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Introduction

Microbes are used in the process of making industrial and
artisanal fermented dairy products, such as cheese,
yogurt, sour cream and fermented milks (Fig. 1). These
microbes are predominately lactic acid bacteria (LAB),
such as lactococci, lactobacilli and streptococci. For
quality and consistency, industrial production requires the
use of starter cultures, which are very carefully created,
cultivated and maintained (Fig. 2). What happens in the
fermentation process? Milk sugars (mainly lactose) are
fermented with the major final product being lactic acid.
Lactic acid not only inhibits the out-growth of other organ-
isms but also lowers the pH of the food product. Taste and
texture, the feeling of food in your mouth, is also impor-
tant. Lactic acid bacteria make the specific end-products
that impart flavour and modify the texture of the final
product. Cheese production makes use of predominantly
Lactococcus lactis. It is the major component of cheese
starter cultures and, as the worldwide cheese market is
huge, it is one of the most important microbes for the food
industry. Several of the important functions for fermenta-
tion are encoded on conjugative plasmids in these bacte-
ria, among them lactose metabolism and the breakdown
of milk proteins during cheese production (Siezen et al.,
2005; Shearman et al., 2008). The lactobacilli are also
important players in dairy fermentations with Lactobacillus
bulgaricus mainly used in yoghurt manufacture, together
with Streptococcus thermophilus. This use of microbial
consortia adds yet another degree of complexity to an
already complex production process.

There are now over 20 genomes of LAB published and
annotated, providing insight into their metabolic capabili-
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Fig. 1. From milk to fermented dairy product.

ties, as reviewed in (Pfeiler and Klaenhammer, 2007; Mayo
et al., 2008). Comparing these genomes for shared or
unique genotypes is a start, but the world of dairy fermen-
tation is not content just with comparison. The real ques-
tions that are being asked are: what makes my yogurt or
cheese different, and how can | develop new flavours,
textures and products? This is increasingly being investi-
gated by natural diversity analysis of microbes, and in situ
omics measurements in dairy products. These and many
other studies were reported at the 9th Symposium on LAB:
Health, Evolution and Systems Biology, held in September
2008 (http://www.lab9.nl). Here we highlight some of the
latest developments in genomics in these areas.

Genome sequencing and diversity

An overview of genome sequences of some of the
microbes used in dairy fermentations is given in Table 1.
The most recent additions are Lactobacillus helveticus
DPC4571, a starter/adjunct culture with traits that are
extremely desirable in Swiss cheese production, which
include autolysis, reduced bitterness and enhanced
flavour development (Callanan et al.,, 2008), and also
the industrially important plasmid pLP712 of L. lactis,
encoding lactose catabolism and proteolytic enzymes
(Shearman et al., 2008). Propionibacterium freudenreichii
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Fig. 2. Starter cultures for dairy fermentations.

ssp. shermanii CIP 103027 is a member of the dairy
propionibacteria, commonly isolated from cheese and
other dairy products, and is important for the development
of flavour and the characteristic holes formed by CO,
in Emmental (Swiss-type) cheese (Dherbecourt etal.,
2008). Brevibacterium linens BL2 is used as an adjunct
culture in the ripening stage of soft cheddar-type cheese
production. It produces an enzyme that converts
L-methionine into methanethiol, an important aromatic
component of the cheddar cheese aroma. Multiple strains
have now been sequenced of L. lactis, S. thermophilus,
Lb. delbrueckii, Lb. helveticus and Lb. casei (Table 1),
providing deeper insight into their genomic diversity. A
pangenome sequencing analysis of 11 strains of S. ther-
mophilus has identified 65 kb DNA in regions > 1.5 kb
not previously found in the three sequenced genomes
(Danielsen and Rasmussen, 2008).

The diversity of LAB natural isolates is being studied by
comparative genome hybridization (CGH) using micro-
arrays based on a single reference genome, e.g. for Lb.
casei (Cai etal., 2008) and Lb. helveticus (Broadbent
etal., 2008), or multiple reference genomes, e.g. S.
thermophilus (Rasmussen etal.,, 2008) and L. lactis
(Ganesan et al.,, 2008) (G. Felis, pers. comm.). A novel
genotype-calling algorithm PanCGH has been developed
to analyse these pangenome arrays, and this has been
applied to L. lactis strains (Bayjanov et al., 2008).

Genome mining

Genome sequence analysis can provide the first insight
into metabolic potential. An excellent, albeit older, example
is the prediction that L. casei, a non-starter LAB that
increases in later stages of cheese ripening, has the poten-
tial to use citrate as an alternative energy source when
lactose has been depleted (Diaz-Muniz et al., 2006).

A putative complete citric acid cycle (TCA) was recon-
structed from the genome sequence, and experimentally
shown to be active under simulated cheese ripening con-
ditions, converting citrate mostly to acetic acid instead of
lactic acid, yielding 2 ATP per molecule of citric acid.

The potential to form flavours from amino acids was
compared in all sequenced LAB by searching their
genomes for enzymes involved in proteolysis and amino
acid conversions (Liu and Siezen, 2006; Liu et al., 2008).
Focusing on enzymes involved in metabolism of the
sulfur-containing amino acids methionine and cysteine,
which are known precursors of many dairy flavours, the
largest set of enzymes was found in typical dairy LAB
such as L. lactis, S. thermophilus and Lb. casei. The
genome sequence of Lactobacillus helveticus DPC4571
(Callanan et al., 2008) revealed a number of formerly
unknown endopeptidases with potential roles in hydroly-
sis of proline-rich caseins and bitter peptides. These
peptidases were cloned, overexpressed and further
characterized with synthetic peptide substrates and in a
cheese model system (Slattery et al., 2008). Amino acid
auxotrophy in Lb. helveticus CNRZ32 was predicted from
its genome sequence, and agreed well with phenotypic
amino acid requirements (Christiansen et al., 2008).

Lipolysis of milk fat also contributes to flavour formation
in cheese. By combining several bioinformatics methods,
23 putative esterases for lipolysis were identified in the
genome of Propionobacterium freudenreichii CIP103027,
the main agent for lipolysis in Emmental cheese (Dherbe-
court etal., 2008). Twelve of these putative esterases
were selected and expressed in E. coli, of which six
showed esterase activity on short-chain napthyl esters,
thereby confirming the efficiency of genome mining.

The putative transport capabilities of eleven Gram-
positive bacteria, including the dairy LAB Lb. casei,
L. lactis, Lc. mesenteroides, Lb. delbrueckii and S.
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thermophilus, has been predicted using extensive com-
parative genome analysis (Lorca et al., 2007). This study
has provided detailed information of the potential uptake
systems for carbohydrates, peptides and amino acids
in each species, as classified according to TCDB, the
membrane transport protein classification database
(http://tcdb.ucsd.edu).

One of the most exciting and useful aspects of having
full-genome sequences is the ability to construct genome-
scale metabolic models. They enable input and output
fluxes, ATP production, growth rate, biomass yields and
product formation to be predicted, and then experimen-
tally tested (for LAB examples see Smid et al., 2005;
Notebaart etal, 2006; Teusink etal, 2006). New
genome-scale models have now been made for S.
thermophilus (Pastink et al., 2008), and the pangenome
(multiple strains) of L. lactis (Wels et al., 2008). Individual
genome-scale models of the three sequenced L. lactis
strains have been reconstructed using Pathway Tools
and the BioCyc database (Ganesan et al., 2008) (http://
www.biosystems.usu.edu/cibcyc).

Experimental omics
In situ transcriptome analysis

Most of the omics data related to dairy fermentations has
been obtained from in vitro experiments, which were
designed to mimic a dairy product environment (Kok
et al., 2005; Neves et al., 2005; Kilstrup, 2006). Experi-
mental data obtained from the product environment are
limited. The major problem is that dairy environments
such as fermented milk and especially cheese have a
very rich protein and fat content. This makes the isolation
of bacterial RNA, proteins or metabolites extremely
difficult. In a recent study, the transcriptome profile of
L. helveticus CNRZ32 grown in milk was compared
with growth in a defined medium (Smeianov et al., 2007).
The milk isolate had 42 upregulated genes, encoding
cell-envelope proteinases, oligopeptide transporters,
endopeptidases and enzymes involved in lactose, cys-
teine and purine metabolism. A DNA microarray time
series was analysed during the first 20 h of a batch fer-
mentation of L. /actis in milk (De Jong et al., 2008). The
data were used to reconstruct gene regulatory networks
and revealed a number of unknown regulons and DNA
motifs in the genome of L. lactis.

Recently, the first methodological studies on the extrac-
tion of RNA directly from cheese (Monnet et al., 2008a), or
by separation of bacterial cells from cheese before RNA
isolation were reported (Makhzami etal., 2008; Ulvé
et al., 2008). An alternative approach was developed to
follow gene expression directly in cheese using recombi-
nant in vivo expression technology (R-IVET). R-IVET is
not dependent on RNA isolation but it rather ‘records’ in

situ promoter activity throughout the incubation period by
the irreversible excision of a marker fragment from the
genome. Genome-scale analysis of in situ gene expres-
sion was developed for L. lactis, and allowed the identifi-
cation and validation of positively regulated promoters in a
product environment (Bachmann et al., 2008a). For the
evaluation of in situ activated target sequences a high-
throughput, cheese-manufacturing model, termed Micro-
Cheese, was developed (Bachmann et al., 2008d). This
MicroCheese system in combination with the R-IVET
toolbox was used to identify and validate L. lactis promot-
ers induced during the manufacturing and ripening of a
Gouda-type cheese made with a mixed starter culture
(Bachmann et al., 2008b).

In situ proteomics and metabolomics

Hannon and co-workers described the preparation of an
aqueous phase of cheddar cheese and the subsequent
separation of bacterial proteins from milk proteins by
affinity chromatography and gel filtration (Hannon et al.,
2008). Proteome analysis identified bacterial proteins
from cheese manufactured with pure cultures of either S.
thermophilus or L. lactis but also from cheeses manufac-
tured with a mixed culture of both strains. The analysis
showed that many genes involved in stress response and
energy generation were upregulated during the cheese
fermentation. Yvon and co-workers separated bacterial
cells from the cheese matrix, determined the activity of
eight flavour-forming enzymes and investigated the pro-
teome and metabolome of the cell extracts (Yvon et al.,
2008). Minor differences were found in the proteome
between 1 and 7 days after cheese manufacturing, but
important differences were seen in bacterial metabolites.

Bacterial interactions in dairy consortia

The impact of genomic approaches on the elucidation of
microbial interactions was reviewed recently (Sieuwerts
et al., 2008a). Current developments in the dairy environ-
ment include transcriptome and proteome studies on
mixed cultures of S. thermophilus and L. bulgaricus in milk
(Monnet et al., 2008b; Sieuwerts et al., 2008b). This bac-
terial consortium represents a typical yoghurt culture, and
the results reveal new insights into interactions between
the two bacteria (Fig. 3). The measurement of volatile
bacterial metabolites in mixed-culture dairy fermentations
may also permit the identification of bacterial interactions
(Janssen et al., 2008).

Evolutionary aspects of dairy fermentation

A comparison of nine genome sequences of LAB revealed
extensive gene loss and horizontal gene transfer during
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Fig. 3. Microbial interactions in yoghurt (adapted from Sieuwerts et al., 2008a). Reprinted with permission from the American Society for

Microbiology.

the evolutionary adaptation to their habitat (Makarova
et al., 2006). Evolutionary genomic studies of LAB pointed
to a substantial gene loss especially in the Lactococcus—
Streptococcus branch (Makarova and Koonin, 2007).
Gene loss in relation to dairy niche adaptation was
reported for L. lactis, Lb helveticus and the yoghurt bac-
teria (Bolotin et al,, 2004); van de Guchte et al., 2006;
Callanan et al., 2008; Siezen et al., 2008). The genome
sequences of S. thermophilus and Lb. bulgaricus
revealed that > 10% of all potential coding sequences are
pseudogenes, indicating that evolutionary processes to
adapt to the dairy environment are still very actively
ongoing (Bolotin et al., 2004; van de Guchte et al., 2006).
Loss of genes for carbohydrate metabolism and amino
acid biosynthesis in Lb. bulgaricus reflect an adaptation to
the protein-rich milk environment.

Most studies with L. lactis were carried out with strains
isolated from the dairy environment. The diagnostic
sequencing of two L. /actis plant isolates has now shown
that these strains contain many genes never before
reported as part of the genome of L. lactis. These genes
are mainly involved in the utilization of complex carbohy-
drates, which typically occur in plant material (Siezen
etal, 2008). In a follow-up study, one of these plant
isolates was adapted to growth in milk by propagating it
for 1000 generations in milk. Three independently evolved
strains were extensively characterized and reveal inter-
esting insights into evolutionary aspects of this adaptation
process (Bachmann et al., 2008c).

The acquisition of new genes via horizontal gene trans-
fer has been proposed for several dairy specific LAB

© 2008 The Authors

(Bolotin et al., 2004; Siezen et al., 2005; Makarova and
Koonin, 2007; Callanan et al., 2008), and includes trans-
fer between S. thermophilus, L. lactis and Lb. bulgaricus
(Bolotin etal., 2004). Recently, a genomic island of
100 kb, with deviant GC content and flanked by IS
elements, was found in the genome of L. helveticus
DCP4571, and included fatty acid and amino acid
metabolism genes (Callanan et al., 2008). One mecha-
nism of horizontal gene transfer is the phage-mediated
transduction of DNA. Recently, it was shown for the first
time that this mechanism allows the transfer of plasmids
from the genus St reptococcus to the genus Lactococcus
(Ammann et al., 2008). As bacteriophages can cause cell
lysis, they can have a big impact on the performance of
starter cultures and they are responsible for substantial
financial losses to the dairy industry. Resistance to phage
infection can be conferred by CRISPRs (clustered regu-
larly interspaced short palindromic repeats), which are
variable repeats separated by DNA spacers found in the
genomes of many prokaryotes, including LAB (Barrangou
et al., 2007). A recent comparative genome analysis iden-
tified 66 CRISPR loci in LAB (Horvath et al., 2008a). A
poor correlation of CRISPR families with bacterial phylog-
eny supports the notion that CRISPRs are acquired via
horizontal gene transfer and have further evolved inde-
pendently. This evolution is mainly determined by phage
predation and it forms an important part of the ecology
between phages and their hosts. CRISPR sequences
were further studied in S. thermophilus (Horvath et al.,
2008b) and it was shown that they are responsible for
increased phage resistance achieved by successive
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phage challenges (Deveau et al., 2008). It is suggested
that the directed evolution of strains with multiple phage
resistances should be possible, which forms an attractive
approach for stabilizing industrial fermentation processes.

When a new process or product is being developed in
an industrial setting, the initial stages involve setting up
small-scale experiments and then a small-scale pilot plant
to mimic the industrial environment. Intelligent use of
genomics data should give a competitive edge as it can
provide detailed information on the spatio-temporal
aspects of the process. It is no surprise then that the
number of omics studies performed in a product-like envi-
ronment is rapidly increasing. A comparison of the data is
difficult as most studies use different bacterial strains or
methodologies, but the principle discoveries will form the
basis of detailed descriptions as to what is happening in
these complex environments. It is beyond doubt that the
elucidation of the in situ behaviour of bacterial cultures in
the post-genomics era will lead to a better insight into
dairy fermentations and help to improve industrial
fermentation processes.
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