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to hepatocarcinogenesis and progression 
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Abstract 

Background:  Type 2 Diabetes Mellitus (T2DM) is an independent risk factor of hepatocellular carcinoma (HCC). How-
ever, the related genes and modules to hepatocarcinogenesis and progression in T2DM remain unclear.

Methods:  The microarray data from Gene Expression Omnibus (GEO) were analyzed to screen differentially 
expressed genes (DEGs) of T2DM and HCC dataset. Then, weighted gene co-expression network analysis (WGCNA) 
was performed on these DEGs to detect the modules and genes, respectively. Common genes in modules with 
clinical interests of T2DM and HCC were obtained and annotated via GOSemSim package and Metascape. Genes 
related to late-stage HCC and high glycated haemoglobin (HbA1c) were also identified. These genes were validated 
by UALCAN analysis and univariate cox regression based on The Cancer Genome Atlas (TCGA). Finally, another two 
independent datasets were applied to confirm the results of our study.

Results:  A total of 1288 and 1559 DEGs of T2DM and HCC were screened, respectively. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment revealed several shared pathways in two diseases, such as pathways in cancer and 
metabolism. A total of 37 common genes correlated with T2DM and HCC were then identified with WGCNA. Further-
more, 12 genes from modules associated with late-stage HCC and high HbA1c were regarded as hub genes. Among 
these genes, 8 genes associated with tumor invasion and metastasis were validated by UALCAN analysis. Moreover, 
downregulations of ACAT1, SLC2A2, PCK1 and ABAT were significantly associated with poorer prognosis in HCC patients 
with elevated HbA1c. Additionally, the expressions of PCK1 and ABAT were raised in HepG2 cells pre-treated with 
metformin and phenformin.

Conclusions:  The present study confirmed several metabolic genes related to hyperglycemia and malignant tumor, 
which may provide not only new insights into the pathogenesis of hepatocarcinogenesis and progression in T2DM, 
but also novel therapeutic targets for T2DM patients with HCC in the future.
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Background
Type 2 diabetes mellitus (T2DM) is one of the most com-
mon chronic diseases worldwide. According to Inter-
national Diabetes Federation (IDF), diabetes affected 
an estimated 463 million people worldwide in 2019, 
accounting for 9.3 percent of adults aged 20 to 79, with 
a predicted increase to 10.9 percent by 2045 [1]. Besides 
eliciting metabolic disorders and vascular damages, 
T2DM is a major predisposing factor of cancers, pre-
dominantly in gastrointestinal malignancies, includ-
ing hepatocellular carcinoma (HCC) [2]. Accordingly, 
approximately 7 percent of new cases of HCC can be 
attributed to diabetes, and the incidence of HCC in pat-
ents with T2DM is about twofold higher than that in 
normal individuals [3, 4]. The risk of HCC development 
is also positively correlated with T2DM duration, which 
significantly increases to 7.52 times in individuals with a 
10-year-duration of diabetes [5].

Furthermore, there is also strong evidence indicat-
ing the relationships between the rise of the incidence 
of T2DM and the risk of deaths from HCC [6]. A meta-
analysis showed that the presence of diabetes decreased 
overall survival rate  among patients with HCC; and the 
mortality for HCC was 2.5-fold higher in T2DM patients 
[7]. A number of studies also reported that treatment 
with glucose-lowering medications like metformin could 
improve the survival rate of patients with HCC [8]. These 
shreds of evidence revealed that T2DM had turned into 
an independent risk factor for HCC development.

The underlying mechanisms involved in T2DM and 
HCC are complicated, including hyperglycemia, insulin 
resistance, and inflammatory [9]. Endogenous insulin 
acting on liver activates a number of signaling pathways 
such as insulin-like growth factor (IGF) signaling path-
way, phosphatidylinositol 3 kinase (PI3K) pathways and 
mitogen-activated protein kinase (MAPK) pathways 
that contribute to hepatic cell proliferation and tumor 
progression [10]. Further, persistently high blood glu-
cose and circulating insulin levels accelerate the secre-
tion of inflammatory factors and the accumulation of 
metabolites such as free fatty acids (FFA) and glycation 
end products (AGEs). As a result, hepatic  stellate  cells 
are activated and liver fibrosis is promoted [11]. Chronic 
hyperglycemia also increases the frequency of KRAS and 
MYC variants, possibly because of nucleotide imbalance 
[12]. Although the metabolism disorders of T2DM have 
been reported to play crucial roles in stimulating liver 
cancer growth, the specific pathological mechanisms and 
key genes of these processes remain vague.

Weighted gene co-expression network analysis 
(WGCNA) is a novel biological method widely utilized in 
the high-throughput sequencing data analysis. It focuses 
on the intramodular connectivity and gene significance, 

which alleviates the multiple testing problem inherent in 
microarray [13]. Based on the co-expression networks, 
the hub genes for relating modules to one another and to 
external clinic traits are identified. This method has been 
successfully applied to identify shared pathogenesis of 2 
diseases. For instance, Zhu et al. used WGCNA to reveal 
ten hub genes involved in the development of Alzheimer’s 
disease and T2DM [14]. Bi et al. also employed WGCNA 
to demonstrate a novel biomarker for distinguishing alco-
hol-associated HCC from non-alcohol-associated HCC 
[15]. Thus, to fully understand T2DM and HCC, we uti-
lized this method to search for genes acting on metabo-
lism disorders in T2DM and development in HCC.

Materials and methods
Data preparation
Gene expression datasets GSE38642, GSE44035 and 
GSE25724 were downloaded from GEO, which contains 
70 normal samples and 16 T2DM samples. Meanwhile, 
GSE101685 was collected, including 8 normal samples 
and 24 HCC samples. All data in different samples were 
normalized by quantity prior to performing gene dif-
ferential analysis with limma R package [16]. Differen-
tially expressed genes (DEGs) with p-value < 0.05 were 
screened. DEGs with |logfold change (logFC)|> 0.2 in 
T2DM and |logFC|> 1 in HCC were further investigated 
in our study. In addition, two independent datasets, 
GSE50397 and GSE69850, were downloaded to validate 
the results of the present study. GSE50397 provided 89 
samples with different levels of blood glucose (HbA1c), 
while GSE69850 provided an evaluation of changes in 
gene expression associated with the treatment of human 
HepG2 cells with 34 different chemical compounds, 
including metformin and phenformin.

Gene ontology (GO) and KEGG analysis of DEGs
In order to explain the biological functions and further 
interactions, both DEGs of T2DM and HCC were anno-
tated by GO analysis and KEGG pathways analysis. The p 
value < 0.05 was set to be statistically significant, with the 
top 10 visualized in R.

Weighted gene co‑expression networks (WGCNA) 
and module analysis
The DEGs of T2DM and HCC utilized WGCNA R 
package to construct co-expression networks with cor-
responding clinic traits, respectively [13]. Data were 
checked to identify the outliers in the samples. All sam-
ples from T2DM dataset were well clustered, while one 
offending sample was removed in HCC dataset. The 
soft-thresholding power identified by pickSoftThresh-
old function was applied to the automatic network con-
struction. The result was clustered by topological overlap 
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matrix analysis, containing module assignments labeled 
in colors and module eigengenes (MEs). In addition, the 
correlations between MEs and clinic traits were calcu-
lated via Pearson’s correlation test. The modules with a 
|ME|> 0.3 and a p-value < 0.05 were considered momen-
tous in the interactions with clinical features [17].

Correlation analysis between clinically significant modules 
in T2DM and HCC
Furthermore, genes relevant to T2DM and HCC within 
each module were annotated via GO biological process 
(BP) enrichment. Different sets of GO terms in modules 
of T2DM and HCC were collected. Since the functions 
of genes can be enriched by GO terms, their biological 
function similarities can also be assessed by aggregat-
ing similarities of GO term sets. Therefore, the biologi-
cal correlations between T2DM and HCC modules were 
determined by the calculation of GO semantic similari-
ties via DOSE R package [18]. The result with a correla-
tion score ≥ 0.5 was defined as significant, indicating 
that there was a certain correlation in biological function 
between the two modules.

Common genes identification and analysis in T2DM 
and HCC
The DEGs within related modules were analyzed with 
Venn tool (https://​www.​bioin​forma​tics.​org/. psb.ugent.
be /webtools/Venn/) to define the common upregulated 
and downregulated genes in T2DM and HCC. Common 
genes involved in the pathogenesis of T2DM and HCC 
were interpreted by Metascape (last updated on 2021–02-
01) [19], a website tool integrating ontology sources such 
as GO biological process, KEGG pathways, Reatome gene 
sets, Canonical Pathways, DisGeNET and PaGenBase.

Prognostic genes identification and validation
In addition, the correlations between cancer progression 
and HbA1c abnormality were also explored. Genes in cor-
responding modules were screened from common genes 
in T2DM and HCC. With a gene significance (GS) > 0.2 
and module membership (MM) > 0.8 [17], hub genes were 
selected and further validated by UALCAN analysis based 
on TCGA database (http://​ualcan.​path.​uab.​edu/​analy​sis.​
html) [20]. Univariate Cox regression was also applied to 
detect high risk factors in HCC. Moreover, the protein 
samples of prognostic genes were also validated via the 
Human Protein Atlas (http://​www.​prote​inatl​as.​org).

Hub genes confirmation via external independent data
To confirm the correlations with prognostic genes 
and glucose control, genes were analyzed in an 

independent dataset GSE50397. According to the 
HbA1c value, T2DM samples were divided into 2 sub-
units (HbA1c > 6.5% and HbA1c ≤ 6.5%), and one-way 
ANOVA was made to compare the genes expressions 
among normal, and the 2 sub-units of T2DM. Finally, 
the correlations between hyperglycemia and prognostic 
genes were also validated through HepG2 samples pre-
pared with hypoglycemic agents.

Results
Identification and functional enrichment of DEGs
A total of 1288 DEGs were screened between T2DM 
and normal controls, whereas 1559 DEGs were obtained 
between HCC and the normal samples. Of these DEGs, 
440 genes were upregulated and 848 were downregu-
lated in T2DM, while 618 were upregulated and 941 were 
downregulated in HCC (Fig.  1a and b). As indicated by 
GO analysis, DEGs in T2DM were mainly enriched in 
reproductive structure development and cell junction 
organization (Fig. 1c). On the other hand, metabolic pro-
cesses involving oranic acid, carboxylic acid and small 
molecules were observed in HCC (Fig. 1d). KEGG analy-
sis exhibited several shared pathways concerning T2DM 
and HCC. The upregulated DEGs in T2DM and HCC 
were enriched in pathways in cancer and extracellular 
matrix (ECM)-recptor interaction, whereas the down-
regulated DEGs were enriched in metabolic pathways 
and amino acids degradation (Fig. 1e and f ). In brief, both 
GO and KEGG analyses strongly demonstrated the cor-
relations between T2DM and HCC, since the expression 
of genes involved in cellular metabolic was significantly 
reduced, and the expression of genes associated with cell 
development was substantially increased. The detailed 
information of functional enrichment of DEGs is shown 
in Supplementary Table S1 to S6.

Co‑expression networks construction and modules 
correlation between T2DM and HCC
WGCNA was utilized to screen gene clusters with 
similar biological functions and construct the correla-
tions between gene clusters and specific clinic traits. A 
soft power of β = 7 was set and eventually a total of 9 
gene clusters, also known as modules, were identified 
in T2DM. Additionally, a total of 7 modules in HCC 
were obtained with a soft power of β = 8. The gray 
module represented the non-clustering genes and was 
excluded. Genes in yellow, blue, turquoise, brown and 
green modules were negatively correlated with T2DM, 
while those in black, pink and red modules were posi-
tively correlated (Fig.  2a and b). The result of HCC 
demonstrated that all modules except for the turquoise 
one were negatively correlated with HCC (Fig.  2c 
and d). The top 10 GO BP terms of each module in 2 

https://www.bioinformatics.org/
http://ualcan.path.uab.edu/analysis.html
http://ualcan.path.uab.edu/analysis.html
http://www.proteinatlas.org
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diseases were collected (Supplementary Table  S7-S8). 
These GO terms that summarized the biological func-
tions in each module were analyzed by DOSE pack-
age to determine the correlations between T2DM and 
HCC. As a result, the biological functions of black and 
pink modules in T2DM focused on cell communica-
tion and cell motility, which were similar to those in 
turquoise module in HCC. Likewise, genes within tur-
quoise and green modules of T2DM were enriched in 
cell development and cellular metabolism, exhibiting 
the similar actions to those in blue, brown and yellow 

modules in HCC (Fig.  2e to g). These modules were 
considered as significant modules relevant to T2DM 
and HCC, and were managed with further study. Then, 
4 upregulated genes and 33 downregulated genes were 
obtained through the overlap of several significant 
modules (Table 1). These 37 genes were annotated via 
Metascape database, and the result exerted their abil-
ity to regulate cellular metabolic processes and liver 
development (Supplementary Table  S9). The associa-
tions between genes and diseases were also revealed by 
DisGeNET (Table  2). The results exhibited that these 

Fig. 1  a and b The volcano plots of T2DM and HCC. c and d The GO terms in T2DM and HCC. e and f The KEGG analysis of upregulated genes and 
downregulated genes in T2DM and HCC
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Fig. 2  a and b Hierarchical clustering dendrogram of T2DM and heatmap plot of correlation between modules and clinical traits of T2DM. c and d 
Hierarchical clustering dendrogram of HCC and heatmap plot of correlation between modules and clinical traits of HCC. e The correlation analysis 
between each module in T2DM and HCC. f and g The GO analysis of genes in modules related to T2DM and HCC
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37 core genes were highly associated with hypoglyce-
mia, diabetes mellitus, liver carcinoma and steatohepa-
titis, which were consistent with our study.

Hub genes identification and validation relevant to HCC 
progression and HbA1c abnormality
Notably, genes in the brown and yellow modules nega-
tively associated with StageT3b of HCC and genes in 
the turquoise cluster negatively correlated with HbA1c 

of T2DM were also analyzed. A total of 24 genes were 
identified, of which 12 were selected as hub genes 
related to tumor invasion and HbA1c variability. Eight 
genes, including ACAT1, CRYL1, SLC2A2, PCK1, ABAT, 
ACADSB, ST3GAL6 and EPHX2 were validated to be 
negatively correlated with tumor stage and nodal metas-
tasis status based on TCGA database (Fig. 3a to p). More-
over, univariate cox regression analysis was performed 
to calculate the hazard ratio (HR) between genes and 

Table 1  Thirty-seven genes correlated with HCC development in T2DM

Gene Term T2DM HCC

LogFC P_value LogFC P_value

CXCL5 C-X-C Motif Chemokine Ligand 5 0.40 7.57E-03 1.65 1.95E-02

GPC3 Glypican 3 0.39 6.27E-03 5.22 5.70E-08

NETO2 Neuropilin And Tolloid Like 2 0.22 8.83E-03 1.39 1.14E-03

IGF2BP2 Insulin Like Growth Factor 2 MRNA Binding Protein 2 0.22 4.10E-02 1.43 1.98E-02

ACAT1 Acetyl-CoA Acetyltransferase 1 -0.33 7.41E-04 -1.47 4.35E-04

CRYL1 Crystallin Lambda 1 -0.29 1.18E-03 -1.20 4.34E-03

SLC2A2 Solute Carrier Family 2 Member 2 -0.65 2.54E-03 -1.88 1.13E-02

PCK1 Phosphoenolpyruvate Carboxykinase 1 -0.33 4.89E-02 -3.96 3.27E-04

ABAT 4-Aminobutyrate Aminotransferase -0.50 2.75E-03 -1.91 1.15E-02

ACADSB Acyl-CoA Dehydrogenase Short/Branched Chain -0.29 7.88E-04 -1.76 2.39E-03

ST3GAL6 ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 6 -0.27 2.55E-02 -2.15 1.29E-06

EPHX2 Epoxide Hydrolase 2 -0.32 1.07E-02 -1.96 4.06E-04

KCNMA1 Potassium Calcium-Activated Channel Subfamily M Alpha 1 -0.34 2.10E-02 -1.93 3.94E-07

SORL1 Sortilin Related Receptor 1 -0.42 1.01E-02 -2.36 1.36E-07

ACYP2 Acylphosphatase 2 -0.25 1.51E-03 -1.09 3.55E-03

QDPR Quinoid Dihydropteridine Reductase -0.26 4.17E-02 -1.12 1.43E-02

TSPAN7 Tetraspanin 7 -0.52 3.92E-03 -1.22 5.81E-03

MAN1C1 Mannosidase Alpha Class 1C member 1 -0.29 9.13E-03 -1.74 2.16E-05

SC5D Sterol-C5-Desaturase -0.39 9.94E-04 -1.61 3.96E-03

IRS2 Insulin Receptor Substrate 2 -0.21 1.99E-02 -1.45 4.61E-03

RBL2 RB Transcriptional Corepressor Like 2 -0.27 1.10E-02 -1.09 8.00E-03

F8 Coagulation factor VIII -0.20 2.28E-02 -1.23 6.47E-04

PRKAR2B Protein Kinase CAMP-Dependent Type II Regulatory Subunit Beta -0.30 9.63E-03 -1.56 1.25E-03

ETFDH Electron Transfer Flavoprotein Dehydrogenase -0.27 1.80E-02 -1.61 3.04E-05

LIMCH1 LIM And Calponin Homology Domains 1 -0.29 4.39E-02 -1.21 1.78E-02

HADH 3-Hydroxyacyl-CoA Dehydrogenase -0.33 8.97E-03 -1.19 4.69E-04

ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 -0.43 1.36E-03 -1.63 4.18E-03

PTS 6-Pyruvoyltetrahydropterin Synthase -0.21 4.82E-02 -1.20 1.83E-04

PHLDA2 Pleckstrin Homology Like Domain Family A Member 2 0.29 8.18E-03 1.47 2.22E-02

GAS2 Growth Arrest Specific 2 -0.28 4.53E-02 -1.09 1.28E-02

TGFBR3 Transforming Growth Factor Beta Receptor 3 -0.45 2.95E-03 -1.25 1.96E-03

PEMT Phosphatidylethanolamine N-Methyltransferase -0.21 4.74E-02 -1.43 4.27E-04

PTPN3 Protein Tyrosine Phosphatase Non-Receptor Type 3 -0.33 1.76E-03 -1.07 2.35E-03

PPP1R1A Protein Phosphatase 1 Regulatory Inhibitor Subunit 1A -0.74 5.26E-05 -1.59 2.55E-02

RNF130 Ring Finger Protein 130 -0.22 1.90E-03 -1.24 2.20E-02

RCBTB2 RCC1 And BTB Domain Containing Protein 2 -0.30 9.65E-03 -1.26 3.23E-05

OAT Ornithine Aminotransferase -0.49 8.27E-04 -2.50 1.86E-03
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survival status of HCC. Genes with HR < 1 were defined 
as protective factors, and the results demonstrated that 
the increased expressions of five genes, ACAT1, CRYL1, 
SLC2A2, PCK1 and ABAT, might be beneficial to improve 
the prognosis of HCC (Fig. 3q).

Prognostic genes confirmation
The protein expressions of five genes were validated 
between HCC tissue and normal liver tissue via Human 
Protein Atlas. The expressions of ACAT1, CRYL1, 
SLC2A2, PCK1 and ABAT appeared to be lower in HCC 
issue than in normal tissue (Fig.  4a and b). Moreover, 
the expressions of ACAT1, SLC2A2, PCK1 and ABAT in 
T2DM samples with HbA1c > 6.5% were lower than those 
in normal samples and the samples with HbA1c ≤ 6.5% 
(Fig.  4c and d). Besides, PCK1 and ABAT were sig-
nificantly improved in HepG2 samples prepared with 
metformin and phenformin in GSE69850, suggesting 
that glycemic control in T2DM might be beneficial for 
improving survival outcomes in HCC by increasing the 
expressions of protective factors (Fig. 4e).

Discussions
Liver is a major metabolic hub, and aberrant metabolism 
resulted from T2DM leads to a spectrum of liver dysfunc-
tions such as fatty liver, cirrhosis and even hepatocellular 
carcinoma. Besides, patients with clinical T2DM charac-
teristics generally influence future HCC and liver-related 
mortality, particularly those with poorly controlled dia-
betes [21]. Due to the poor prognosis and unsatisfactory 
life expectancy in patients with HCC, it is of great clinical 
significance to clarify the molecular mechanisms of HCC 
development in T2DM patients.

In this study, key modules and genes involved in T2DM 
development and HCC growth were observed by bio-
informatics method. Through the analysis, it was found 
that genes were enriched in cell communications and 

ECM organization in several significant modules of two 
diseases; additionally, the staining results showed the 
increasing deposition of collagen type IV and α-smooth 
muscle actin (α-SMA) in liver of T2DM patients, indi-
cating that hepatic ECM remodeling with overnutrition 
played a crucial role in liver malignancy [22]. On the 
other hand, we found that the activity of catabolic pro-
gress was decreased in both T2DM and HCC. The pyru-
vate metabolism and fatty acid metabolism involved in 
the progress of glycolysis or gluconeogenesis were con-
currently enriched in two diseases; not only that, the 
degradation of amino acid was reduced. These changes 
may facilitate the biosynthesis and proliferation of cancer 
cells, which are known as metabolic reprogramming in 
cancer. Metabolic reprogramming is a hallmark of malig-
nancy, and precedes liver cancer with oncogene mutation 
[23]. The results of our study suggested that glucose and 
glutamine metabolism in T2DM was the leading cause 
of HCC-associated metabolic reprogramming. With fur-
ther study, 37 genes closely associated with carcinogen-
sis in T2DM were revealed, and the interactions among 
them were concentrated on carbohydrate metabolism as 
well. These findings are consistent with several published 
studies [24, 25], and provide a promising direction for 
the investigation of the metabolism-related molecules 
relevant to the development of HCC and progression of 
T2DM.

Currently, it has been demonstrated that pool gly-
cemic control  (assessed by HbA1c) exacerbates HCC. 
Accumulating evidence indicated that participants with 
HbA1c ≥ 6.5% had an increased risk of cancer mortality 
and postoperative tumor recurrence [26, 27]. The sig-
nature in this research was based on metabolic genes, 
which were not only significantly associated with the 
growth of HCC, but also exerted prediction of the pro-
gression and prognosis of HCC in T2DM patients with 
higher HbA1c. In present study, we found eight genes 
including ACAT1, CRYL1, SLC2A2, PCK1, ABAT, 
ACADSB, ST3GAL6 and EPHX2 were influenced by 
HbA1c and related to tumor metastasis. Moreover, the 
majority of these genes performed on the steps of glu-
taminolysis, ketogenesis, and molecular transport. 
Further validation via another database revealed that 
4 hub genes, ACAT1, SLC2A2, PCK1 and ABAT, were 
correlated with tumor survival of HCC in T2DM with 
HbA1c ≥ 6.5%, suggesting the prognostic prediction 
function of these 4 genes and even new therapeutic tar-
gets in HCC.

Among these genes, acetyl-CoA acetyltransferase 1, 
encoded by ACAT1, is an enzyme that regulates ketone 
metabolism based on different energy status, and down-
regulation of ACAT1 is an important feature in the patho-
physiology of type 2 diabetes [28]. The decreased ACTA1 

Table 2  The relationship between 37 genes and diseases via 
DisGeNET analysis

Term Category P_value Enrichment

Muscle hypotonia DisGeNET 3.98E-06 8.3

Hypoglycemia DisGeNET 2.51E-05 24

Diabetes mellitus, experimental DisGeNET 3.16E-05 22

Liver carcinoma DisGeNET 5.01E-05 12

Steatohepatitis DisGeNET 5.01E-05 41

Seizures DisGeNET 6.31E-05 6.9

Global developmental delay DisGeNET 6.31E-05 6.8

Cognitive delay DisGeNET 6.31E-05 6.8

Mental and motor retardation DisGeNET 6.31E-05 6.8

Obesity DisGeNET 1.00E-04 11
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in late-stage HCC may be caused by metabolic changes, 
and a number of results showed that over-expression 
of ACAT1 inhibited the proliferation and migration 
of tumor cells [29]. However, another study indicated 
that inhibition of ATAC1 retarded tumor formation in 
mice combination with sorafenib [30]. The complicated 

energetics in tumor may be the cause of these contra-
dictory results and it seems that the anti-tumor effect of 
ACAT1 needs to be further investigated. As a product of 
SLC2A2, glucose transporter 2 is regarded as a glucose 
sensor due to its low affinity for glucose. The suppression 
of SLC2AS leads to impaired insulin secretion. Studies 

Fig. 3  a to h The expressions of ACAT1, CRYL1, SLC2A2, PCK, ABAT, ACADSB, ST3GAL6 and EPHX2 based on tumor grade. i to p The expressions of 
ACAT1, CRYL1, SLC2A2, PCK1, ABAT, ACADSB, ST3GAL6 and EPHX2 based on metastasis status. q The correlation between genes expression and HCC 
survival
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have indicated that the expression of SLC2A2 is replaced 
by SLC2A1 in HepG2 cells, resulting in enhanced nutrient 
uptake and cells proliferation [31]. Phosphoenolpyruvate 
carboxykinase 1, a post transcriptional protein of PCK1, 
catalyzes the first rate-limiting reaction of gluconeogen-
esis in liver, which is closely linked to the tricarboxylic 
acid cycle (TCA) flux. Numerous studies have proven the 
anti-tumor effects of PCK1. It has been reported that the 
viability of HepG2 cells is raised through knocking down 
PCK1, while increasing the expression of PCK1 activates 
adenosine  5′-monophosphate-activated protein kinase 
(AMPK) and c-Jun pathways, blocks gluconeogenesis, 
and promotes TCA cataplerosis, leading to cell cycle 
arrest and tumor cells death [32, 33]. Moreover, the ele-
vated PCK1 inhibits the migration in two HCC cell lines 
and the growth of solid tumor in nude mouse xenograft 
models [34]. ABAT is a gene encoding 4-aminobutyrate 

aminotransferase. The absence of ABAT in HCC leads to 
the accumulation of γ-amino butyric acid (GABA), which 
promotes the growth of HCC in  vitro and in  vivo [35]. 
Recently, ABAT is also essential for mitochondrial nucle-
oside metabolism, and its dysfunctions enhance cellular 
nucleoside imbalance and in turn accelerate DNA muta-
tions [36, 37]. Furthermore, mitochondrial nucleoside 
replication induced by ABAT deficiency also promotes 
one-carbon metabolism remodeling, which may contrib-
ute to cisplatin resistance and cell migration of HCC [38]. 
Finally, we detected the expressions of prognostic genes 
in HepG2 cells pre-treated with metformin and phen-
formin. Interestingly, the expressions of PCK1 and ABAT 
were increased, suggesting that PCK1 and ABAT were 
not only the prognostic biomarkers, but also the thera-
peutic targets of metformin and phenformin in T2DM 
and HCC. The result was consistent with several studies 

Fig. 4  a The expression level of prognostic genes in HCC and normal samples. b The expression level of prognostic genes in HCC dataset. c The 
expression level of prognostic genes in T2DM datasets. d The expression level of prognostic genes in another T2DM dataset GSE50397. e The 
expression level of prognostic genes in another HCC dataset GSE69850
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suggesting that metformin remarkably suppressed the 
growth of PCK1-knockout tumor cells and inhibited 
tumor growth in an orthotropic HCC mouse model [33].

Conclusions
In summary, T2DM-associated susceptibility modules 
and genes for HCC were revealed through co-expression 
network analysis. Four key metabolism genes ACAT1, 
SLC2A2, PCK1 and ABAT were identified from T2DM 
patients with poorer glycemic control. The dysfunctions 
of these genes may affect the anabolism and catabolism 
of substances such as glucose, fatty acids and amino acids, 
leading to changes in energy sources in cells, and further 
contributing to the proliferation and migration of HCC. 
These findings may provide a rational explanation for the 
higher morbidity and poorer prognosis of HCC in T2DM 
patients. Additionally, our study has also demonstrated that 
biguanides may regulate PCK1 and ABAT to achieve thera-
peutic ends within T2DM and HCC. However, the poten-
tial of these genes as effective targets for energy regulation 
based anti-HCC therapies needs to be verified in more 
experiments and clinical practice in the future.
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