
REVIEW
published: 25 November 2015

doi: 10.3389/fncel.2015.00452

Gastrointestinal Parasites and the
Neural Control of Gut Functions
Marie C. M. Halliez 1,2, and André G. Buret 1*

1 Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University
of Calgary, Calgary, AB, Canada, 2 Protozooses transmises par l’alimentation, Rouen University Hospital, University of Rouen
and Institute for Biomedical Research, University of Reims Champagne-Ardennes, Rouen and Reims, France

Edited by:
Brian David Gulbransen,

Michigan State University, USA

Reviewed by:
Michael G. Blennerhassett,

Queen’s University, Canada
Alan Lomax,

Queen’s University, Canada

*Correspondence:
André G. Buret

aburet@ucalgary.ca

Received: 19 August 2015
Accepted: 02 November 2015
Published: 25 November 2015

Citation:
Halliez MCM and Buret AG (2015)
Gastrointestinal Parasites and the
Neural Control of Gut Functions.

Front. Cell. Neurosci. 9:452.
doi: 10.3389/fncel.2015.00452

Gastrointestinal motility and transport of water and electrolytes play key roles in the
pathophysiology of diarrhea upon exposure to enteric parasites. These processes are
actively modulated by the enteric nervous system (ENS), which includes efferent, and
afferent neurons, as well as interneurons. ENS integrity is essential to the maintenance
of homeostatic gut responses. A number of gastrointestinal parasites are known to
cause disease by altering the ENS. The mechanisms remain incompletely understood.
Cryptosporidium parvum, Giardia duodenalis (syn. Giardia intestinalis, Giardia lamblia),
Trypanosoma cruzi, Schistosoma species and others alter gastrointestinal motility,
absorption, or secretion at least in part via effects on the ENS. Recent findings also
implicate enteric parasites such as C. parvum and G. duodenalis in the development
of post-infectious complications such as irritable bowel syndrome, which further
underscores their effects on the gut-brain axis. This article critically reviews recent
advances and the current state of knowledge on the impact of enteric parasitism on
the neural control of gut functions, and provides insights into mechanisms underlying
these abnormalities.

Keywords: gastrointestinal parasites, neuroregulation, intestinal functions, enteric nervous system, motility,
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INTRODUCTION

The gastrointestinal tract (GI) serves three major functions, the digestion and absorption
of the nutrients the body requires, a barrier excluding potentially harmful agents from the
internal environment, and an immuno-hormonal organ to sample and manage external stimuli
appropriately. Functional aspects including peristalsis, electrolyte and nutrient transport, and
local blood flow are regulated by the intrinsic network of GI ganglia, the enteric nervous system
(ENS; Furness et al., 1999). Motor neurons innervate the effectors systems of the gut including
musculature, secretory glands and blood-lymphatic vasculature. Innervation of the muscle layer
is organized into two ganglionated plexuses constituted by neurons and enteroglial cells: the
myenteric plexus (Auberbach’s plexus), and the submucosal plexus (Meissner’s plexus; Furness,
2012; Furness et al., 2014). Both plexuses are embedded in the wall of the digestive tract, and consist
of about 20 distinct subtypes of neurons. Those neurons can be classified as intrinsic primary
afferent neurons (IPANs) that monitor the state of the lumen and gut wall, interconnecting
neurons and motor neurons that target the muscle layers (Laranjeira and Pachnis, 2009).
The ENS interacts with the sympathetic (via prevertebral ganglia) and parasympathetic (via the
vagus nerve) neurons but constitutes an independent part of the autonomic nervous system (ANS).
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The relatively small and star-shaped enteric glial cells can be
identified by the presence of specific proteins such as the glial
fibrillary acidic protein (GFAP), vimentin, glutamine synthetase
and S100 (Gershon and Rothman, 1991). They express receptors
for determined cytokines such as interleukin (IL)-1β, IL-6, tumor
necrosis factor (TNF)-α and neuropeptides such as neurokinin A
and substance P (SP) after activation (Gulbransen and Sharkey,
2012; Rühl, 2005). Due to these characteristics, they act together
in the neuroimmune axis established in the intestinal wall,
and are therefore able to modulate motility functions and GI
secretions. The enteric glial cells appear to be necessary for
maintenance of the structural and functional integrity of the ENS
and the mucosal barrier, and are important for maintenance of
gut homeostasis (by the secreting neurotrophins and cytokines)
and also for neuronal interaction (Sharkey et al., 2004; von Boyen
et al., 2004; Rühl, 2005; Barrenschee et al., 2013; Gougeon et al.,
2013).

In the GI tract, a variety of neurotransmitters, neuroregulators
and hormones play different roles in regulating the ENS
and GI functions. Acetylcholine (ACh) acts through
muscarinic receptors to directly affect intestinal smooth
muscle contractility (Brookes and Costa, 2006; Wood, 2006).
Substance P (SP), neurokinin A and neurokinin B are potent
tachykinin neuromodulators and the action of SP in excitatory
nonadrenergic-noncholinergic (NANC) neurotransmission is
well established in the human ENS and plays an important
role in nociception (Llewellyn-Smith et al., 1984). The
neuroregulator Vasoactive Intestinal Peptide (VIP), which
induces vasodilatation and modulates mucin release and
goblet cell proliferation, participates in intestinal smooth
muscle relaxation (Wood et al., 1999), stimulates intestinal
secretion (Cooke, 1994; Cooke et al., 1995), and modulates
immune effectors cell functions (Ottaway, 1996; Fiocchi, 1997).
Cholecystokinin (CCK) is a major mediator of gastrointestinal
feedback to the central nervous system (CNS) through vagal
afferents (Collins, 1996; Buhner and Schemann, 2012; Schemann
and Camilleri, 2013). The release of substances such as histamine,
serotonin (5-hydroxytryptamine, 5-HT), and mast cell tryptase
by mast cells modulates the function of a variety of intestinal
cells, including nerve cells, enterocytes, as well as smooth
muscle cells. Evidence has been accumulating over the years
that fluid secretion in the small intestine is often evoked
via stimulation of the ENS (Schemann and Camilleri, 2013).
The role of the ENS in the intestinal secretory response to
5-HT and prostaglandins further supports that nerves play a
key role in secretory states accompanying an inflammatory
response. Somatostatin (SST), another key mast cell product,
that besides regulating growth hormone secretion, inhibits
secretion of many other compounds such as insulin, glucagon,
gastrin, growth factors, cytokines, endocrine and exocrine
secretion and as a result, regulates the activity of a broad
variety of physiological processes (Reichlin, 1983a,b). SST was
shown to induce both a stimulatory and inhibitory effect on
cholinergic neurons of the guinea-pig ileum (Takeda et al.,
1989). The pre-synaptic modulation of neurotransmitter
release is an important mechanism that directly modulates
intestinal motility in homeostasis. However, in pathological

conditions, inflammatory mediators such as histamine may act
on neuronal receptors and disrupt the normal modulation of
enteric cholinergic nerve activity. These neuronal signals are
conveyed from nerve endings located at different levels of the
digestive wall, underlying the importance of mucosal integrity
for normal transmission of afferents signals. Moreover the
close apposition between vagal fibers and mast cells provides
the anatomical basis for a direct neuronal communication
between intestinal mast cells and the CNS (Williams et al.,
1997; Buhner and Schemann, 2012; Forsythe and Bienenstock,
2012). Overwhelming evidence highlights the neuroimmune
interaction between mast cells and the ENS (Collins, 1996;
Buhner and Schemann, 2012; Schemann and Camilleri, 2013).
This interactions between inflammatory mediators and enteric
cholinergic nerves may contribute to motility disturbances
observed in chronic inflammatory intestinal diseases (Hasler,
2006; Sarna and Shi, 2006).

Interactions between the endocrine, nervous and immune
system create a network where cytokines, hormones and
neuropeptides communicate to assist the host in maintaining
homeostasis (ten Bokum et al., 2000). Parasitic infections
have been found to alter the ENS via three main mechanisms:
(i) modification in nerves distributions; (ii) alterations of
neurochemicals levels; and (iii) altered neuronal functions.
Cryptosporidium parvum, Giardia duodenalis, Entamoeba
histolytica, Nippostrongylus brasiliensis, Trichinella spiralis,
Hymenolepis diminuta, Schistosoma mansoni, Trypanosoma
cruzi and Toxoplasma gondii represent prime examples of
parasites that alter gastrointestinal motility, absorption, and/or
secretion at least in part via effects on the ENS. This review
provides a critical insight into the effects of GI parasites on
the ENS, its consequences on the control of GI functions,
and the mechanisms involved in GI alterations induced by
parasites.

Cryptosporidium
Cryptosporidium is an Apicomplexan protozoa that infects the
GI tract and lungs of mammals including humans, birds,
reptiles and amphibians (Fayer, 2010; Leitch and He, 2012).
Cryptosporidium hominis and C. parvum are the two species
that infect both immunocompetent and immunocompromised
humans. Although C. hominis seems to be limited to humans,
C. parvum can infect humans and a wide range of hosts including
livestock (Fayer, 2010). Infections are usually attributed to
drinking water, but oocysts, the infective forms, have also
been recovered from contaminated food (MacKenzie et al.,
1995; Laberge et al., 1996). Cryptosporidium most commonly
infects the small intestine of immunocompetent hosts, but,
gastric, hepatobiliary, pancreatic and pulmonary infections may
also occur in immunodeficient or immunosuppressed hosts
(Blanshard et al., 1992; Leitch and He, 2012; Zu et al.,
1992). Cryptosporidium infection is commonly associated with
villus atrophy, crypt hyperplasia, infiltration of the lamina
propria, chloride (Cl−) hypersecretion, glucose malabsorption
and a reduced barrier function (Argenzio et al., 1990;
Kapel et al., 1997; Klein et al., 2008; Leitch and He,
2012).
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Cryptosporidium Alters Ion Transport in
ENS-Dependent and Independent Manner
Cryptosporidiosis induces neutrophil influx with marked
increases in prostaglandin PGE2 and prostacyclin PGI2 release
in the intestinal mucosa (Argenzio et al., 1993, 1996; Laurent
et al., 1998). Prostaglandins (PG) appear to be responsible
for much of the altered NaCl transport in cryptosporidiosis.
While PGE2 directly stimulates enterocyte secretion and
alters NaCl transport; its effect was shown to be independent
of the ENS as it neither stimulates the ENS nor is released
from ENS-stimulated cells; indeed the nerve conduction
blocker, tetradotoxin (TTX), had no effect on the PGE2-
stimulated tissue (Argenzio et al., 1993, 1996; Laurent et al.,
1998). In contrast, PGI2 which was also elevated in infected
piglet ileum and its analog, carbacyclin, reproduced the
transport alterations of the infected tissue; indomethacin (a
PG synthesis inhibitor) and TTX eliminated the differences
in ion transport and conductance (Argenzio et al., 1993,
1996; Laurent et al., 1998). In addition, the neural network
underlying PGI2 stimulation involved both a cholinergic and
VIPergic component as atropine and VIP antagonists reduced
the carbacyclin response (Argenzio et al., 1996). Increased
levels of SP and its NK1 receptor in C. parvum infected
tissue are responsible for glucose malabsorption and Cl−

secretion (Hernandez et al., 2007). While the mechanisms
remains incompletely understood, SP is known to stimulate
pro-inflammatory cytokines including interferon gamma
(IFN-γ), IL-1β and TNF-α, which are known to contribute
to the pathophysiology of cryptosporidiosis. Peptide YY
(PYY), a powerful inhibitor of intestinal secretion mediated
by VIP and PGE2, has been shown to completely block
the malabsorptive and secretory effects of PGI2 analogs
acting through the ENS in Cyrptosporidium-infected tissue
(Argenzio et al., 1997). PYY was also shown to inhibit the effect
induced by PGI2 while it had no effect on PGE2, suggesting a
selective and intermediate level of control proximal to transport
mechanisms.

Taken together, these data suggest a role for the ENS
in the malabsorption and hypersecretion observed in
cryptosporidiosis. Although the mechanisms by which the
ENS influences these alterations remains unclear, neuropeptides
seem to act as critical regulators of the pathophysiology of
cryptosporidiosis.

Giardia duodenalis
Gardia duodenalis (syn. Giardia lamblia, Giardia intestinalis)
is an intestinal flagellated protozoan parasite of the upper
small intestine. Very common worldwide, Giardia was
recently included in the World Health Organization’s (WHO)
Neglected Disease Initiative (Savioli et al., 2006; World Health
Organization, 2004). Giardia is transmitted through the
ingestion of cysts in contaminated food or water, or directly via
the fecal/oral route. Giardiasis causes intestinal malabsorption
and diarrhea in a wide variety of species including humans
(Buret et al., 1992, 2015). The clinical manifestations of
giardiasis range from asymptomatic, to acute or chronic
diarrheal disease for reasons that remain obscure. When

present, the clinical signs of infection may include diarrhea,
nausea, weight loss, bloating and abdominal pain (Cotton
et al., 2011; Roxström-Lindquist et al., 2006). Importantly,
in giardiasis, pathophysiology occurs without invasion of
the small intestinal tissues by the trophozoites, and in the
absence of any overt inflammatory cell infiltration, with the
exception of a modest increase in intraepithelial lymphocytes
(IELs). In addition to acute symptoms, Giardia infections
have also been associated with long term post-infectious
sequelae that include ocular pathologies, arthritis, failure
to thrive, stunting, growth retardation, cognitive function
impairment in children, and chronic fatigue syndrome as well
as functional gastrointestinal disorders (Halliez and Buret,
2013).

Enteric Nervous System-Dependent Parasite
Elimination
The neuronal isoform nitric oxide synthase 1 (NOS1) that
produces nitric oxide (NO) is involved in the elimination of
Giardia (Li et al., 2006) consistent with the knowledge that
NO relaxes smooth muscle and modulates intestinal motility
(Barthó et al., 1992). NO has been shown to inhibit growth,
encystation and excystation of G. duodenalis that are essential
for establishing and maintain infection in the small intestine
and transmission to other potential hosts (Eckmann et al.,
2000). However the parasite has evolved strategies to evade
NO-mediated host defenses. Indeed, Giardia depletes epithelial
NO production by consuming arginine, from which NO is
synthesized (Eckmann et al., 2000; Pavanelli et al., 2010). Further
assessment of the role of NO in neurally-mediated enteric
functions during giardiasis provides a fertile ground for future
research.

Giardia Alters Neurotransmitter Levels
Reduced numbers of 5-HT-containing enterochromaffin cells in
the duodenal mucosa, and lower levels of plasma 5-HT, have
been reported in patients with persisting abdominal symptoms
following Giardia infection (Dizdar et al., 2010). As 5-HT plays
an important role in ENS development and GI motility, the
expression, regulation and role of serotonin in giardiasis should
be further investigated.

In acutely and chronically infected patients as well as
in murine models, Giardia also increases the numbers of
duodenal mucosal CCK-containing cells as well as postprandial
plasma CCK by yet unknown mechanisms (Dizdar et al.,
2010; Leslie et al., 2003; Li et al., 2007). Elevated and
prolonged postprandial CCK release has also been reported
in IBS patients (Sjölund et al., 1996). CCK plays a pivotal
role in the regulation of digestive function and particularly
in intestinal motility by stimulating cholinergic and afferent
vagal fibers, suggesting that CCK may stimulate neuronal
afferents in giardiasis. Indeed, treatment of Giardia-infected
mice with CCK increased muscle contraction in a ketotifen-
dependent fashion (a mucosal mast cell secretory antagonist);
depletion of mast cell granule contents with compound
48/80 prior to CCK treatment also completely blocked the
CCK-induced muscle contraction suggesting a role for mast
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cells in CCK modified levels during giardiasis(Li et al.,
2007). In addition, CCK-release is known to trigger mast
cell degranulation, which in turn increases smooth muscle
contractility (Juanola et al., 1998). CCK major effect in the
GI tract is to induce gall bladder contraction and delivery
of bile in the small intestine. As bile is essential for
Giardia trophozoite growth and an important regulator of
the development of cyst, CCK release seems important to the
parasite life cycle and to the host response (Farthing et al.,
1983; Keister, 1983). Taken together these data suggest that
increased CCK release in giardiasis could be responsible for the
symptoms.

Giardiasis activates chloride secretion in vitro and in mice
infected with Giardia, (Cevallos et al., 1995; Gorowara et al.,
1992; Resta-Lenert et al., 2000) and present with impaired
sodium-coupled D-glucose absorption in the duodenum, due
to the dramatic reduction in microvillous and villous surface
areas (Buret et al., 1992; Troeger et al., 2007a). Findings also
indicate that giardiasis increases small intestinal transit, which
is known to involve the ENS in other models (Galligan and
Burks, 1986; Kuwahara et al., 1987; Argenzio et al., 1990;
Deselliers et al., 1997; Castex et al., 1998; Li et al., 2011). Cause-
to-effect relationships between giardiasis and post-infectious
intestinal hypersensitivity have been recently reported in a
study using neonatal rats (Halliez et al., 2014). Consistent
with clinical presentations in the human host, post-infectious
visceral hypersensitivity was observed in the small intestine
as well as in the rectum, an area remote from the active
colonization site by the parasite. In the acute and post-
infectious phase of infection, Giardia facilitated the translocation
of commensal bacteria, and induced the expression of the
proto-oncogene c-fos (Chen et al., 2013; Halliez et al., 2014).
Some studies have shown that noxious distension of hollow
viscera (i.e., colorectum, esophagus and stomach) induces
specific pattern of c-fos expression in the rat spinal cord
and some of brain nuclei (Traub et al., 1992) suggesting
neuronal activation in the CNS during visceral hypersensitivity.
Finally, recent observations indicate that secretory-excretory
cysteine proteases from G. duodenalis cleave the potent pro-
inflammatory chemokine CXCL-8 to dampen host inflammation
(Cotton et al., 2014a,b). Whether and how these parasite
proteases may affect neuroregulation in the gut has yet to be
uncovered.

Entamoeba
Amoebiasis can manifest as amoebic colitis and/or amoebic liver
abscess. The causative agent of amoebiasis, E. histolytica, is a
widespread protozoan parasite that is endemic in developing
countries (Lejeune et al., 2009; Mortimer and Chadee, 2010a,b).
Transmission occurs via ingestion of infective cysts through
contaminated food or water. Once in the GI tract, upon
excystation, trophozoites are released, mostly in the terminal
ileum, from where parasites migrate to the colon, where they
colonize the mucus layer and actively feed on the luminal
contents of the gut and the commensal resident microflora.
Most often, amoebic trophozoites co-exist commensally in
the host without causing any intestinal pathology. In a few

cases, amoebic trophozoites destroy the colonic mucosa. In
these instances, after invading the mucosa and submucosa,
trophozoites may enter the portal circulation and invade
the liver and other organs such as the lungs and brain,
which can be fatal (Lejeune et al., 2009; Mortimer and
Chadee, 2010b). E. histolytica trophozoites degrade the mucus
layer to adhere to and lyse epithelial cells and invade
leukocytes (Chadee and Meerovitch, 1984; Moncada et al.,
2003, 2005; Lejeune et al., 2009; Mortimer and Chadee,
2010b).

Entamoeba Cysteine-Protease Induces Neurons and
Axons Degradation
E. histolytica alters active electrolyte transport, secretion and
malabsorption (McGowan et al., 1983; Ravdin, 1989; Keller et al.,
1992; Tse and Chadee, 1992; Rana et al., 2004), but little is
known on the direct effect of the parasite on the ENS. In vitro,
E. histolytica has been found to degrade neurons from the ENS in
a cysteine-protease dependent fashion (Lourenssen et al., 2010).
The mechanisms as well as the specific cysteine protease involved
require further investigation. Findings available to date indicate
that Entamoeba histolytica Cysteine-Protease 5 (EhCP5) may not
be responsible for this effect (Lourenssen et al., 2010). Although
direct damages were shown on enteric nerves by E. histolytica no
correlation between those damages and the modification of gut
functions such as secretion, absorption and electrolyte transport
has been made. Further studies are required to characterize
the consequences of this E. histolytica-induced enteric nerve
damage.

Nippostrongylus brasiliensis
Nippostrongylus brasiliensis is a gastrointestinal nematode
with a simple life cycle that infects rodents, primarily
mice and rats. N. brasiliensis is often used as a model
system to study the immuno-pathophysiology of brain-gut
interactions (Castex et al., 1998; Camberis et al., 2003;
Aerssens et al., 2007; Soga et al., 2008). N. brasiliensis has
an external, free-living life cycle stage, an extra intestinal
somatic migration phase (from the skin to the lungs), and
a parasitic intestinal phase. This nematode causes villus
atrophy, crypt hyperplasia, mucosal mast cell hyperplasia
(Stead et al., 1987), hypertrophy of the muscularis externa
(Symons and Fairbairn, 1962; Castex et al., 1998), and
activates both systemic and mucosal Th2 immune responses
(Camberis et al., 2003). It also induces functional changes
in the intestine by impairing host protein, carbohydrate and
lipid metabolism (Ovington, 1987), absorptive function of the
jejunal mucosa (Carter et al., 1981; Cheema and Scofield,
1984; Nolla et al., 1985), intestinal permeability (Nawa, 1979),
and electrolyte transport (Masson et al., 1996). N. brasiliensis
also affects intestinal motility (Symons et al., 1971; Farmer,
1981; Nolla et al., 1985; Crosthwaite et al., 1990; Castex
et al., 1998; Gay et al., 2001; Zhao et al., 2003, 2006), alters
peptidergic neurotransmission (Masson et al., 1996), changes
mucosal and nerve architecture (Stead, 1992b), increases visceral
chemosensitivity (Aerssens et al., 2007) and mechanosensitivity
(McLean et al., 1997).
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N. brasiliensis-Induced Motility Dysfunctions are
ENS-Dependent
Neurotransmitter-dependent ENS-modifications
Early post-infectious jejunal motor impairment was associated
with decreased responsiveness of the circular smooth muscle
to both cholinergic stimulation and β-adrenergic inhibition
triggered by the concurrent inflammatory response (Castex
et al., 1998). In contrast, 8 days post-infection, contractility
of the intestinal longitudinal muscle increases. A few days
later, post expulsion stage, migrating myoelectric complexes
profiles gradually return to normal. The distribution of c-
fos in the CNS during infection correlates with the onset of
acute inflammation and the spatial location of the inflammatory
stimulus, indicative of a strong influence of inflammatory
mediators on the activation of the brain-gut axis (Stead et al.,
1987; Castex et al., 1998).

Increased motility induced by N. brasiliensis infection
involves cholinergic mediation, a vagal pathway, and alteration
in intestinal CCK-A and CCK-B receptors (Gay et al., 2001). The
neuroimmune changes of the gut wall following the expulsion
phase of N. brasiliensis infection are independent of intestinal
mast cell degranulation (Gay et al., 2001). Following worm
expulsion, c-fos expression increases upon CCK stimulation,
establishing a link between CCK and the activation of the brain-
gut axis (Gay et al., 2002). These observations are consistent
with other findings which showed that CCK activation of c-fos
occurred via capsaicin-sensitive vagal afferents and CCK-A
receptors (Mönnikes et al., 1997).

Immune-dependent ENS modulation
N. brasiliensis infection in mice induces a strong IL-4 –
and IL-13—associated Th2 cytokine response that causes
worm expulsion through an IL-4Rα-activated, Stat6-
dependent mechanism (Urban et al., 1998). IL-4/IL-13
modulate smooth muscle responses to nerve stimulation
(Goldhill et al., 1997; Akiho et al., 2002). Addition of
atropine, which blocks muscarinic cholinergic nerve
stimulation, attenuates the contractility induced by IL-13,
but not by IL-4. Moreover addition of TTX completely
blocks the hypercontractility supporting the hypothesis
that enteric nerves mediate the Stat6-dependent effects of
IL-13 in response to ACh (Zhao et al., 2003). An effect
on noncholinergic nerves is also observed as increased
responses to nerve stimulation still persist in the presence
of atropine. Furthermore, IL-13 enhances response to SP
which could explain that the portion of enhanced response
to nerve stimulation is both atropine resistant and Stat6
dependent. The IL-4-dependent contractility mechanism
appears to be completely different as it does not involve
increased sensitization to ACh or SP. It was shown to
be dependent on the mast cells release of leukotriene D4
which increased contractility by enhancing the enteric nerve
sensitivity to neurotransmitters (Madden et al., 2002; Zhao
et al., 2003). Although both IL-4 and IL-13 have a role in
N. brasiliensis expulsion, there are some stimulatory effects
on intestinal smooth muscle that cannot be linked to either
cytokine.

Nippostrongylus Infection Induces ENS Nerve
Remodeling
N. brasiliensis induces nerve remodeling in the gut, illustrated
by a significant increase in the number of axons and an
enlargement of nerve profiles (Stead et al., 1991; Stead,
1992b). Mucosal nerve remodeling in rats infected with N.
brasiliensis occurs in two phases: (1) initial degeneration of a
proportion of the mucosal nerves during the acute phase of
inflammation and (2) a subsequent reinnervation phase after
parasite expulsion. Observations of the nerves profiles revealed
a large increase in the proportion of small nerve fibers and
a reduction in the frequency of large nerve between D18 and
D28 PI. This shift to smaller fibers is consistent with nerve
regeneration. The degeneration during the acute inflammatory
phase and regeneration thereafter is coordinated with the
phases of mast cell degranulation and subsequent hyperplasia
suggesting an important role of mast cell products in nerve
remodeling. These data show an important communication
process between the immune and nervous systems during
Nippostrongylus infection that offer a favorable ground for
further evaluation.

Altered Fluid Transport is Due to Inflammatory
Mediators Activation of the ENS
During the acute phase ofN. brasiliensis infection, fluid transport
is impaired in infected animals, while after worm expulsion
fluid transport becomes significantly greater than in uninfected
animals (Jodal et al., 1993). The decreased fluid transport
observed during the acute phase is at least partly mediated via
activation of the ENS, since administration of hexamethonium
(nicotinic receptor blocker) and lidocaine (local anesthetic)
restore fluid absorption. The relative roles of components
such as histamine, serotonin, prostaglandins and leukotrienes
released by the mast cells in the activation of the ENS
during the infection require further investigation. Indeed, such
inflammatory mediators have been shown to stimulate enteric
nerves either directly or via the formation of prostaglandins
(Hirst and Silinsky, 1975; Schulzke et al., 2010; Smith et al.,
2014).

Nippostrongylus Induces Alteration in Chemo- and
Mechanosensitivity
In infected mice submitted to mild stress, N. brasiliensis
increases sensitivity to intraluminal acid, indicating alterations
of chemosensitive afferents (Aerssens et al., 2007). Acid
challenge resulted in increased nerve discharge. In addition,
afferent nerve firing remained elevated after acid challenge.
Intraluminal pressure was also substantially increased in
infected animal. However no change in mesenteric afferent
activity was observed suggesting a mechanism independent
of extrinsic reflex activity. The mechanism of this altered
response although not investigated in this study could be due
to permeability changes and/ or alteration in the excitability
of intrinsic neuronal reflexes. Previous findings indicate that
vagal afferent pathways play an important role in gastric
chemonociception, suggesting that exacerbated acid sensitivity
induced by the parasite may be explained by sensitization

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 November 2015 | Volume 9 | Article 452

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Halliez and Buret Parasites and Gut Neuroregulation

of vagal visceral sensory neurons (Schuligoi et al., 1998;
Holzer, 2003; Aerssens et al., 2007). Furthermore, infection
also alters the expression of genes of the vagal pathway
known to be implicated in chemosensitivity, such as acid-
sensing ion channels, transient receptor potential cation
channels (TRPV1 and TRPA1), ionotropic purinoreceptor
ion channels, and acid-sensitive 2-pore domain potassium
channels (Aerssens et al., 2007). TRPV1 is an important
regulator of mechanical and chemical hyperalgesia (Miranda
et al., 2007). Jejunal hypersensitivity to capsaicin is also
seen in Nippostrongylus-infected rats, consistent with an
effect on TRPV1 (Mathison and Davison, 1993). TRPA1
is expressed in visceral afferent neurons, and is known to
participate in inflammatory responses and the development of
hypersensitivity (Lapointe and Altier, 2011). Gene expression
for gastrointestinal peptide receptors such as CCK-A receptors,
neuropeptide Y receptors (NPY2), the neurotensin receptor
1, the somatostatin receptor 2, GABAA receptors Beta 3
subunit, and the serotonin receptor 5-HT3A, are also altered
by infection. While 5-HT3 antagonists are known to inhibit
chemical but not mechanical pain in rats (Botella et al.,
1998), the decreased expression of serotonin receptor 5-
HT3A observed in infected mice here could be considered
as an antinociceptive adaptation. In addition, infected rats
also exhibit increased sensitivity to distension where mast cell
hyperplasia occurs, in a tachykinin receptor NK2-dependent
manner, and independently of inflammation (McLean et al.,
1997). It remains to be seen whether changes in SP and/or
in tachykinin NK2 receptors are implicated in these effects
(Masson et al., 1996; Stead, 1992b). The role of mast cells in
visceral hypersensitivity due to infection also warrants further
investigation (Stead et al., 1987; McLean et al., 1997; Aerssens
et al., 2007).

Trichinella spiralis
The nematode T. spiralis infects a variety of mammals including
humans, rodents, horses, bears and pigs. Trichinella-infections
are characterized by two phases: an enteral phase where the
adult alters intestinal functions, and a parenteral phase which
is associated with muscle invasion by the larval parasites.
The enteral phase lasts for about 2 weeks during which the
parasites live in the intestinal epithelium. Adult worms colonize
the upper intestine (duodenum and jejunum) and develop
quickly to produce the infective larvae that migrate to muscle
tissues. Gastrointestinal symptoms are the first to appear and
include nausea, vomiting, epigastric pains, diarrhea and/or
constipation. Trichinella-infection, similar to Nippostrongylus-
infection, induces an inflammatory response, mastocytosis, and
alteration of nutrients absorption, alteration of muscle cell
structure and contractility, and intestinal hypersensitivity. The
infection also affects remote segments free of parasites and of
inflammation like the ileum (Marzio et al., 1990; Tanovíc et al.,
2006).

During Trichinella infection, changes in the smooth muscle
cells are observed and include altered cellular calcium utilization
(Vermillion and Collins, 1988) and suppression of Na+K+

ATPase pump activity (Muller et al., 1989). T. spiralis

infection also results in alterations of muscle contractility
and enteric neurotransmission that persist after the resolution
of the mucosal inflammation and expulsion of the parasite
(Alizadeh et al., 1987; Weisbrodt et al., 1994; Venkova
et al., 1999; Venkova and Greenwood-van Meerveld, 2006).
Several components have been shown to be involved in
the altered muscle contractility observed during and after
Trichinella infection, those include structural (muscle thickness,
hypertrophy and hyperplasia), immunological (mastocytosis)
and neuronal components (altered neurotransmitter release and
activity).

Trichinella Infection Induces Immune-Mediated
Altered Neurotransmitters Levels
During T. spiralis-induced inflammation SP and VIP are
significantly reduced in the jejunum and in the ileum of
infected ferrets (Palmer and Greenwood, 1993; Greenwood
and Palmer, 1996). In contrast, in murine Trichinellosis SP
was shown to be significantly increased concurrently with
high myeloperoxidase levels, and was associated with impaired
lymphocyte responses to exogenous SP. Elimination of the
SP-increased levels was shown to spare the murine GI tract
from much of the pathologies associated with Trichinella
infection by reducing the inflammation, consistent with the
role of SP as an important modulator of GI inflammation
(Kataeva et al., 1994). Similar results were observed in the
rat, where Trichinella infection was associated with a marked
increase in SP immunoreactivity in the gut wall but also
in the dorsal root ganglions and dorsal horn of the spine.
Addition of capsaicin, steroid, or use of athymic animals
depleted SP, suggesting that neuronal changes observed in
Trichinella infected animals is rather due to the host immune
response than to the parasite per se (Swain et al., 1992).
SP depletion also prevented the cardioautonomic response
to visceral distension supporting the important role of SP
in this response (De Giorgio et al., 2001). The role exerted
by SP is also related to modulation of the NK-1, NK-2
and NK-3 tachykinin receptors in the spinal cord. Indeed
Trichinella-induced inflammation evoked a decrease in NK-1
immunoreactivity in the dorsal horn’s nerve fibers and neurons,
leading to desensitization and reduced neural excitability (De
Giorgio et al., 2001). Taken together these data underscore the
key role played by SP in the neuro-inflammatory response to
Trichinella SP.

Physiological Effects of Altered Neurotransmitter
Levels in Intestinal Contractility
In the rat, T. spiralis-infection is accompanied by a reversible
suppression of ACh release from the longitudinal muscle-
myenteric plexus of the jejunum (Collins et al., 1989). In another
study, the contractile responses to KCl and ACh were increased
from day 6–23 PI, and correlated with changes in themuscle layer
thickness, suggesting that the increase in induced-contractility
might be a consequence of the hypertrophy and/or hyperplasia
(Tanovíc et al., 2006). However in mast cell deficients rats, the
imbalance of ACh/SP was not detected suggesting an important
role for mast cell in peptidergic remodeling of the rat ileum
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(Leng et al., 2010). Pharmacological analysis revealed that muscle
tension responses in longitudinal smooth muscle from T. spiralis
infected rats are associated with altered 5-HT receptor function.
Infection with Trichinella increases mucosal 5-HT availability
and affects the spontaneous activity and mechanosensitivity of
GI sensory nerves (Keating et al., 2008). Endogenous 5-HT
release has been shown to contribute to the basal activity of
jejunal afferents via 5-HT3 receptor activation as this activity
was susceptible to partial blockade with granisetron (Hillsley
et al., 1998). Hypersensitivity observed in the post-infectious
period was in part mediated by 5-HT acting via 5-HT3 receptors
as the use of granisetron significantly attenuated the total
distension response at D28–36 PI (Keating et al., 2008). However,
granisetron had no effect on the total distension response at
D48–56 PI indicating that the hypersensitivity observed later in
the infection has amechanism notmediated by 5-HT3, consistent
with data from previous studies (Hillsley and Grundy, 1998;
Hillsley et al., 1998; Hicks et al., 2002; Coldwell et al., 2007). After
reconstitution with splenic mononuclear cells, increased tension
to carbachol or 5-HT was observed post-infectiously indicating
that the smooth muscle function changes following Trichinella
infection in the rat are T-lymphocyte dependent (Vermillion
et al., 1991). Several studies suggest that remodeling of the neural
secretomotor pathway seen after infection may lead to persistent
alterations in epithelial barrier function. Infected animals have a
reduced response to 5-HT suggesting an alteration in serotonin-
dependent signaling. In normal conditions, serotonin-induced
electrogenic responses result from a combination of neurally
mediated and direct effects on epithelial cells (Hansen and
Witte, 2008). TTX normalizes the response observed in infected
animals suggesting that the alterations in 5-HT-elicited current
changes in infected rats are likely due to an altered epithelial
function (Fernández-Blanco et al., 2011). In the post-infectious
stage secretory responses to mucosal mast cells are also reduced,
together with the alterations in epithelial and neural responses,
which may illustrate a feedback regulatory mechanism aiming to
minimize a state of continuous epithelial overstimulation. In the
enteroglial cells of myenteric ganglia and macrophage-like cells
of T. spiralis-inflamed intestines, pro-inflammatory cytokines
such as IL-1β, IL-6 and TNF-α are significantly elevated (Khan
and Collins, 2006). Those pro-inflammatory cytokines can
act directly or indirectly through host-derived intermediate
molecules such as cyclooxygenase metabolites, which may alter
neurotransmitter release in the ENS and significantly affect
gut function (Hurst and Collins, 1993; Hurst et al., 1993;
Rühl et al., 1994). IL-5 also contributes significantly to the
long-termmaintenance ofTrichinella-induced hypercontractility
(Vallance et al., 1999). Although the mediator responsible for
the synaptic inhibition has not been identified, the excitability
phenomenon is mediated by the release of histamine by mast
cells (Frieling et al., 1994). Late stage infection in rats results
in persistent post-infectious barrier dysfunction characterized
by increased mucosal permeability and ion secretion, and
is associated with low grade inflammation which resemble
findings in patients with functional gastrointestinal disorders
such as IBS (Fernández-Blanco et al., 2011). Whether or not
some of these post-infectious phenomena may be due to gut

microbiota changes induced by the parasite has yet to be
seen.

Hymenolepis
H. diminuta also known as the rat tapeworm is a parasite
of the small intestine of rodents (mostly rats and mice), and
can also accidentally infect humans where it usually remains
asymptomatic. However abdominal pain, irritability, itching and
eosinophilia have also been reported in infected humans. This
tapeworm has no hooks to damage host tissue and is non-
invasive but metabolites produced by H. diminuta have been
shown to disrupt the action of the GI tract, and may increase
salivary secretion, inhibit gastric secretion, and activate trypsin
in the chyme of the duodenum (Uglem and Just, 1983).

Hymenolepis diminuta Induces Changes in Intestinal
Contractility Dependent on the ENS Integrity
Infection with H. diminuta in the rat alters myoelectric
patterns and increases smooth muscle thickness and crypt
depth in the duodenum, jejunum and ileum (Dwinell et al.,
1998). The mechanisms responsible for thickening of the
muscularis externae and smooth muscle hypertrophy remain
unclear, but may reflect altered intestinal contractility that
begins 8 days after infection (Dwinell et al., 1998). Myolectric
patterns in rats chronically infected with H. diminuta are
characterized by a concurrent decrease in normal interdigestive
patterns, with the appearance of non-migrating bursts of
spike potential activity and a decrease in intestinal transit
(Dwinell et al., 1994, 1995, 1997). Moreover, H. diminuta-
induced myoelectric changes resemble those observed during
partial obstruction, in concordance with the fact that tapeworms
occupy a significant portion of the intestinal lumen. Increased
intestinal contractility may lead to smooth muscle hypertrophy
after the initiation of myoelectric changes observed in H.
diminuta infected rats (Dwinell et al., 1998). Increased mucosal
mast cell populations have been observed in the ileum,
the region presenting the maximal increase in intestinal
myoelectric activity; however this increase was observed 2
weeks after initiation of the myoelectric changes. In addition
the mucosal mast cell secretory antagonist ketotifen had no
effect on the myoelectric changes observed in infected animals
suggesting a mechanism independent of mast cell (Dwinell
et al., 1998). As discussed above, these observations are in
contrast with Nippostrongylus and Trichinella infections that
involve mast cell-mediated mechanisms to alter the smooth
muscle contractility (Stead et al., 1987; Weisbrodt et al.,
1994).

However, integrity of the ENS is necessary for the myoelectric
patterns observed during Hymenolepis-infection (Dwinell et al.,
2002). These results suggests that ‘‘sensors’’ must exists along
the small intestine for the initiation of the circuitry of the
ENS and the generation of myoelectric patterns as transected-
infected animals did not present those alterations (Dwinell
et al., 2002). These myoelectric alterations were shown to
be essential for the worm to remain in the rat intestine
suggesting that H. diminuta can utilize the ENS of its host
to optimize its intestinal life stage. H. diminuta infection

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 November 2015 | Volume 9 | Article 452

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Halliez and Buret Parasites and Gut Neuroregulation

increases glial derived neurotrophic factor (GDNF)-containing
macrophages (Starke-Buzetti and Oaks, 2008). Considering
GDNF’s involvement in neuroprotection, neural restoration,
survival and remodeling, smooth muscle alterations and the
ENS plasticity (nerve distribution) observed in tapeworm
infection, it is logical to assume a key role for GDNF in the
response to parasitic neural alterations (Starke-Buzetti and Oaks,
2008).

Ion Transport is Affected by H. diminuta-Infection
H. diminuta infection in the rat significantly alters the
function of ion channels in the active and passive transport
of ions in the ileum and colon (Kosik-Bogacka et al., 2010,
2011). Histamine, secreted by mastocytes, is able to affect
ion transport by stimulating the electrogenic secretion of
Cl− and inhibiting the electro-neutral absorption of NaCl
in the rat colon (Schultheiss et al., 2006). H. diminuta
infection in the rat increases the numbers of mast cells,
suggesting that this could play a role in the alteration
of ion transport. However, the ENS, and predominantly
C-fibers, are known to provide protective functions against
the harmful effects of parasites in the GI tract, and non
adrenergic non cholinergic neurotransmitters (SP, CGRP
and others) play a critical role in preserving tissue integrity
and repair (Cooke, 1994). SP stimulate mast cells to secrete
inflammatory mediators including histamine that affect
enteric nerve and contribute to the regulation of SP-
induced ion secretion (Wang et al., 1995; Walling et al.,
1977). Administration of capsaicin (which activates C-fibers)
has no effect on ion transport in H. diminuta-infected
rats which could be due to an excess stimulation of C-
fibers by the parasite (Kosik-Bogacka et al., 2010). As an
increase in SP has been observed in rats infected with H.
diminuta (McKay et al., 1991; McKay and Fairweather,
1997), and as capsaicin had no effect on ion transport,
the ENS and particularly C-fibers seem to be involved in
ion transport alterations during H. diminuta infection.
Nevertheless, further studies are needed to determine the
mechanisms involved in C-fibers-mediated ion transport
alterations.

Schistosoma Species
Schistosoma trematodes exist as four common species: indicum,
japonicum, heamatobium, and mansoni (Barker and Blair, 1996;
Morgan et al., 2003). Male and female worms migrate to
the portal venous system and mate in the liver where they
produce large number of eggs. After 7 weeks of infection,
S. mansoni eggs reach the mesenteric venules, and reach
the terminal ileum and the colon where they induce acute
inflammation (Domingo and Warren, 1969; Weinstock, 1992).
The inflammatory response pushes the eggs into the lumen
but some eggs may remain trapped in the tissue and lead to
chronic granulomatous inflammation and result in intestinal
lesions (Weinstock, 1992). Individuals with gastrointestinal
schistosomiasis suffer from motility-related gastrointestinal
symptoms such as diarrhea, anorexia, nausea and abdominal
cramps (Rocha et al., 1995).

Schistosoma-Infection Induces Granuloma
Formation and Increased Mucosal Layer Thickness
In schistosomiasis, granulomas surrounding entrapped eggs
are detected in the ileal and colonic mucosa, submucosa and
serosal surface. Those granulomas are mainly constituted
of lymphocytes, macrophages and eosinophilic granulocytes
(Bogers et al., 2000). After 12 weeks of infection, a diffuse
inflammation in the mucosa may also be observed, consisting
predominantly of eosinophils, neutrophils, and some
lymphocytes, and causes diffuse broadening of the intestinal villi
(Bogers et al., 2000; Moreels et al., 2001). Granulocytes were also
detected on the outer border of ganglia of the myenteric plexus,
in close proximity with neuronal cell bodies and enteric glial cells
(Bogers et al., 2000). Mast cells are observed in the muscularis
externae where their numbers increases with the duration of
the infection. This inflammatory infiltration causes transient
increases in mucosal and muscularis externae thickness (Bogers
et al., 2000; Moreels et al., 2001).

Schistosoma-Infection Alters Intestinal Motility
Directly and Indirectly
Intestinal transit of infected animals remains unchanged for
several weeks, but at 8 weeks PI, contraction induced by
exogenous contractile agonists (ACh, 5-HT, SP) is significantly
enhanced in infected animals, and is further increased at 12
weeks and 40 weeks of infection, supporting long lasting effects
of schistosomiasis (Bogers et al., 2000; Moreels et al., 2001).
Electric field stimulation (EFS)-induced contractions in infected
animals are cholinergic as they can be blocked by the muscarinic
receptor antagonist atropine or TTX (neuronal conductance
blockers; Bogers et al., 2000; Moreels et al., 2001). However, TTX
pretreatment had no effect on spontaneous activity and receptor-
mediated contractility. Therefore the effect of S. mansoni
infection on the smooth muscle function might be either
indirect through the activation of neuronal nicotinic receptors
and the alteration of the myenteric plexus via granuloma-
induced enteric nerve destruction (Varilek et al., 1991; Moreels
et al., 2001), or direct when induced via activation of smooth
muscle cell receptors (De Man et al., 2001). Contractions in
ileal muscle strips were also induced by histamine. However
those were not affected by TTX, atropine or hexamethonium
indicating that they were not neuronal or cholinergic in origin.
In addition in inflamed ileum, histamine had no effect on the
nerve-mediated contraction to EFS. In contrast, an adrenergic
α2-receptor agonist was able to inhibit the nerve-mediated
contraction to EFS in control and inflamed tissues but had no
effect on carbachol-induced contraction suggesting a neuronal
action. Taken together, these observations indicate that the
presynaptic modulation of cholinergic nerve activity in the
ileum is disturbed during chronic schistosomiasis and that this
disturbance involves nicotinic and histaminic receptors but not
adrenergic α2-receptors. In the chronically inflamed ileum of
S. mansoni infected mice, nicotinic receptors are hyper-reactive,
whichmay activate cholinergic nerves thus disturbing the normal
GI motility (De Man et al., 2001). Indeed, neurotransmitters
can modulate their own release by activation of auto-receptors
located on nerve terminals. In chronically inflamed ileum,
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hexamethonium significantly inhibited the contractions to EFS
without affecting the direct smooth muscle response to carbachol
supporting the idea that there is a more sensitive modulation
of cholinergic nerve activity by nicotinic receptors during
chronic Schistosoma-induced inflammation (De Man et al.,
2001).

Immune-Mediated Contractility Alterations
The presence of mast cells in the muscularis externae, in
the vicinity of the myenteric plexus could suggest a role
for mast cells in altered motility during schistosomiasis.
Indeed, mast cell degranulation can be initiated by various
neuropeptides including SP which is also secreted by eosinophilic
granulocytes that are abundantly present during Schistosoma-
infection. Eosinophils contain large amounts of neuropeptides
including SP and VIP, giving them the opportunity to interact
with the myenteric plexus’ neurons (Weinstock and Blum,
1990a,b; Bogers et al., 2000). Intestinal schistosomiasis was
also shown to increase the number of calcitonin gene related
peptide (CGRP)-immunoreactive fibers in the lamina propria
(De Jonge et al., 2003a). This up-regulation coincided with
an increase in mucosal mast cells in acutely and chronically
infected animals. Moreover, mucosal mast cells were found
closely associated with a dense mucosal CGRP-immunoreactive
fiber network in chronically infected animals (De Jonge et al.,
2003a). Increased synthesis of CGRP could play a role in mucosal
repair after Schistosoma infection. Indeed, in the rat and rabbit
GI tract, extrinsic sensory neurons have a protecting role in
experimental colitis by the release of CGRP (Reinshagen et al.,
1994, 1998).

In addition Schistosoma-induced granulomas have been
shown to secrete IL-1β during the early phase of their
formation, and to modulate gastrointestinal neuromuscular
function (Collins, 1996) suggesting a role for IL-1β in the altered
contractility profiles observed in schistosomiasis. Prostaglandins,
important mediators of granulomas formation and GI motility
(Bennett et al., 1981; Goes et al., 1994; Eberhart and Dubois,
1995), were shown to be necessary for the maintenance of
contractility inherent tone in Schistosoma-infection, but did not
influence Schistosoma-induced increased contractility (Moreels
et al., 2001).

In mice and guinea pig ileum, histamine inhibits the
neuronally-mediated contractions to cholinergic nerve
stimulation and can be prevented by histamine H1, but not
H2 or H3, antagonists (De Man et al., 2001). The role of
histamine H1 receptors in enteric cholinergic neurotransmission
during schistosomiasis requires further investigation.

Neurotransmitter-Dependent Contractility Alterations
ACh release from enteric cholinergic nerves is under a
well-regulated presynaptic control involving specific neuronal
receptors. Among these are the purinergic receptors P1 and
P2 which can inhibit or enhance the release of ACh upon
activation. P1 and P2 purinoreceptors are present on immune
cells, and their respective natural ligands adenosine and ATP
are generated at the site of inflammation, suggesting that
purines may act as neuroimmune modulators (Ribeiro et al.,

1996). Chronic intestinal inflammation induced by Schistosoma-
infection impairs the purinergic control of enteric cholinergic
neurotransmission in the mouse ileum (De Man et al., 2003).
In the Schistosoma-inflamed ileum, adenosine and ATP fail
to inhibit the cholinergic nerve-mediated contractions to EFS.
During the inflammatory process, purines such as adenosine
and ATP, released from mast cells, can modulate mast
cell degranulation and can potentiate their own effect on
mast cells by a positive feedback mechanism indicating the
crucial role of purines in mast cell responses to inflammation
(Marquardt et al., 1978, 1984; Fozard et al., 1996). The loss
of neuromodulatory action of adenosine during Schistosoma-
induced inflammation may result from a chronic exposure of
enteric nerves to adenosine released during the inflammatory
process, a hypothesis further supported by the fact that
pretreatement of muscle strips with methyladenosine abrogated
the inhibitory effect of adenosine on cholinergic nerve-mediated
contraction to EFS (De Man et al., 2003). These results suggest
that purinoreceptors desensitization on mast cells can occur
during prolonged contact with purines (De Man et al., 2003),
in keeping with previous findings that the neuromodulatory
function of histamine is impaired during chronic intestinal
inflammation (De Man et al., 2001).

Hormone-Mediated Contractility Alterations during
Schistosoma-Infection
The neuropeptide somatostatin expressed in nerve cells and
nerve fibers of the submucosal and myenteric plexuses, has
been shown to play an important role during Schistosomiasis.
SST-immunoreactive nerve fibers are increased in the lamina
propria of intestinal villi of infected animals (De Jonge et al.,
2003b). SST-immunoreactive nerve fibers are also found within
the granulomas where they could modulate inflammatory
cell function through the release of neurotransmitter and
vice versa (De Jonge et al., 2003b). Schistosomiasis also
increases SSTR2A immunoreactivity in some neurons and
nerve fibers of the myenteric plexus. In addition both SST
and SSTR2A were positive for a marker of cholinergic
neurons, indicating that SST and SSTR2A-expressing neurons
are cholinergic populations (De Jonge et al., 2003b). Moreover
other studies showed that SST and SSTR2A have an inhibitory
effect on hormone and mediator secretion, exocrine secretion
and cell proliferation suggesting a role for SST expressing
neurons in regulation of secretion (ten Bokum et al., 2000).
Pharmacological experiments showed that SST had a slight
inhibitory effect during the acute stage, totally lost this
effect in the chronic stage of infection, while it was able to
completely inhibit EFS-mediated contractions in uninfected
animals (De Jonge et al., 2003b). These observations demonstrate
that there is a defective presynaptic inhibition of cholinergic
transmission during chronic schistosomiasis (De Jonge et al.,
2003b).

Trypanosoma cruzi
Trypanosoma is a unicellular parasitic flagellated protozoan
that infects a variety of hosts and causes various diseases. In
humans, T. brucei induces sleeping sickness, while T. cruzi
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causes Chagas disease, and both can be fatal. A chronic
form of Chagas’ disease may develop years after the initial
infection (20–30 years), and it affects the neuro-regulation
of internal organs including the heart, esophagus, peripheral
nervous system and colon. The final stage of the impaired
gut motility in Chagas’ disease results in dilatation of the
digestive tract, and often leads tomegacolon andmegaesophagus,
accompanied by severe weight loss due to secondary achalasia.
The trypanosome induces an inflammatory response, cellular
tissue lesions, and fibrosis. In addition, the amastigote stage
destroys intramural neurons of the ANS that are the cause
of megaintestine and cardiac aneurysms. Indeed, the digestive
form of Chagas’ disease denervates the myenteric plexus.
The neurological involvement is different between the acute,
intermediate and chronic stages of T. cruzi infection and will
determine the severity of the sequelae in patients (Köberle,
1968; Molina et al., 1987). Changes in the myenteric plexus
of the colon lead to colonic motility, secretory, and absorptive
dysfunction.

Autoimmune Denervation during
Trypanosoma-Infection
The chronic autonomic nervous pathology observed in Chagas’
disease has an autoimmune basis. First, T. cruzi seems to induce
loss of tolerance to self antigens in these tissues, and second,
T. cruzi releases parasite antigens which cross-react with host
antigens to lead to autoimmune responses (Pentreath, 1995).
A variety of antibodies that cross-react with host tissues are
found in the host upon T. cruzi infection, and antibodies
against neurons seem particularly well represented (Pentreath,
1995). Indeed, among cross-reacting proteins, F1-160, a T. cruzi
flagellar surface antigen that mimics intra-axonal filaments of
myenteric nervous tissue has been described. Antibodies to this
protein bind nervous tissues in both humans and rodents, and
may cause lethal paralysis when transferred to non-infected
mice (Petry and Van Voorhis, 1991). Moreover, patients with
chronic Chagas disease present increased antibody responses
to peripheral myelin components, such as myelin basic protein
(MBP). MBP is recognized by T lymphocytes from patients
with the digestive form of Chagas disease (Oliveira et al.,
2009).

Neurotoxic Destruction of Neurons in Chagas
Disease
Trypanosoma-induced neurolysis has been largely studied in
animal models and the mechanisms remains unclear. In
experimentally infected mice, there are areas in which the
ganglionic neurons or the plexus are deformed or absent,
while other areas exhibit normal anatomical features (Maifrino
et al., 1999). Since neurons are not directly parasitized by
T. cruzi, desctruction due to parasite invasion is unlikely
(Köberle, 1968). Neurolysis can directly follow the rupture
of pseudocysts, liberating disintegrating amastigotes, before
the inflammatory reaction appears. It has been suggested
that neuronal destruction could be due to a neurotoxin-like
substance released by the disintegrating amastigotes (Köberle,
1968, 1970; Pentreath, 1995). Studies in T. cruzi-infected

rats established a relationship between NO production and
ganglion cell loss, as high NO synthase in the muscle layers of
infected rats was associated with lower numbers of intramural
neurons (Garcia et al., 1999). Production of IFN-γ and TNF-
α in T. cruzi infected mice results in the activation of
inducible iNOS and elevated NO synthesis, which is critical
for trypanocidal activity in macrophages (Gazzinelli et al.,
1992; Vespa et al., 1994). Infected IFN−/− mice did not have
significant neuronal loss, and present with no inflammatory
infiltrate in the intestinal wall. In iNOS−/− mice infected with
T. cruzi, despite greater parasite accumulations and similar
inflammatory infiltrates, numbers of myenteric plexus neurons
remain unchanged, and neuronal nerve profile expression is
preserved (Arantes et al., 2004). These observations suggest
that intestinal denervation could either be secondary to the
inflammatory processes or that NO could be a mediator of
neuronal damage.

Immune Response-Dependent Neuronal Destruction
and Enteric Glial Cell Destruction Contributes to
Megacolon
The inflammatory infiltration in patients suffering from GI
Chagas disease is comprised mainly of CD3-immunoreactive
T lymphocytes and CD20-immunoreactive B lymphocytes (da
Silveira et al., 2007). Natural killer cells (NK) and TIA-1 cytotoxic
cells may also be found in colonic lesions of patients with
megacolon, further asking whether the immune response may
participate in neuronal degeneration.

Enteric glial cells are also decreased in the colon of
patients with Chagas’ Disease (da Silveira et al., 2007, 2009)
suggesting that neuronal destruction is associated with enteric
glial cell destruction. Enteric glial cells play an active role
in the control of gut physiology and pathophysiology, and
participate actively in the course of intestinal inflammation
(Aubé et al., 2006; von Boyen et al., 2004). More research
is needed to assess the role of the loss of enteric glial
cells in Chagas disease. Non dilated portions from chagasic
patients with megacolon exhibited mild neuronal destruction
and almost no signals of inflammation while dilated portions
of the same organs showed more severe neuronal destruction
because of a fulminating inflammatory response (da Silveira
et al., 2009). In addition, enteric glial cells exposed to pro-
inflammatory cytokines could control the inflammatory process
via GFAP (von Boyen et al., 2004). Moreover, a recent
study showed that enteroglial cells from chagasic patient with
megacolon express HLA-DR complex class II, CD80 and
CD86 components characteristic of antigen presenting cells
(APCs; da Silveira et al., 2011). The authors speculate that
enteroglial cells could play a pivotal role as facultative APCs
and present native or foreign antigens to naive or effector
CD4+ or CD8+ T lymphocytes (da Silveira et al., 2011).
Clearly, a relationship between immunity and enteric glia does
exist, and is crucial to the homeostatic maintenance of both
systems. Findings to date also suggest that the inflammatory
process and glial cell alterations observed in Chagas disease
might disrupt the ENS and contribute to the development of
pathology.
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Neurotransmitter Implication in Megacolon
Neurons from the myenteric and submucosal plexuses of dilated
colonic portions from chagasic patients present high level of SP
and low levels of NK1R compared to non-dilated portions and to
non-infected tissues which contribute to the maintenance of the
inflammatory process in chagasic megacolon (Renzi et al., 2000;
da Silveira et al., 2007, 2008b).

Consequences of Neuronal Destruction Induced by
Trypanosoma
Trypanosoma-induced neuronal destruction appears to be
selective as it affects primarily the medium sized and large
neurons (Maifrino et al., 1999). Reduced acetylcholinesterase
(AChE) activity has been recorded in the neurons and fibers of
chagasic animals (Maifrino et al., 1999). Trypanosoma-induced
denervation leads to hypersensitivity mediated at least in part
by a decrease in AChE activity (Brennessel et al., 1985). This in
turn decreases the responsiveness of the colonic smooth muscles
to ACh, and consequently reduces the contractive capabilities
of this muscle (Maifrino et al., 1999). The role of other enteric
neurotransmitters in Chagas’ disease needs to be further assessed.

Intestinal peristalsis observed in patients with chagasic
megacolon has also been associated with decreased IK channels
(da Silveira et al., 2008a). IK channels are responsible for after-
hyperpolarizing potentials in IPNs, thus altered expression of IK
channelsmay result in altered timing of neural events in the reflex
pathways.

In patients infected with T. cruzi and presenting with
megaesophagus, similar processes are involved as dilatation
implicates neuronal destruction in both plexuses, loss of
enteroglial cells, and presence of inflammatory infiltrate
containing NK and TIA-1 immunoreactive lymphocytes (da
Silveira et al., 2005; Nascimento et al., 2010).

Finally, Interstitial cells of Cajal (ICCs) promote impulses of
the ENS and neural inhibitory stimulation in different regions
of the intestinal tract (Thuneberg, 1982). Recent studies have
observed a significant reduction of ICCs in chagasic patients in
both colon and esophagus (Hagger et al., 2000; Iantorno et al.,
2007; de Lima et al., 2008). The role of these cells in the genesis of
megacolon and megaesophagus warrants further investigation.

Toxoplasma gondii
Toxoplasma gondii is an obligate, intracellular parasitic
protozoan found worldwide. Although mild flu-like symptoms
occasionally occur during the first few weeks following exposure,
T. gondii infection does not usually produce observable
symptoms in healthy humans. However infection can cause
serious illnesses in immunocompromised hosts, infants,
and pregnant women. Infection can also be transmitted
transplacentally from the mother to the fetus. In the intermediate
human host, T. gondii undergoes two phases of asexual
developments: first tachyzoites multiply rapidly in many
different types of host cells, and then initiate a second phase of
development resulting in the formation of tissue cysts that have a
high affinity for neural and muscular tissues. Cysts are common
in the CNS, skeletal and cardiac muscle but can also be found in
visceral organs (Tenter et al., 2000). Within the intestinal lumen,

cysts release bradyzoites, and these parasitic forms interact with
the intestinal epithelium and invade enterocytes, goblet cells
and IELs.

Studies reported changes in the intestinal wall of infected
animals, possibly due to the fact that the GI tract is the route
of entry of T. gondii, and suggests that digestion and absorption
may be compromised. Diarrhea has been reported in some
models of toxoplasmosis (mice, dogs, pigs, sheep and goats;
Odorizzi et al., 2010). Alterations in the myenteric plexus of
Toxoplasma-infected animals have been described (Sugauara
et al., 2008; Odorizzi et al., 2010; Hermes-Uliana et al., 2011;
Silva et al., 2011; Papazian-Cabanas et al., 2012; Sant’Ana et al.,
2012; Zaniolo et al., 2012; Araújo et al., 2015). In these studies,
oral or intraperitoneal infection with T. gondii also disrupted
myenteric neurons. Infection seems to affect the metabolism of
the myenteric neurons probably suppressing the synthesis of
cytoplasmic and nuclear proteins which could explain the smaller
cell volumes of neurons observed in these studies (Sugauara et al.,
2008; Silva et al., 2011).

Toxoplasma gondii Infection Induces Quantitative
and Phenotypic Changes in Neurons
In swine models of toxoplasmosis, although the total number of
nitrergic (NADPH-diaphorase-positive) neurons was not altered
by infection, the number of neurons per ganglion increased
(Odorizzi et al., 2010). It was suggested that part of these
neurons, which at first did not produce NO (which colocalizes
with NADPH-diaphorase), began to secrete it in response to the
parasite-induced IFN-γ, the key cytokine for resistance against
T. gondii-infection (Suzuki et al., 1988). The mechanisms of
how IFN-γ alters the neurochemical expression of myenteric
ganglia remain unclear. Infection with T. gondii also decreases
the total number and the number of neurons per ganglion of the
NADH-diaphorase-positive neurons (which are metabolically
more active than the nitrergic neurons; Suzuki et al., 1988).
As the NADH-diaphorase enzyme is mitochondria-bound, this
would be consistent with a Toxoplasma-induced detrimental
effect on myenteric neuron mitochondria. In the rat jejunum,
toxoplasmosis reduces the number of goblet cells producing
neutral mucins and sulphomucins, while maintaining sialomucin
secreting cells, which results in the production of a more
fluid mucus (Sant’Ana et al., 2012). The effect was concurrent
with decreased numbers of VIP-immnunoreactive submucosal
neurons. It was recently observed that rats infected T. gondii
exhibit over 30% myenteric neuronal death, contain elevated
proportions of nitrergic myenteric neurons, and no alteration
of the NADHd-p neurons in the jejunum (Araújo et al., 2015).
Increased variscosities with VIP nerve fibers were also seen in
the myenteric plexus of infected animals (Araújo et al., 2015).
As these VIP-fibers belong mainly to inhibitory motor neurons
that produce NO, it remains to be seen whether this increase is
related to an increase in NO production to recover homeostasis
and intestinal motility in infected animals. Toxoplasmosis also
causes enteroglial cell death, and these cells are known to play
an important neurotrophic, anti-apoptotic and neuromuscular
transmitter role. Enteric glial cell death may be a determining
factor in the changes of the metabolic profile and chemical
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TABLE 1 | This table provides an update on how enteric parasites may alter neuro-regulation pathway in the gut, and lists the physiological
consequences that have been associated with these changes.

Parasite Physiological modifications Neuroregulating factors involved References

Cryptosporidium parvum Altered ion transport – Prostaglandins (PGE2)
– Prostacyclins (PGI2) via cholinergic
and VIPergic nerves

Argenzio et al. (1993, 1996)
and Laurent et al. (1998)

Malabsorption/Hypersecretion – Increased levels of Substance P Hernandez et al. (2007)

Giardia duodenalis Altered intestinal contractility/motility – Nitric Oxide depletion by Giardia′

arginine consumption
– Reduced 5-HT
– Increased CCK trigerred by mast
cell

Barthó et al. (1992), Juanola
et al. (1998), Eckmann et al.
(2000), Leslie et al. (2003),
Dizdar et al. (2010) and
Pavanelli et al. (2010)

Malabsorption/Hypersecretion – Increased intestinal transit,
reduction in villus and microvillus
areas

Buret et al. (1992, 2015),
Gorowara et al. (1992),
Cevallos et al. (1995) and
Troeger et al. (2007b)

Hypersensitivity – Correlation with c-fos activation
and Giardia-induced bacterial
translocation
– Role for mast cells

Chen et al. (2013), Halliez
et al. (2014), Balestra et al.
(2012), Barbara et al. (2004)
and Cenac et al. (2007)

Entamoeba histolytica Neurons and axons degradation – Cysteine-protease dependent
degradation

Lourenssen et al. (2010)

Nippostrongylus brasiliensis Motility dysfunctions – Correlation with reduced c-fos
expression
– Inflammatory mediators influence
– CCK action via CCK-A, CCK-B,
cholinergic stimulation and vagal
afferent pathway
– IL-4Rα-activated Stat 6
dependent mechanism

Crosthwaite et al. (1990),
Goldhill et al. (1997), Castex
et al. (1998), Urban et al.
(1998), Gay et al. (2001,
2002), Akiho et al. (2002)
and Zhao et al. (2003)

Nerve remodeling – Mucosal nerves degeneration
during the acute phase of
inflammation in correlation with
mast cell degranulation
– Reinnervation after parasite
expulsion

Stead et al. (1991) and
Stead (1992a)

Impaired fluid transport – Probably linked to mast cell
products action on ENS

Jodal et al. (1993)

Chemo-/Mechanosensitivity – Permeability changes/alteration
in excitability of intrinsic neuronal
reflexes
– Sensitization of vagal afferent
neurons
– Alteration of genes profile of
the vagal pathway involved in
chemosensitivity
– Decreased 5-HT3A receptor
– Correlation with mast cell
hyperplasia
– Dependent on tachykinin NK2
receptor

Aerssens et al. (2007),
Holzer (2003), Schuligoi
et al. (1998), Zhao et al.
(2006) and McLean et al.
(1997)

Trichinella spiralis Altered intestinal contractility – Muscle hypertrophy and
hyperplasia
– Mastocytosis
– Altered neurotransmitter release
(SP modulates GI inflammation,
decreased NK1 immunoreactivity,
pro-inflammatory cytokines
production)
– Altered 5-HT receptor function
– role for T-lymphocytes

Vermillion et al. (1991),
Blennerhassett et al. (1992),
Hurst and Collins (1993),
Kataeva et al. (1994), Rühl
et al. (1994), Weisbrodt
et al. (1994), Vallance et al.
(1999), Khan and Collins
(2006), Tanovíc et al. (2006),
Keating et al. (2008) and
Leng et al. (2010)

Hymenolepis diminuta Altered intestinal contractility – Integrity of the ENS necessary as
sensors along the intestine initiate its
activity

Dwinell et al. (2002)

(Continued)
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TABLE 1 | (Continued)

Altered ion transport – Affected by histamine
– Role for neurotransmitters (SP,
CGRP)

McKay et al. (1991),
Cooke (1994), McKay and
Fairweather (1997) and
Schultheiss et al. (2006)

Schistosoma mansoni Altered intestinal contractility – Direct effect via smooth
muscle cell activation
– Indirect effect through
activation of neuronal nicotinic
receptors and alteration of
myenteric plexus
– Role for mast cells, pro-
inflammatory cytokines and
prostaglandins
– Impairment of purinergic
control of enteric cholinergic
neurotransmission
– SST receptor upregulation

Marquardt et al. (1984),
Weinstock and Blum
(1990a,b), Collins (1996),
Fozard et al. (1996), Bogers
et al. (2000), De Man et al.
(2001, 2003), Moreels et al.
(2001) and De Jonge et al.
(2003b)

Increased intestinal muscle thickness – Diffuse mucosal inflammation
due to granulomas
– Role for mast cells

Bogers et al. (2000) and
Moreels et al. (2001)

Trypanosoma cruzi Denervation/Decrease of enteric glial cells – Loss of tolerance to self
antigen
– Cross reaction between
parasite released antigens and
host antigens (parasite antigens
mimics hosts antigens)
– Neurolysis due to neurotoxin-
like substance released by
disintegrating amastigote upon
pseudocyst rupture
– High NO levels and iNOS
activation
– Host immune response

Köberle (1968), Pentreath
(1995), Garcia et al. (1999);
Lee et al. (1999) and da
Silveira et al. (2007, 2009)

Hypersensitivity – Decreased responsiveness
of smooth muscle to ACh
and consequently reduced
contractive capabilities

Maifrino et al. (1999)

Toxoplasma gondii Quantitative and phenotypic changes in
neurons

– NO production by parasite-
induced IFN-γ
– Parasite detrimental effect on
mitochondria

Suzuki et al. (1988) and
Araújo et al. (2015)

coding of surrounding neurons in toxoplasmosis. T. gondii
was only detected in the mucosa and submucosa, suggesting
that the alterations observed in the myenteric plexus are the
result of an indirect action of the parasite possibly via host
cytokines.

Taken together the observations in the myenteric neurons
of T. gondii-infected animals indicate that the nervous system
of different species show diverse responses to infection at
different intestinal sites (duodenum, jejunum, ileum colon),
different times (acute vs. chronic), and in response to different
infective forms (tachyzoite, bradyzoite, sporozoite). However
little is known of the mechanisms by which T. gondii
induces myenteric neurons alterations. An effect of the host
immune system, via IFN-γ or IL-12 production has been
proposed in the control of multiplication and virulence of the
parasite (Papazian-Cabanas et al., 2012). Further studies are
needed to characterize how Toxoplasma affects the ENS, with

particular emphasis on the implication of neurotransmitters
such as SP, ACh, CGRP, VIP, the role of inflammatory
mediators and enteroglial cells, and the consequences of their
actions.

CONCLUSION

In this review, we show that GI parasites can have important
effects on gut functions by modifying the ENS. Table 1
summarizes the various mechanisms whereby enteric parasites
may alter gastrointestinal neuroregulation. The two major
alterations common to all the parasites presented here
include altered intestinal contractility and altered ion and
fluid transport. However the mechanisms involved remains
incompletely elucidated and vary among species. Indeed some
parasites will have a direct influence on the ENS by altering
neuron numbers or phenotype; while others will influence
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neurotransmitter release that in turn modify the ENS activity
(summary table). In addition a correlation between the host
immune response, the inflammatory mediators and the ENS
activity was shown for several parasites further underlying
the importance of the immune-brain-gut axis. Beyond the
need for mechanistic studies into these effects, directions for
future research include the role of parasite-induced microbiota
dysbiosis in gut neuroregulatory responses during and after
infection.
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