0.00172
20,10 1 0.00074 0.00070 0.00421 0.00413 60,30 1 0.00019 0.00024 0.00149 0.00148
2 0.00200 0.00197 0.00341 0.00334 2 0.00112 0.00112 0.00111 0.00110
3 0.00232 0.00222 0.00383 0.00375 3 0.00093 0.00094 0.00128 0.00127
40,12 1 0.00049 0.00057 0.00338 0.00334 100,20 1 0.00074 0.00075 0.00187 0.00187
2 0.00232 0.00229 0.00217 0.00214 2 0.00127 0.00125 0.00106 0.00105
3 0.00170 0.00174 0.00254 0.00249 3 0.00033 0.00032 0.00130 0.00128
40,20 1 0.00122 0.00119 0.00221 0.00219 100,50 1 0.00118 0.00122 0.00096 0.00096
2 0.00038 0.00036 0.00172 0.00169 2 0.00069 0.00067 0.00067 0.00067
3 0.00189 0.00185 0.00185 0.00182 3 0.00043 0.00044 0.00079 0.00079

https://doi.org/10.1371/journal.pone.0277514.t005
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Table 6. Bias and MSE of 6 with T; = X,,, + 2 for different censoring schemes when 0 = 0.6.

n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00173 0.00170 0.00721 0.00707 60,18 1 0.00154 0.00139 0.00217 0.00216
2 0.00216 0.00206 0.00576 0.00562 2 0.00093 0.00094 0.00138 0.00136
3 0.00509 0.00493 0.00640 0.00619 3 0.00247 0.00240 0.00170 0.00167
20,10 1 0.00299 0.00286 0.00426 0.00418 60,30 1 0.00016 0.00018 0.00157 0.00156
2 0.00037 0.00032 0.00350 0.00343 2 0.00003 0.00001 0.00108 0.00108
3 0.00247 0.00240 0.00388 0.00379 3 0.00164 0.00164 0.00129 0.00127
40,12 1 0.00339 0.00336 0.00339 0.00333 100,20 1 0.00038 0.00039 0.00191 0.00494
2 0.00013 0.00010 0.00220 0.00217 2 0.00107 0.00108 0.00103 0.00102
3 0.00249 0.00246 0.00256 0.00251 3 0.00082 0.00081 0.00132 0.00130
40,20 1 0.00145 0.00149 0.00221 0.00219 100,50 1 0.00110 0.00113 0.00087 0.00088
2 0.00026 0.00028 0.00170 0.00167 2 0.00082 0.00081 0.00068 0.00067
3 0.00078 0.00071 0.00185 0.00182 3 0.00000 0.00002 0.00078 0.00077
https://doi.org/10.1371/journal.pone.0277514.t006
Table 7. Bias and MSE of 6 with T, = X, for different censoring schemes when 6 = 0.9.
n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00448 0.00438 0.00122 0.00119 60,18 1 0.00153 0.00149 0.00033 0.00033
2 0.00400 0.00391 0.00092 0.00089 2 0.00112 0.00111 0.00022 0.00021
3 0.00445 0.00428 0.00101 0.00097 3 0.00115 0.00114 0.00025 0.00025
20,10 1 0.00275 0.00270 0.00068 0.00066 60,30 1 0.00083 0.00084 0.00022 0.00022
2 0.00169 0.00163 0.00053 0.00050 2 0.00076 0.00073 0.00016 0.00016
3 0.00270 0.00263 0.00062 0.00061 3 0.00101 0.00100 0.00019 0.00018
40,12 1 0.00174 0.00172 0.00047 0.00047 100,20 1 0.00046 0.00046 0.00027 0.00028
2 0.00147 0.00146 0.00032 0.00032 2 0.00060 0.00059 0.00015 0.00015
3 0.00222 0.00214 0.00039 0.00036 3 0.00079 0.00078 0.00018 0.00018
40,20 1 0.00141 0.00136 0.00033 0.00032 100,50 1 0.00039 0.00039 0.00014 0.00014
2 0.00120 0.00119 0.00025 0.00025 2 0.00078 0.00077 0.00010 0.00010
3 0.00151 0.00149 0.00029 0.00028 3 0.00079 0.00079 0.00011 0.00011
https://doi.org/10.1371/journal.pone.0277514.1007
Table 8. Bias and MSE of  with T, = Xin for different censoring schemes when 6 = 0.9.
n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00362 0.00354 0.00115 0.00112 60,18 1 0.00108 0.00104 0.00034 0.00033
2 0.00369 0.00360 0.00090 0.00088 2 0.00074 0.00074 0.00020 0.00020
3 0.00434 0.00422 0.00108 0.00104 3 0.00131 0.00128 0.00025 0.00025
20,10 1 0.00361 0.00357 0.00069 0.00068 60,30 1 0.00096 0.00097 0.00021 0.00021
2 0.00234 0.00230 0.00055 0.00054 2 0.00069 0.00069 0.00016 0.00016
3 0.00305 0.00305 0.00062 0.00045 3 0.00096 0.00096 0.00019 0.00018
40,12 1 0.00184 0.00185 0.00049 0.00048 100,20 1 0.00144 0.00144 0.00028 0.00028
2 0.00150 0.00148 0.00032 0.00032 2 0.00061 0.00060 0.00015 0.00014
3 0.00176 0.00172 0.00041 0.00041 3 0.00074 0.00072 0.00018 0.00017
40,20 1 0.00158 0.00157 0.00033 0.00033 100,50 1 0.00093 0.00095 0.00014 0.00013
2 0.00104 0.00102 0.00024 0.00069 2 0.00032 0.00032 0.00010 0.00009
3 0.00191 0.00188 0.00028 0.00028 3 0.00063 0.00063 0.00011 0.00011

https://doi.org/10.1371/journal.pone.0277514.t008
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Table 9. Bias and MSE of 0 with T; = X,,,+2 for different censoring schemes when 6 = 0.9.

n,m C.s Bias MSE n,m C.s Bias MSE
MLE MPSE MLE MPSE MLE MPSE MLE MPSE
20,4 1 0.00555 0.00543 0.00118 0.00115 60,18 1 0.00127 0.00126 0.00033 0.00033
2 0.00276 0.00270 0.00087 0.00085 2 0.00073 0.00071 0.00021 0.00021
3 0.00321 0.00306 0.00098 0.00094 3 0.00133 0.00132 0.00025 0.00024
20,10 1 0.00275 0.00271 0.00066 0.00064 60,30 1 0.00088 0.00087 0.00022 0.00022
2 0.00282 0.00277 0.00057 0.00056 2 0.00057 0.00056 0.00016 0.00016
3 0.00250 0.00243 0.00060 0.00058 3 0.90309 0.00063 0.00018 0.00018
40,12 1 0.00229 0.00226 0.00049 0.00049 100,20 1 0.00080 0.00080 0.00028 0.00028
2 0.00156 0.00154 0.00032 0.00032 2 0.00067 0.00067 0.00014 0.00014
3 0.00169 0.00166 0.00038 0.00037 3 0.00067 0.00065 0.00018 0.00017
40,20 1 0.00142 0.00138 0.00032 0.00031 100,50 1 0.00092 0.00115 0.00014 0.00014
2 0.00060 0.00058 0.00025 0.00025 2 0.00014 0.00013 0.00009 0.00009
3 0.00130 0.00132 0.00028 0.00027 3 0.00077 0.00076 0.00011 0.00011

https://doi.org/10.1371/journal.pone.0277514.t009

Simulation results

Results are summarized as follows:

« The MPSE performs slightly better than the MLE for small sample sizes.

o The MPSE and MLE are roughly the same for large sample sizes.

o In general, Bias and MSE of the calculated estimates decrease as effective sample sizes

increase.

It is noted that the estimates perform better under the second censoring scheme where
removals take place after the m-th failure.

It is worth mentioning that estimates perform best when 6 = 0.9 and results are quite similar

when 6 = 0.4 and 0.6 and this observation is also noted by [28], where the behavior of the
reliability model is graphed with different sample sizes in relation to MSE, and it was con-
cluded that when the stress and strength components have the same effective sample size the
curve of the reliability model is symmetric with respect to 0.5, meaning that the estimates of
0 have a higher MSE when the reliability tends to 0.5.

Real-life examples

This section considers two real-life examples to illustrate both proposed methods and further
apply our knowledge based on our simulation study.
Example 1: We consider two data sets by [28] representing the breakdown times (in min-
utes) of an insulating fluid between two electrodes recorded at different voltages; 34 kilo-volts
(data I) and 36 Kilo-volts (data II), as presented in Table 10.

Table 10. Breakdown times (in minutes) for data I and data II.

Datal 0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.5
7.35 8.01 8.27 12.06 31.75 32.52 3391 36.71 72.89
Data Il 0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.9
3.67 3.99 5.35 13.77 25.50
https://doi.org/10.1371/journal.pone.0277514.t1010
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Table 11. Test statistic and p-value associated with each test for example 1.

Data K-S (p-value) A-D (p-value) Chi-Squared (p-value)
I 0.1873 (0.4625) 0.7723 (0.4986) 0.8865 (0.6420)
I 0.2037 (0.4991) 0.4929 (0.7509) 1.4421 (0.2298)

The p-value for each test is more than 0.05. Hence, the IWD is a good fit for both data sets I and IL

https://doi.org/10.1371/journal.pone.0277514.t011

Many Authors discussed this data, see for example: [29-32].

The estimated parameter values (¢, ) of the fitted IWD PDF for data [ were
(0.7015,1.8886), and (1.0823,1.3309) for data II. To check the goodness of fit of the IWD for
data sets I and II, three statistical tools are used: Kolmogorov-Smirnov test (K-S), Anderson-
Darling test (A-D), and Chi-Squared test. The results are summarized in Table 11 with a signif-
icance level of 0.05.

The fitted PDFs and Q-Q plots are plotted for both data sets as shown in Figs 6 and 9.

Figs 6-9 show that the estimated PDF of the IWD is a good fit for both data sets I and II.

The three adaptive type-II censoring schemes for the simulation study are used to generate
adaptive type-II hybrid progressive censored samples, the associated stopping time for each
scheme and the generated censored samples are given in Table 12.

The estimates of the SSR model are calculated for the complete case and the three censoring
scheme with effective sample sizes m; = 11, m, = 9. Results are summarized in Table 13

D Histogram of data |

— PDF

s

0 20 40 €0 80

Fig 6. Estimated PDF of data I.
https://doi.org/10.1371/journal.pone.0277514.9006

D Histogram of data Il

- — PDF

Fig 7. Estimated PDF of data II.
https://doi.org/10.1371/journal.pone.0277514.9007
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Fig 8. Q-Q plot for data I.
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Fig 9. Q-Q plot for data II.
https://doi.org/10.1371/journal.pone.0277514.9009
Table 12. Adaptive type-II censored samples form data I and data II.
C.s T, Censored sample from data I
1 2 0.19 0.78 1.31 2.78 3.16 4.67 7.35 8.01 12.06 31.75 32.52
2 8 0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.5 7.35
3 7.5 0.19 0.78 1.31 3.16 4.15 4.67 4.85 7.35 8.01 12.06 31.75
C.s T, Censored sample from data I
1 1 0.35 0.59 0.99 1.97 2.07 2.58 2.9 3.67 3.99
2 3 0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71
3 2 0.35 0.59 0.96 1.69 1.97 2.58 2.71 3.67 5.35
https://doi.org/10.1371/journal.pone.0277514.1012
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Table 13. Estimates of 0 for example 1.

C.s Complete 1 2 3
MLE 0.5690 0.5626 0.5695 0.5714
MPSE 0.5726 0.5623 0.5731 0.5739

https://doi.org/10.1371/journal.pone.0277514.1013

Table 14. Bootstrap confidence intervals for the considered estimates of 0 for example 1.
C.s 1 2 3
MLE (0.3019, 0.807) (0.383, 0.7388) (0.3279, 0.7865)
MPSE (0.2989, 0.8095) (0.3837, 0.7419) (0.3252, 0.7919)

https://doi.org/10.1371/journal.pone.0277514.1014

From Table 13, we can see that 8 is more than 0.5 which means that data I has a higher
probability of having longer survival times than data II. Moreover, estimates of 8 based on the
adaptive type-II hybrid progressive samples are close to those of complete data.

Furthermore, 95% Bootstrap confidence intervals are computed for the calculated estima-
tors of 8 as shown in Table 14.

From Table 14 we can see that all estimates of 8 in Table 13 lie inside the bootstrap confi-
dence intervals. Next, we calculate the standard error and average values resulted from boot-
strapping for each estimate and results are in Table 15.

From Table 15, we note that the standard error is the least for most of the estimates of 8
under the second censoring scheme. Moreover, Bayes estimates under LINEX loss function
when A = 1 have the lowest error under the second and third schemes. Average values of the
estimates of 0 are close to those in Table 13.

Example 2: We consider the data used by [33] of two groups of patients with head and neck
cancer (HNC). Patients in one group were treated with radiotherapy (RT) and their survival
times were recorded in days (Data 1) as follows; 7, 34, 42, 63, 64, 74, 83, 84,91, 108, 112, 119,
133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 185, 218, 225, 241, 248, 273,
277,279, 279, 319, 405, 417, 420, 440, 523, 523, 583, 594, 1101, 1116, 1146, 1226, 1349, 1412,
1417. Patients in the other group were treated with a combination of chemotherapy and radio-
therapy (CT+RT) and their survival times were recorded in days (Data 2) as follows; 37, 84, 92,
94,110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 169, 173, 179, 194, 195, 209, 249, 281, 319,
339, 432, 469, 519, 528, 547, 613, 633, 725, 759, 817, 1092, 1245, 1331, 1557, 1642, 1771, 1776,
1897, 2023, 2146, 2297 as reported by Efron (1988). Failure times in bold are censored obser-
vations that mainly represent patients that left the treatment center and never reported back.
[33] analyzed the survival times of both data sets and concluded that the cubic linear model
gives the best fit to the data compared with other models. He also compared the two therapies
based on estimated survival functions under each model and found that CT + RT provides bet-
ter HNC patient survival time than RT.

[34] used the truncated log-normal distribution to generate the unknown censored data in
months by dividing the survival times by 30.438 to avoid overflow in large values while

Table 15. Standard error and average value for each estimate after bootstrapping for example 1.

Standard error Average value
C.s 1 2 3 C.s 1 2 3
MLE 0.1302 0.0908 0.12 MLE 0.5668 0.5713 0.5688
MPSE 0.1312 0.0917 0.1204 MPSE 0.5677 0.574 0.5711
https://doi.org/10.1371/journal.pone.0277514.1015
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Table 16. Survival times (in months) for data 1 and data 2.

Data 1 0.23 1.12 1.38 2.07 2.10 2.73 2.76 2.99 3.55
3.68 4.24 4.37 4.37 4.57 4.60 4.60 4.80 4.90
5.06 5.16 5.26 5.26 5.42 5.68 5.78 6.53 7.16
7.39 7.02 8.15 8.97 9.10 9.76 10.42 13.31 13.70
13.80 14.46 14.48 16.10 17.18 19.15 19.52 22.70 36.17
37.65 41.55 45.28 46.55 49.40 53.62

Data 2 1.22 2.76 3.02 3.09 3.61 3.68 391 4.17 4.27
4.37 4.60 4.80 5.09 5.22 5.68 5.88 6.37 6.41
6.87 8.18 9.23 10.48 11.14 12.20 14.91 15.41 17.05
20.80 23.56 23.74 23.82 25.87 26.84 31.98 41.35 47.38
51.15 55.46 58.38 58.36 63.47 68.46 74.47 78.26 81.43

https:/doi.org/10.1371/journal.pone.0277514.t016

Table 17. Test statistic and p-value associated with each test for example 2.

Data K-S (p-value) A-D (p-value) Chi-Squared (p-value)
1 0.1606 (0.1290) 1.383 (0.2065) 5.6975 (0.3368)
2 0.1175 (0.5248) 0.7716 (0.5003) 3.7435 (0.4418)

The p-value for each test is more than 0.05. Hence, the IWD is a good fit for both data sets 1 and 2.

https://doi.org/10.1371/journal.pone.0277514.1017

computing. The retrieved survival times in months for data 1 are 6.53, 10.42, 14.48, 16.1, 22.7,
41.55, 45.28, 49.4 and 53.62, for data 2 the retrieved survival times in months are 12.2, 23.56,
23.74,25.87, 31.98, 41.35, 47.38, 55.46, 58.36, 63.74, 68.46, 78.26, 74.47, and 81.43. The survival
times (in months) are illustrated in Table 16.

[33] noted a uni-modal behavior of the empirical hazard rate as obtained from the two data
sets, based on that the IWD is a good candidate model for the two data sets. To test this
assumption, we test the goodness of fit of the IWD for data sets I and II using K-S, A-D, and
Chi-Squared tests. The results are summarized in Table 17 with a significance level of 0.05.

From Table 17, we can clearly see that the p-value for each test is more than 0.05. Hence,
the IWD is a good fit for both data sets 1 and 2.

The estimated parameter values of the fitted IWD PDF («, f3) for data 1 are (1.0657, 4.8044),
and (1.0021,7.117) for data 2. The fitted PDFs and Q-Q plots are graphed for both data sets as
shown in Figs 10-13.
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Fig 10. Estimated PDF of data 1.
https://doi.org/10.1371/journal.pone.0277514.9010
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Fig 11. Estimated PDF of data 2.
https://doi.org/10.1371/journal.pone.0277514.9011

Q- QPlot
Data 1
[ T T T T T
50 - 4
a0l ‘ ]
2 20f ]
£ L
@< 3
= | .
o L ‘.
20} P ]
10; ‘.lA. 4
07'/. L P T L 1
0 10 20 30 40
e

Fig 12. Q-Q plot for data 1.
https://doi.org/10.1371/journal.pone.0277514.9012
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Fig 13. Q-Q plot for data 2.
https://doi.org/10.1371/journal.pone.0277514.g013
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Table 18. Adaptive type-II censored samples form data 1 and data 2.

Scheme Ty Censored sample from data 1

1 2.1 0.23 1.12 1.38 2.07 2.73 2.99
3.55 3.68 4.24 4.37 4.60 4.60
5.06 5.16 5.42 5.68 6.53 7.16
7.92 9.76 10.42 13.31 13.80 14.46
17.18 19.52

2 7 0.23 1.12 1.38 2.07 2.10 2.73
2.76 2.99 3.55 3.68 4.24 4.37
4.37 4.57 4.60 4.60 4.80 4.90
5.06 5.16 5.26 5.26 5.42 5.68
5.78 6.53

3 5 0.23 1.12 2.10 2.76 2.99 3.55
3.68 4.24 4.37 4.60 5.06 5.26
5.26 5.78 7.16 7.39 8.15 9.76
10.42 13.31 13.80 14.46 17.18 19.15
19.52 22.70

Scheme T, Censored sample from data 2

1 3.5 1.22 2.76 3.02 3.61 4.17 4.37
4.60 522 5.68 6.37 8.18 9.23
10.48 12.20 14.91 17.05 20.80 23.82
26.84 31.98 41.35 47.38

2 11 1.22 2.76 3.02 3.09 3.61 3.68
391 4.17 4.27 4.37 4.60 4.80
5.09 522 5.68 5.88 6.37 6.41
6.87 8.18 9.23 10.48

3 9 1.22 2.76 3.09 3.68 4.17 4.27
4.60 4.80 5.09 5.88 6.41 9.23
10.48 11.14 14.91 15.41 20.80 23.56
26.84 31.98 41.35 47.38

https://doi.org/10.1371/journal.pone.0277514.t018

Figs 10-13 show that the estimated PDF of the IWD is a good fit for both data sets 1 and 2.

The estimates of 0 are calculated with effective sample sizes m; = 26, m, = 22. The three
adaptive type-II progressive hybrid censoring schemes for the simulation study are used to
generate adaptive type-II hybrid progressive censored samples, the associated stopping time

for each scheme and the generated censored samples are given in Table 18.

The estimates of 6 are calculated for the complete case and the three censoring scheme with
effective sample sizes m; = 26, m, = 22. Results are summarized in Table 19.I is notable that
is less than 0.5 for both estimates, which means that data 2 has a higher probability of having
longer survival times than data 1. Moreover, estimates of 0 based on the adaptive type-II
hybrid progressive samples are close to those of complete data.

Table 19. Estimates of 6 for example 2.

C.s Complete
MLE 0.3444 0.2925 0.3482 0.3131
MPSE 0.3439 0.2907 0.3475 0.3142
https://doi.org/10.1371/journal.pone.0277514.1019
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Table 20. Bootstrap confidence intervals for each estimate of 0 for example 2.

Cs 1 2 3
MLE (0.1287, 0.548) (0.2243, 0.5102) (0.1607, 0.5563)
MPSE (0.1276, 0.5495) (0.2243, 0.5127) (0.1618, 0.5592)

https://doi.org/10.1371/journal.pone.0277514.1020

Table 21. Standard error and average value for each estimate after bootstrapping for example 2.

Standard error Average value
C.s 1 2 3 C.s 1 2 3
MLE 0.1175 0.07964 0.1106 MLE 0.3149 0.3674 0.3391
MPSE 0.1191 0.08003 0.1111 MPSE 0.3142 0.3669 0.3402

https://doi.org/10.1371/journal.pone.0277514.t021

Next, 95% Bootstrap confidence intervals are computed for all calculated estimators of 6.
As shown in Table 20, it is clear that all estimates of 6 lie inside the bootstrap confidence
intervals.

Furthermore, we calculate the standard error and average values resulted from bootstrap-
ping for each estimate. From Table 21, we note that the standard error is the least for all the
estimates of 6 under the second censoring scheme. Average values of the estimates of 8 are
close to those in Table 19.

Conclusions and recommendations

In life testing and reliability studies, progressive censoring is widely used to resolve many con-
cerns that face experimenters for different types of experiments, such as reducing total test
time, conserving experimental units, and estimating efficiently. However, there is always a
trade-off between these three concerns to reduce the cost and the total test time of the experi-
ment. Different types of progressive censoring have been developed to help reduce these con-
cerns. The adaptive type-II progressive hybrid censoring allows more flexibility during the
experiment and provides more control over the experiment hence, resulting in a shorter test
duration and more failures to observe.

In article, we study the statistical inference of the SSR model under adaptive type-II pro-
gressive hybrid censoring when the random stress and strength components are IWD random
variables that share the same shape parameter. We compared the performance of the MLE and
the MPSE. It has been discovered that the MPSE has a smaller Bias and MSE for large and
small sample sizes. Hence, we recommended using MPSE for estimating the reliability under
adaptive type-II progressive hybrid censoring of the IWD under the second censoring scheme,
where the random variables are independent and have common shape parameters.
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