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Abstract

Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and
normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been
achieved with reflection mode photoplethysmography (PPG), by using a smartphone’s embedded flash as a light source
and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as
physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it
is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore
hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made
measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded
simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We
then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed
that the accuracy of HR was acceptably high with all three wavelengths (all rs . 0.996, fixed biases: 20.12 to 0.10 beats per
minute, proportional biases: r = 20.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: 20.01
arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was
higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV
from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light
PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue.
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Introduction

The measurement of heart rate (HR) and the recording of the

peripheral pulse (PP) have long been established as fundamental

components of both research and clinical investigation [1,2]. More

recently, PP detected optically has been further investigated and

this has led to the establishment of normalized pulse volume (NPV)

as a valuable index for a variety of applications [3,4]. HR and

NPV, singly or in combination, have been used in, for example,

the evaluation of stress and emotion [5,6,7], the assessment of

cardiovascular health [8,9], and for studying exercise intensity

[10,11]. Traditionally the measurement of these two variables has

required conventional dedicated instruments, such as an electro-

cardiograph (ECG) and instruments for photoplethysmography

(PPG). However, the recent emergence of the smartphone, which

combines advanced computing power with its communication

features, has offered an interesting and convenient alternative. The

potential for physiological monitoring with a smartphone has been

demonstrated by measuring the reflection mode finger-PPG, or

pulse wave, with its embedded pseudo-white color flash light

emitting diode (LED) as a light source and the complementary

metal oxide semiconductor (CMOS) camera as a photo sensor

[12,13,14]. HR (to be precise, pulse rate) and NPV can then be

calculated from the PPG waveform. The measurement accuracy

against dedicated devices at rest and during the conduct of

prescribed tasks under well-controlled laboratory conditions has

been reported [15,16]. However, the performance of the

smartphone approach under the influence of motion artifact is

yet to be examined [16].
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It is well recognized that motion artifact is a potential source of

error with all PPG measurement systems [17], and this is also the

case when using a smartphone for this purpose. In contrast to the

application of PPG under strict laboratory conditions, when used

in ambulatory subjects, in whom the smartphone approach might

be expected to make a significant contribution [18], motion

artifact seems inevitable. An important factor in the creation of

movement artifact is that of the need to establish reliable and

stable contact between the subject’s finger and the PPG light

source and light detector. With conventional PPG systems the light

source-detector sensors can be attached firmly and stably to the

finger [15], whereas, the use of the smartphone requires the

subject, or user, to grip the device in their hand and press and hold

the tip of their index finger in contact with the smartphone

camera, which is more problematic. Thus, for reliable use it is

essential for smartphone PPG measurement to incorporate

countermeasures against motion artifact.

Of direct relevance to this is the choice of light wavelength or

color when deriving the photoplethysmogram with a smartphone.

The CMOS camera simultaneously detects blue, green, and red

light at essentially the same physical location, and all of these

colors have been used for recording the PPG signals [13]. The

simplicity of this approach for achieving multi-wavelength PPG is

in contrast to the complexity of dedicated instruments [19,20]. It

has been reported that the PPG resistance to motion artifact can

vary according to the wavelength used. For example, HR derived

from laboratory green light PPG, using a 525 nm wavelength LED

as a light source and a photo-diode (PD) as a photo sensor, has

shown higher resistance to motion artifact than that from standard

near-infrared light PPG [21]. This superiority of laboratory green

light PPG among PPG with three primary light colors was also

observed in our preliminary study [22]. A possible explanation for

this finding is that near-infrared light has deeper penetration into

the tissue, thereby probing those regions that are more subject to

motion artifact [23,24,25].

Despite the growth in the interest of smartphone-based PPG for

physiological applications, to date there has been no reported

study to investigate which color (red, green, or blue) is the most

suitable for HR and NPV measurement under motion artifact

conditions. Conclusions about this important issue can not be

easily extrapolated from earlier experience with conventional

laboratory PPG instruments, since the two approaches are quite

different in many respects. These differences particularly relate to

the configuration and type of light source and detector and the

precise manner in which they are interfaced to the finger. The fact

that the optical configuration of the smartphone camera allows

simultaneous recording of multiple PPGs at essentially the same

anatomical location is novel. Therefore, in the present study, we

measured red, green, and blue light PPGs using a smartphone

while adding motion artifacts, and then compared the agreement

of HR and NPV measurements derived from these reflection

mode PPGs with those from motion artifact free conventional

laboratory devices. We also compared signal-to-noise (S/N) ratio

of all three color PPGs during baseline and while adding motion

artifact. Our purpose was to clarify which light color is the most

suitable for measuring HR and NPV when using a smartphone to

perform PPG under the influence of motion artifact.

Methods

Ethics Statement
This study was approved by the ethical committee of the Faculty

of Medicine of Kanazawa University (May 18, 2011, No.9) and

conducted according to the principles expressed in the Declaration

of Helsinki. Written informed consent was obtained from every

participant after we had provided them with a complete

description of the study.

Participants
A total of 12 undergraduate male volunteer students, recruited

through flyers, aged 20.6 6 0.76 (SD) years, participated in this

study. Because no effect size is available from previous studies, the

sample size n = 12 was determined arbitrarily so that it should be

multiples of the number of counterbalancing orders ( = 6) and

equal to our previous smartphone study in order to compare the

results directly. Inclusion criteria were having no history of or

current cardiovascular disease, and not taking any prescription

medication. Participants were asked in advance to refrain from

any medication from the previous day of laboratory testing and,

for 2 hours before laboratory testing, to avoid consumption of food

and caffeine-containing substance, intense physical activity, and

smoking.

Procedure
The experiment was conducted in a sound-attenuated exper-

imental room, maintained at a temperature of 24226 uC. The

participants sat in a chair with their right hand on a desk, and the

sensors and instruments required for conventional laboratory

measurements were attached to the body and right index finger

(Figure 1). Then, the subjects were asked to hold the iPhone 4s

(Apple, Inc.) in their left hand, keeping their left index finger on

the CMOS camera and the front screen vertical on a firm cushion

on their knee. The subjects were asked to grip the iPhone

sufficiently firmly to ensure that the finger-iPhone contact was

essentially constant despite the existence of motion artifact. The

height of the chair was adjusted so that both hands were at heart

level.

After a careful check of the adequacy of finger-iPhone contact

by adding a similar motion artifact used in the experiment as

described below, a 5-min adaptation period was followed by a 3-

min experimental period (Figure 2). In the adaptation period, the

participant sat quietly with the experimenter standing in front of

them and diagonally to the left. In the experimental period, the

participant also sat quietly, but the experimenter shook by hand

the cushion, on which the left hand with the iPhone 4s was placed,

with a rhythmical motion at about 6 Hz to add motion

intentionally only to the participant’s left hand and arm (Figure

1). The shaking intensity was determined so that visible noise was

seen on the recorded PPG waveform. The frequency of 6 Hz was

chosen because the main bandwidth of the PPG power spectrum is

usually less than 5 Hz [26,27], including the HR signal around

1 Hz, so it is easy to separate motion artifact from other sources in

the PPG power spectrum. In this period, there were two motion

artifact conditions; horizontal motion artifact (HMA) and vertical

motion artifact (VMA), and one baseline (BL) condition. In the

HMA and the VMA, the experimenter shook the cushion

horizontally and vertically, respectively (Figure 1). In the BL, the

experimenter simply held the cushion motionless. The order of

HMA, VMA, and BL, were counter-balanced across participants

(Figure 2). A set of these three conditions was repeated once again

in the same order. Each 20-s condition was separated by 10-s rest

periods.

Apparatus and Measures
Laboratory devices. The reference, motion artifact free,

beat-by-beat HR was calculated using the R-R interval of the Lead

II electrocardiogram (ECG). This ECG was obtained using

disposal electrodes connected to standard bioamplifiers [28] built

iPhone 4s Photoplethysmography
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in Kanazawa University. R peaks of the ECG were detected off-

line using a local maximum search algorithm with the parameters

of threshold peak value and non-detecting time along the time

axis.

The reference, motion artifact free, beat-by-beat NPV was

calculated by dividing the foot-to-peak amplitude of the alternat-

ing-current (AC), or pulsatile, component of the finger PPG by the

direct-current (DC) component [3,4]. NPV is an index of a-

adrenalin mediated sympathetic activity, in other words, vascular

tone, and is a measure that is in proportion to pulsatile arterial

volume. The foot-to-peak amplitudes of the AC components,

necessary to calculate NPV, were detected off-line using a paired

local minimum and maximum search algorithm, with the

parameters of minimum minimum-to-maximum amplitude, max-

imum minimum-to-maximum interval, and non-detecting time

along the time axis. The reference PPG was measured in the

transmission mode using an 810 nm near-infrared LED and a

photodiode, placed on opposite sides of the tip of the right index

finger. The sensors and an amplifier to which the sensors were

connected were built in Kanazawa University [3]. A logarithmic

transformation was applied to the NPV values to normalize the

distribution.

All signals were sampled using an A/D converter at a rate of

1 kHz with a resolution of 16 bits, and stored digitally in a

computer.

Smartphone. Red, green, and blue PPGs were measured

simultaneously from the left index finger using an iPhone 4s

(Apple, Inc.) within which the iPhysioMeter application [15] was

installed. iPhysioMeter is a program that enables iOS (Apple, Inc.)

devices with an LED flash light (i.e., so far, iPhone 4s and 5, and

iPod touch) to measure and store the PPGs derived from all of the

three colors and the three-axis g-forces simultaneously at a

sampling frequency of 30 Hz (30 fps). No interpolation technique

was employed. This application is available at iTunes App Store

(Apple, Inc.) and is free.

The PPG measurement with iPhysioMeter uses the reflection

mode, in which the pseudo-white color flash LED as a light source

and the CMOS camera as a photo sensor are positioned essentially

side-by-side. At the beginning of the measuring sequence, the

CMOS camera is set to video capture mode with 1926144 pixels

resolution, and each pixel has 8 bits depth for the red, green, and

blue signals. Furthermore, the white balance, exposure, and focus

mode of the CMOS camera were set via the iPhysioMeter

‘Settings’ control to ‘‘Locked’’, ‘‘ContinuousAutoExposure’’, and

‘‘Locked’’, respectively [29]. These settings were chosen to keep

the relative sensitivity to each light color constant whereas the total

sensitivity of the CMOS camera to all light colors is then adjusted

automatically by the iOS (CMOS camera embedded with iOS

devices has a mechanical adjustment system for exposure). Once

measurement has begun, each video frame captured by the

CMOS camera is averaged among all of the pixels by each light

color to produce a red, green, and blue light intensity value at the

rate of 30 frames per second (fps).

Figure 1. Schematic drawing of the experimental setup. The
directions of the horizontal and vertical added motions are also shown.
NIR = near-infrared, PPG photoplethysmogram, and ECG = electro-
cardiogram.
doi:10.1371/journal.pone.0091205.g001

Figure 2. Experimental protocol. The combination of the condition (A, B, C) is assigned to one of the possible orders of the three motion artifact
conditions. That is, (BL, HMA, VMA), (BL, VMA, HMA), (HMA, BL, VMA), (HMA, VMA, BL), (VMA, BL, HMA), or (VMA, HMA, BL). The orders were counter-
balanced across the participants. BL = baseline, HMA = horizontal motion artifact, and VMA = vertical motion artifact.
doi:10.1371/journal.pone.0091205.g002
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Although iPhysioMeter is equipped with an on-line beat-by-beat

HR and NPV auto analysis function ab initio, it is only designed to

analyze the PPG from one of the three colors as set beforehand.

So, beat-by-beat HRs and NPVs derived from the PPG from each

color were calculated off-line using a Mac computer port of

iPhysioMeter’s beat-by-beat HR and NPV auto analysis program.

In these applications, foot and peak values of each light color AC

component were detected using a paired local minimum and

maximum search algorithm with the parameters of minimum

minimum-to-maximum amplitude, maximum minimum-to-maxi-

mum interval, and non-detecting time along the time axis, whose

parameters were adaptively changed with reference to the trend of

the preceding 10-s period. The NPV values for each light color

were calculated by dividing the foot-to-peak amplitudes of the AC

component of the corresponding PPG signal by their direct-

current (DC) components, respectively [3]. The HR values for

each light color were calculated using the peak-to-peak intervals,

these peaks being the same as those used in the NPV calculation,

of corresponding PPG signals, respectively. Values departing

significantly from the preceding 10-s period, defined as those

contributing to increase the SD of the period above 8.0 beats per

minute (bpm) for HR or 0.25 arbitrary units (a.u.) for lnNPV,

respectively, are judged as outliers.

The S/N ratio was calculated from the raw red, green, and blue

PPG waveforms using the following formula: S/N ratio = log10

(Signal Power / Noise Power). Here, signal and noise power are

derived as the integrated power over a 6 0.5 Hz bandwidth from

mean HR (Hz) that was calculated from R-R interval and peak

motion artifact (Hz) around 6 Hz within the PPG power spectrum,

respectively. The Power spectra of the PPGs were calculated using

the fast-Fourier-transform with BIMUTAS II (Kissei Comtec,

Inc.). A bandwidth of 1 Hz was used to include the whole of the

corresponding power to take account of the fluctuations of the

center frequencies of HR and motion artifact, in line with earlier

published work [30].

Three-axis accelerations (x- and y-: horizontal, z-: vertical) were

measured by the acceleration sensor contained within the iPhone

4s. The iPhysioMeter application reads the sensor output at the

same sampling frequency as that used for the PPGs, that is, 30 Hz.

Data Reduction
The HR values derived from the ECG and the red, green, and

blue light PPG waveforms and the lnNPV values from near-

infrared light PPG and red, green, and blue light PPG were

averaged for each 20-s period, and further averaged across two

repetitions to obtain the values for BL, HMA, and VMA. Those

values judged as outliers were removed before averaging.

The S/N ratios calculated from the red, green, and blue light

PPG signals for each 20-s period were averaged across repetitions

to obtain the BL, HMA, and VMA values.

The amplitudes of the three-axis acceleration signals were

averaged for each 20-s period, and further averaged across

repetitions to obtain the BL, HMA, and VMA values. Then, x-

and y-axis amplitudes were synthesized using the Pythagoras

theorem to obtain the horizontal amplitudes of the BL, HMA, and

VMA values.

Statistical Analysis
HR and lnNPV values for each measurement (reference, red,

green, and blue light PPG) and condition (BL, HMA, and VMA)

were analyzed using a series of separate two-way repeated-

measures analysis of variance (ANOVA), after having checked the

normality of the distribution by Kolmogorov-Smirnov tests. The

Greenhouse-Geisser correction was applied to the degree of

freedom where appropriate. For post-hoc comparison, Tukey

HSD tests were used.

To evaluate the agreement of HR and lnNPV measurements

derived from each of the three PPGs with the corresponding

reference values, geometric mean regression [31] and Bland-

Altman plot [32] analyses were used. In the former, an intercept

(fixed bias), slope (proportional bias), and correlation coefficient

(Pearson’s r) were calculated, whereas in the latter, the mean of the

differences (fixed bias) and correlation coefficient between

averages and differences (proportional bias) were calculated. In

these analyses, a total of 72 data points (three conditions 6 two

repetitions 6 12 participants) were used.

S/N ratios for each color (red, green, and blue) and condition

(BL, HMA, and VMA) were analyzed using a two-way repeated-

measures ANOVA after having checked the normality of the

distribution by Kolmogorov-Smirnov tests. The Greenhouse-

Geisser correction was applied to the degree of freedom where

appropriate. For post-hoc comparison, separate one-way repeated-

measures ANOVAs were conducted when interaction was

observed, and for its multiple comparison, Tukey HSD tests were

used.

The differences between horizontal and vertical acceleration for

each condition were compared using Wilcoxon signed-rank test.

Statistical analyses were performed using IBM SPSS Statistics

19 for Mac (IBM Inc.).

Results

Figure 3 shows a typical example of the AC components of the

three photoplethysmograms derived from the red, green, and blue

light, together with x-, y- (horizontal), and z- (vertical) axis

acceleration, and the simultaneous recording of the reference

photoplethysmograms and the ECG (raw data are provided in

Table S4). The chart clearly illustrates the presence of motion

artifacts on the AC waveforms (right side) derived from the

smartphone, which are not present in the absence of motion

waveforms (left side) and in the reference photoplethysmograms

and ECG recordings. More importantly, the differential effect of

motion artifacts on the smartphone PPG signals for the three light

colors are clearly shown. Figure 4 shows expanded and overlaid

recordings from Figure 3. Figure 5 shows a typical example of

smartphone PPG and acceleration power spectra for three motion

artifact conditions and three light colors (individual data are

provided in Table S5). These graphs clearly demonstrate the

separation of motion artifact from other signal sources in the PPG

power spectrum and the pure sine wave form of the motion-

induced artifact.

Motion artifact during BL, HMA, VMA
The median values and their ranges of horizontal and vertical

acceleration during each condition, together with results of

Wilcoxon signed-rank tests, are summarized in Table 1 (individual

data are provided in Table S1). Because the Kolmogorov-Smirnov

tests did not confirm the normality of the distribution in horizontal

and vertical acceleration (not all ps . 0.05), we conducted

nonparametric tests here.

HR and lnNPV for reference and red, green, and blue light
PPG during BL, HMA, and VMA

The mean values of HR and lnNPV for each measurement

during each condition are summarized in Table 2 (individual data

are provided in Table S2). Kolmogorov-Smirnov tests confirmed

the normality of the distribution in all indices (all ps . 0.05). For

HR, the repeated-measures ANOVA did not reveal any significant

iPhone 4s Photoplethysmography
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main effects of measurement, F(3, 33) = 2.39, p = 0.119, e = 0.63,

gp
2 = 0.18, and condition, F(2, 22) = 0.25, p = 0.783, gp

2 = 0.02,

and measurement 6 condition interaction, F(6, 66) = 0.76,

p = 0.502, e = 0.40, gp
2 = 0.06. For lnNPV, in contrast, the

repeated-measures ANOVA revealed significant main effect of

measurements, F(3, 33) = 128.25, p,0.001, gp
2 = 0.92, but not

condition, F(2, 22) = 1.64, p = 0.217, gp
2 = 0.13, and measurement

6 condition interaction, F(6, 66) = 2.73, p = 0.077, e = 0.39,

gp
2 = 0.20. Subsequent post-hoc Tukey HSD test revealed that

lnNPV derived from reference and green light PPG were higher

than that from blue light PPG, and that lnNPV derived from blue

light PPG was higher than that from red light PPG. This post-hoc

result is also shown in Table 2.

Figure 3. Recording of smartphone red, green and blue PPGs, 3-axis accelerations, and reference PPG and ECG. (iPhone 4s) The AC
components of the red, green, and blue light smartphone PPGs, together with x-, y- (horizontal), and z- (vertical) axis acceleration (A); (References)
The simultaneous recordings of reference, motion artifact free, near-infrared PPG and ECG. The left side and the right side of the chart correspond to
in the absence and presence of motion artifact, respectively. Red and blue closed circles represent the peak and foot points identified by a beat-by-
beat auto analysis algorithm incorporated in iPhysioMeter. Peak-to-peak intervals and foot-to-peak amplitudes are used to calculate heart rate (HR)
and normalized pulse volume (NPV). Open circles identify outlier points, that may have arisen from misidentification and/or omission of an expected
preceding point, are also judged by this algorithm. The differential effect of motion artifacts on the smartphone PPGs from the three light colors and
the outputs of peak and foot detection are clearly shown. Dual peaks and feet in the PPG waveform due to motion artifact can exert a harmful
influence on intact foot and peak detection. Here intense peaks in the three light color PPGs due to the change in iPhone - finger contact pressure,
often accompanying motion artifact, are in sync at 101.195 and 107.467 s. PPG = photoplethysmogram, ECG = electrocardiogram.
doi:10.1371/journal.pone.0091205.g003
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Although the BL period was very short, we also calculated the

mean and SD of the standard deviation of normal-to-normal RR

intervals (SDNN), which is one of the basic time domain measures

of heart rate variability. The SDNN of the reference ECG and the

red, green, and blue light PPGs during BL were 36.3 (15.5), 41.9

(14.2), 41.2 (14.0), and 44.8 (16.0) ms, respectively (individual data

are provided in Table S7).

Agreement of HR and lnNPV between PPGs from red,
green, and blue light and from the reference

Scatter plots of paired HRs and lnNPVs derived from red,

green, and blue PPG against the corresponding reference, together

with their Bland-Altman plots, are shown together in Figure 6

(individual data are provided in Table S3). The results of

geometric mean regression and Bland-Altman analysis are

summarized in Table 3.

S/N ratio for red, green, and blue light PPGs during BL,
HMA, and VMA

The mean values of S/N ratios for each PPG color during each

condition are shown in Figure 7 (individual data are provided in

Table S6). The Kolmogorov-Smirnov tests confirmed the

normality of the distribution in all indices (all ps . 0.05). The

repeated-measures ANOVA revealed significant main effect of

color, F(2, 22) = 11.20, p,0.001, gp
2 = 0.50, and condition, F(2,

22) = 34.56, p,0.001, gp
2 = 0.76, and color 6 condition

interaction, F(4, 44) = 11.43, p,0.001, gp
2 = 0.51. Subsequent

post-hoc tests revealed significant simple main effect of color

during HMA, F(2, 22) = 7.81, p = 0.003, gp
2 = 0.42, VMA, F(2,

22) = 25.54, p,0.001, gp
2 = 0.70, but not BL, F(2, 22) = 1.02,

p = 0.378, gp
2 = 0.08. In addition, subsequent post-hoc Tukey

HSD test revealed that S/N ratios derived from green and blue

light PPGs were higher than that from red PPG in both HMA and

VMA condition.

Discussion

Our goal was to clarify, when using a smartphone to perform

PPG under the influence of motion artifact, which light color - red,

green, or blue - is the most suitable for measuring HR and lnNPV.

To address this, during baseline and while adding motion of the

smart phone to create artifact in the PPG signal, we examined the

agreement of HR and NPV measurements derived from the

photoplethysmograms recorded with these three colors and from

the reference methods, and the signal-to-noise (S/N) ratio of the

PPGs from the three light colors. As a result, firstly, the levels of

agreement between paired HR values were quite high and

comparable for the data from all three light colors. All paired data

exhibited nearly 1.00 correlation coefficients and negligible fixed

and proportional biases, though the best agreement was observed

for the green light PPG. Secondly, the agreement for the lnNPV

measurements was the best with the green light PPG. The results

from green light PPG showed negligible fixed and proportional

biases, whereas the results from red and blue light PPG exhibited

fixed and both fixed and proportional biases, respectively. Thirdly,

the S/N ratio was higher with green and blue light PPG than with

the red light PPG during both HMA and VMA, though

comparable during BL. Taken together, these findings suggest

that green is the most suitable light color among the three possible

colors available from the smartphone for both HR and lnNPV

measurement under motion artifact.

HR values calculated from the PPG signals from all three light

colors were accurate in that all of the relevant paired data

exhibited nearly 1.00 correlation coefficients. However, as already

mentioned above, the three differed in their absolute accuracy.

Figure 4. Expanded and overlaid recordings from Figure 3. The upper recording was made in the absence of artifact, whilst the lower
recording was made during the addition of movement to the left hand. PPG = photoplethysmogram,
doi:10.1371/journal.pone.0091205.g004
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Several factors could be responsible for creating these differences.

Firstly, the waveforms of the photoplethysmograms from the three

light colors exhibit some differences. In the left side of Figure 3,

showing recordings made in the absence of motion artifact, there is

a suggestion of temporal differences between the identified peaks;

this can be better appreciated in Figure 4, where the time-scale has

Figure 5. Typical example of smartphone PPG and acceleration power spectra by three conditions and three colors. The differential
effect of motion artifacts on the PPGs from the three light colors is clearly shown. Three vertical dotted lines around 1.5 Hz represent mean HRs
expressed in Hz calculated from corresponding R-R intervals. BL = baseline, HMA = horizontal motion artifact, VMA = vertical motion artifact, PPG
= photoplethysmography, HR = heart rare, and A = acceleration.
doi:10.1371/journal.pone.0091205.g005
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been expanded. For example, the first peaks seen in the red, green,

and blue PPG signals in the absence of motion artifact in Figure 4

occur at 94.190 s, 94.221 s (1 fps after 94.190 s), and 94.256 s (2 fps

after 94.190 s), respectively. As already mentioned in the

introduction, blue light PPG probes the shallowest arterioles,

which are the most distal of the three vascular regions to be

probed. It is known that the more distal the PPG probing region is

the more the waveform loses its edge [e.g., 26]. This is also clearly

seen in Figure 5, where the ratio of the 1st to 2nd harmonics of the

HR power decreases in accordance with the decreases in the tissue

penetration depth, which is known to be dependant on

wavelength.

The second matter of relevance is that, despite the temporal and

penetration depth phenomena, there can be occasions when the

effect of motion artifact on each of the three photoplethysmograms

can be essentially synchronized. This means that, in the above

example, if motion artifact produces an intense peak at 94.155 s on

the PPG signal (this point is 1, 2, and 3 fps before red’s peak at

94.190 s, green’s at 94.221 s, and blue’s at 94.256 s, respectively),

each peak of the three light colors would be detected not at each

actual peak (red’s 94.190 s, green’s 94.221 s, and blue’s 94.256 s

peak, respectively), but at the time of this intense peak (at 94.155 s).

That is, the peak shift intervals of red, green and blue are 1, 2, and

3 fps, respectively, and thus not constant among the three colors.

In this way, HRs derived from each light color photoplethysmo-

gram are differentially influenced by a motion artifact near the

actual peak points. Such phenomena actually occurred at 101.195

s in Figures 3 and 4, and the peaks of the three light color

photoplethysmograms are synchronized here.

The third and final issue is that, whether such peak shifts really

occur or not depends on the tolerance of each light color PPG to

the motion artifacts. In this regard, it seems reasonable to conclude

that the HR accuracy derived from red light PPG is inferior to that

from green light PPG. This is because the S/N ratio of PPG is

lower in red light than in green light during both HMA and VMA,

thus the shift of peak would occur more in red light PPG than in

green light PPG. On the other hand, this view can not offer a

reasonable explanation for the difference we have found between

green and blue light PPG data, because the S/N ratio of PPG

using these two colors were comparable. However, the apparently

blunted leading edge seen with blue light PPG possibly causes the

worsening of the tolerance to motion artifact, especially around the

peaks. In fact, such a tendency is clearly observed in Figure 3 as a

dual peak only in blue light color PPG around at 110, and 114, s.

Although many of such dual peaks are judged as outliers by the

auto analysis algorithm within iPhysioMeter, as shown in Figure 3,

Table 1. Median g-forces during three motion artifact conditions and results of statistical tests.

Condition Acceleration (G) Results of Wilcoxon Signed-rank Test

Horizontal Vertical

Median Median W p

[Range] [Range]

BL 0.013 0.011 66 0.034

[0.00820.025] [0.00720.030]

HMA 0.34 0.20 78 0.002

[0.1820.75] [0.0520.57]

VMA 0.19 0.42 78 0.002

[0.1020.33] [0.3020.60]

Note. BL = baseline, HMA = horizontal motion artifact, and VMA = vertical motion artifact.
doi:10.1371/journal.pone.0091205.t001

Table 2. Mean heart rate (HR) and log-transformed normalized pulse volume (lnNPV) during three motion artifact conditions by
different measurements.

Variables Condition Measurement

Reference Red PPG Green PPG Blue PPG

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

HR (bpm) BL 69.9 (7.7) 69.8 (7.7) 70.0 (7.8) 69.9 (7.9)

HMA 70.4 (8.2) 70.2 (8.3) 70.5 (8.3) 70.4 (8.6)

VMA 70.3 (9.3) 70.3 (9.1) 70.4 (9.2) 70.5 (9.2)

lnNPV (a.u.) BL 24.24a (0.69) 25.98c (0.62) 24.26a (0.61) 25.22b (0.44)

HMA 24.26a (0.71) 25.93c (0.65) 24.31a (0.66) 25.24b (0.52)

VMA 24.29a (0.67) 25.88c (0.66) 24.24a (0.65) 25.12b (0.59)

Note. BL = baseline, HMA = horizontal motion artifact, VMA = vertical motion artifact, PPG = photoplethysmography, bpm = beats per minute, and a.u. = arbitrary
units.
Means sharing a common subscript are not statistically different at a = 0.01 according to the two-way repeated-measures analysis of variance (ANOVA) and Tukey HSD
procedure.
doi:10.1371/journal.pone.0091205.t002
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it is difficult to eliminate all such points, and thus there is room for

some errors to be produced. Since this is the case, the HRs

calculated from each light color are differentially influenced by the

motion artifacts, and thus their accuracies are different from one

another.

The S/N ratio was higher in the blue and green light PPGs than

in the red light PPGs during both HMA and VMA. This tendency

is consistent with our preliminary study conducted using

laboratory devices where 470 (blue), 530 (green), and 645 (red)

nm wavelength LED as a light sources and the photo-diode (PD) as

a photo sensor [22]. Considering that the S/N ratios obtained with

all three colors were comparable during BL and were derived

simultaneously at the same anatomical location, such a pattern

most likely arises from the relationship between their probing

depth and the anatomical origin of the motion artifact [25].

According to Maeda et al. [25], Giltvedt et al. [24], Lindberg and

Oberg [33], and Ugnell and Oberg [34], green PPG most likely

probes ascending arterioles and/or superficial plexus arterioles

located in the upper region of the reticular dermis. It is known that

light of longer wavelengths has deeper penetration into the

biological tissue than light of shorter wavelengths, and that the

penetration depth of green light approximates more closely to that

of blue than that of red [23,24]. Therefore blue light PPG is likely

to probe superficial plexus arterioles in the upper part of the

reticular dermis, whereas red light PPG most likely probes the

deep plexus arterioles located in the lower part of the reticular

dermis or small arteries sub cutis. However, despite these

differences in the extent to which arterioles are probed, both blue

and green light PPGs probe arterioles embedded in the same

anatomical structure, the upper part of the reticular dermis, and as

such are likely show a similar response to the motion. This

interpretation seems to provide a probable explanation why blue

and green light PPGs show the comparable resistance to motion

artifact. On the other hand, deep arterioles or arteries probed by

red light are measured via dermis that has a lower Young

modulus, and as such is unsurprisingly easy to displace or

compress. Thus, it seems reasonable that red light PPG shows

lower resistance to motion artifact compared to blue and green

light PPG. This suggests that the findings from dedicated devices

can possibly be extended to smartphone PPG measurement

regardless of their significant differences in configuration and type

of light source and detector, and the precise manner in which they

are interfaced to the finger.

A further word of caution is necessary with regard to the general

description of the light used in PPG as being ‘‘red’’, ‘‘blue’’, or

‘‘green’’. Where dedicated light sources and detectors have been

used, including lasers or LEDs, the wavelength has been specified

with some precision. For example, in studying depth discrimina-

tion in laser Doppler skin blood flow measurement [35], green and

red light from helium-neon lasers had wavelengths of 543 nm and

632.8 nm respectively, whilst near-infrared light from a laser diode

was reported to have a wavelength of 780 nm. In the case of the

smartphone, however, a CMOS image sensor is used and such

devices have comparatively broad spectral characteristics. For

example typical devices may have full width half maximum values

of 150 nm or more, and there can therefore be significant overlap

in the red, green and blue bands. This significantly complicates the

interpretation of possible wavelength-dependant penetration depth

effects, as well as the comparison between results of published

studies.

Figure 6. The agreement of HR and lnNPV measured by the smartphone PPG and corresponding references. Each section of heart rate
(HR: Top) and log-transformed normalized pulse volume (lnNPV: Bottom) includes the three pairs of scatterplot (Upper) and Bland-Altman plot
(Lower) measured by red (Left), green (Center), and blue (Right) light smartphone PPG against those by the corresponding reference devices among
all of the 72 data pairs (three conditions 6 two repetitions 6 12 participants). ECG = electrocardiography, PPG = photoplethysmography, NIR =
near-infrared, GMR = geometric mean regression, bpm = beats per minute, and a.u. = arbitrary units.
doi:10.1371/journal.pone.0091205.g006

Table 3. Outcomes of geometric mean regression analyses and Bland-Altman plots.

Variables PPG Color Geometric Mean Regression Bland-Altman Plot

Slope Intercept r Mean SD r

[95% CI] [95% CI] [95% CI] [95% LOA] [95% CI]

HR (bpm) Red 0.997 0.106 0.9960 0.10 0.74 0.03

[0.976, 1.019] [21.407, 1.587] [.9935,.9975] [21.36, 1.56] [20.20, 0.26]

Green 1.006 20.288 0.9991 20.12 0.36 20.14

[0.996, 1.016] [21.012, 0.429] [.9985,.9994] [20.83, 0.58] [20.36, 0.10]

Blue 1.021 21.410 0.9975 20.07 0.61 20.29

[1.004, 1.038] [22.619, 20.221] [.9961,.9985] [21.27, 1.13] [20.48, 20.06]

lnNPV (a.u.) Red 0.936 21.936 0.760 1.66 0.46 0.10

[0.803, 1.093] [22.507, 21.270] [.641,.843] [0.77, 2.56] [20.13, 0.32]

Green 0.936 20.279 0.791 0.01 0.43 0.11

[0.809, 1.082] [20.819, 0.345] [.685,.864] [20.83, 0.84] [20.13, 0.33]

Blue 0.784 21.852 0.690 0.93 0.50 0.32

[0.660, 0.931] [22.379, 21.225] [.545,.795] [20.04, 1.90] [0.10, 0.51]

Note. HR = heart rate, lnNPV = log-transformed normalized pulse volume, PPG = photoplethysmography, CI = confidential interval, LOA = limits of agreement, bpm
= beats per minute, and a.u. = arbitrary units.
Each n = 72 (three conditions 6 two repetitions 6 12 participants).
doi:10.1371/journal.pone.0091205.t003
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Fixed bias in green light PPG was ipso facto zero and correlation

coefficients were nearly 0.8 in this study. These results are

somewhat different from the previous study conducted by

Matsumura and Yamakoshi [15], which showed a relatively large

fixed bias in lnNPV (0.87 a.u.; i.e. lnNPV from smartphone green

light PPG was smaller than that from reference near-infrared light

PPG), though within the limits of agreement, and relatively low

correlation coefficients (r = 0.432) compared to the present study.

These differences are plausibly due to the manner of holding the

smartphone. That is, in the study of Matsumura and Yamakoshi

[15], the participants held the smartphone relatively loosely

whereas in the present study they held it more firmly so that the

finger-smartphone contact was constant. This modification was

made simply in consideration of the nature of the present

experiment; i.e. adding motion artifact. However, as a conse-

quence of this, it is possible that finger-iPhone contact pressure was

increased, which in turn could cause a local decrease in arteriolar

pressure. Supporting this view, it is observed that the pulse wave in

fact disappears when the finger is pressed very firmly against the

smartphone image sensor. Overall, then, it is likely that NPV

derived from green light PPG increased to the level of that from

near-infrared light PPG because lnNPV is known to increase in

accordance with local blood pressure decrease [36]. Thus, to

achieve successful performance of iPhysioMeter the finger-iPhone

contact should be maintained relatively constant during operation,

with firmness to the extent that it does not completely occlude the

artery. The net effect should be that correlation coefficients are

increased via the decrease in the fluctuation in finger-iPhone

contact pressure that is considered to serve as a random error in

measurement [15].

Our results revealed the superiority of green light PPG over

both red and blue light PPG. However, it has been reported that

additional value can be obtained from red and blue light PPG

using the smartphone in that estimates of blood SpO2 can be

derived from the red and blue lnNPV data [14]. Our results also

showed that the S/N ratios of the three light color PPGs were

comparable during BL; that is, all were approximately 30 dB, so

the measurement under such resting BL condition would be

acceptable with any of the three light colors. However, in the case

of measurements being made during normal daily-life, accelera-

tion should also be measured whenever possible in that

unpredictable motion can occur. In fact, recent smartphones are

usually equipped with an acceleration sensor and with the

computational power to calculate S/N ratio.

Limitations of the study, open questions, and future work
There are some limitations in this study. Firstly, the population

of the participants was limited in terms of age range, skin tone,

and sample size was relatively small. Age could be important

since it is well known that the skin becomes stiffer and less flexible

with increasing age [37]. Nevertheless, in some previously

published PPG motion artifact studies, the populations of

participants were exclusively limited to young men [21,22,25].

Furthermore, differences in skin tone as well as wavelength could

also affect the tissue penetration depth; it can be shallower in

pigmented individuals [23]. Thus, the generalizability of the

results from the present study could be of interest. Secondly, the

motion artifact used in this study was strictly controlled, and

restricted to a rather limited spatial orientation and frequency. As

a contrast to the approach used in the present study, experiments

adding white noise having a flat power spectrum, could be of

value. This is because in real ambulatory settings such as during

exercise and running, there are many more kinds of motion

artifact in terms of both orientation and frequency. Thirdly,

because HR and NPV were the target measures in this study,

each experimental period was set to 20 sec so as to give sufficient

time to calculate these. However, such short recording periods

makes standard heart rate variability calculations impossible, thus

longer periods to allow the calculation of these measures would

be preferable in future studies. Fourthly, we have used only one

smartphone model, namely iPhone 4s, in the present study. So,

replicating studies using other smartphones could be of value.

Taken together, further studies dealing with these points are

needed.

Conclusions

Our results suggest that green light PPG is the most suitable

color among the three colors tested here for smartphone HR and

lnNPV measurement. This finding, in combination with known

digital signal processing approaches to reduce motion artifact

[17,38] and/or robust feature detection algorithm [39], will help

to achieve robust measurement in ambulatory settings, where

motion-induced artifact is likely to be a significant issue.
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