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Molecular mechanism of oil 
induced growth inhibition 
in diatoms using Thalassiosira 
pseudonana as the model species
Manoj Kamalanathan1*, Savannah Mapes1,3, Jessica Hillhouse1, Noah Claflin1, 
Joshua Leleux1, David Hala1 & Antonietta Quigg1,2

The 2010 Deepwater Horizon oil-spill exposed the microbes of Gulf of Mexico to unprecedented 
amount of oil. Conclusive evidence of the underlying molecular mechanism(s) on the negative 
effects of oil exposure on certain phytoplankton species such as Thalassiosira pseudonana is still 
lacking, curtailing our understanding of how oil spills alter community composition. We performed 
experiments on model diatom T. pseudonana to understand the mechanisms underpinning observed 
reduced growth and photosynthesis rates during oil exposure. Results show severe impairment to 
processes upstream of photosynthesis, such as light absorption, with proteins associated with the 
light harvesting complex damaged while the pigments were unaffected. Proteins associated with 
photosynthetic electron transport were also damaged, severely affecting photosynthetic apparatus 
and depriving cells of energy and carbon for growth. Negative growth effects were alleviated when 
an organic carbon source was provided. Further investigation through proteomics combined with 
pathway enrichment analysis confirmed the above findings, while highlighting other negatively 
affected processes such as those associated with ferroxidase complex, high-affinity iron-permease 
complex, and multiple transmembrane transport. We also show that oxidative stress is not the 
primary route of negative effects, rather secondary. Overall, this study provides a mechanistic 
understanding of the cellular damage that occurs during oil exposure to T. pseudonana.

Phytoplankton responsible  for 43.5 Pg C  yr−1 of the primary productivity on this  planet1, of which, nearly 40% 
is accounted for by  diatoms2. In aquatic environments, they are often exposed to stressors including nutrient 
limitation, heavy metals, oil, UV, elevated  CO2 levels and ocean acidification. Exposure to these stressors might 
act as selection forces against certain species, while benefitting others, thereby changing the phytoplankton 
community  composition3–5. Such selection events can therefore have cascading effects on other factors such 
as nutrient cycling, phytoplankton-bacteria interaction(s), primary and secondary productivity and bacterial 
community composition. Toxicological studies conducted so far include investigating effects of metals such as 
copper and  cadmium6–9,  pH10,11,  CO2

12–14,  UV15,16, light stress, nutrient stress from nitrogen, phosphorus, or 
silica  limitation17–21, and components of  oil10,22–27. In recent years, emergent pollutants including engineered 
 nanomaterials28, persistent organic  pollutants29 and more recently,  nanoplastics30, have been also found to be 
toxic to many phytoplankton. Collectively these factors underscore the importance of examining the effects of 
stressors on phytoplankton growth and primary production. The 2010 Deepwater Horizon oil-spill exposed 
phytoplankton of Gulf of Mexico to nearly 4.1 million barrels of oil. The effects of this oil exposure changed the 
phytoplankton  community31, affecting their composition, primary productivity and overall  growth32. The exact 
mechanism behind how oil exposure affects growth and photosynthesis and therefore altering the phytoplankton 
composition remains unknown.

Several studies focusing on the effects of oil has been conducted since the Deepwater Horizon oil  spill33 and 
references therein, but many questions remain. Often considered as a representative for marine diatoms, Thalas-
siosira pseudonana (CCMPS 1335) is one of the most commonly studied species, with its genome  sequenced34,35. 
Transcriptomic and metabolic studies on T. pseudonana have suggested that exposure to certain components 
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of oil, such as Benzo (a) pyrene (BaP), or a mixture of polycyclic aromatic hydrocarbons (PAH), in addition 
to oxidative stress, leads to inhibition of silicon uptake and fatty acid  synthesis22–25. Similarly, oxidative stress 
caused by oil exposure was also noted by Ozhan et al.36. The fate of fatty acid synthesis however remains unclear 
in T. pseudonana upon oil exposure, with Carvalho et al.24 suggesting an increase in lipid synthesis, while 
Carvalho et al.25 showed downregulation of lipid synthesis associated genes. Batch experiments revealed that 
the exposure to oil results in two different growth phases in exponentially growing T. pseudonana27. During 
the first phase, growth is inhibited in the presence of oil, followed by a second phase where growth recovers as 
the oil concentration declines. Polysaccharide synthesis was shown to play an important role in the recovery of 
growth of T. pseudonana once the oil concentration nears  zero27. The mechanistic action of oil on the growth 
of T. pseudonana during the first phase remains unknown. Previous study by Babu et al.37 proposed a model 
in which 1,2‐dihydroxyanthraquinone (1,2‐dhATQ) inhibits electron transport at the site of Cytochrome b6/f 
complex in duckweed Lemna gibba exposed to oil. Srivastava et al.38 suggested that benzoquinone (which is often 
the photoproduct of PAHs) can lower the electron transport between photosystem II and I by directly accepting 
electrons from PSII. Kottuparambil et al.39 showed that increased reactive oxygen species (ROS) accumulation 
at the photosystem due to exposure to PAH anthracene can lead to reduced photosynthetic electron transport 
in freshwater flagellate alga Euglena agilis.

Studying the response of phytoplankton to environmental stressors is of vital interest as oil spills and other 
pollutants alter community composition and survivorship, and ultimately higher trophic levels. In this study, we 
endeavor to establish a clear understanding of how exposure to oil affects the growth and physiology of phyto-
plankton using the model species T. pseudonana. Using a combination of traditional laboratory experiments and 
modern proteomics approach, we sequentially tested the proposed hypotheses which include (1) oil exposure 
leads to inhibition of silicon uptake and fatty acid  synthesis22–25, (2) oil exposure leads to oxidative stress and 
therefore intracellular  damage22–25,36, and (3) PAHs, the biological toxic component of oil, affect the electron 
transport between photosystem II and I by directly accepting electrons from  PSII37,38. The results presented 
provide direct and detailed mechanistic evidence of how oil exposure affects growth and photosynthesis in T. 
pseudonana and therefore an explanation of how oil spills could negatively impact diatoms and other sensitive 
species and ultimately alter the phytoplankton community composition.

Results
Exposure of T. pseudonana to a water accommodated fraction (WAF) of oil resulted in significantly lower cell 
counts throughout the growth cycle compared to the Control (student t-test, p = 0.0149) (Fig. 1a). WAF cultures 
did not increase in cell numbers during the first four days of the experiment (first phase), followed by an increase 
at the end of the experiment (second phase). Figure 1b showed an inverse pattern of cell abundance versus 
hydrocarbon concentration measured as estimated oil equivalents (EOE), with cell numbers increasing with 
decreasing EOE concentration. To gain an understanding of the molecular mechanism inhibiting the growth 
of T. pseudonana in WAF during the first phase, we first examined the cell structural physiology after 48 h to 
determine if there was morphological damage. Significantly larger cells both by volume and surface area were 
measured in WAF treatments compared to the Control (student t-test, p < 0.0001) (Table 1). Further examination 
of the morphology showed that T. pseudonana had a nearly 1.75 fold increase in height under WAF compared to 
the Control, and a 1.17 fold increase in radius (student t-test, p =  < 0.0004) (Table 1). Analysis of silica content of 
the cells showed significantly higher silica per cell and surface area of T. pseudonana in WAF relative to Control 
(student t-test, p =  < 0.0001) (Table 1).

An examination of the photo-physiology of T. pseudonana showed significantly lower photosynthetic effi-
ciency (Fv/Fm) during the first five days in WAF treatments compared to the Controls (student t-test, p = 0.0069) 
(Fig. 2a). Similar trends were seen for maximum relative electron transport rates (rETRmax; µmol electrons  m−2.
s−1) values (student t-test, p = 0.0031) (Fig. 2b). WAF treatments also had significantly lower functional absorption 
cross section areas (σPSII, Å2  quanta–1; student t-test, p = 0.0023) compared to the cells in the Control treatment 
(Fig. 2c), however no difference was observed in the rates of plastoquinone  (QA) turnover (τPQ, µs; student t-test, 

Figure 1.  Growth response of T. pseudonana. (a) average daily cell counts of T. pseudonana ( ±) in Control and 
WAF (n = 3), (b) Cell counts of T. pseudonana under different estimated oil equivalents (oil concentrations).



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19831  | https://doi.org/10.1038/s41598-021-98744-9

www.nature.com/scientificreports/

p = 0.5196) (Fig. 2d). Light harvesting efficiency (α; µmol electrons/µmol photons) also showed trends similar 
to Fv/Fm and rETRmax, with significantly lower values seen in WAF treatment in the first five days (student t-test, 
p = 0.0193) (Fig. S1).

To understand the molecular mechanism behind the differences in photo-physiology, we determined ROS and 
malondialdehyde (MDA) levels in both the treatments after 48 h of exposure. MDA levels were also significantly 
higher in WAF compared to the Control (student t-test, p = 0.0258) (Fig. 3a). An analysis of total ROS levels over 
a period of 48 h revealed no significant differences between the Control and WAF treatments (student t-test, 
p = 0.4177) (Fig. 3c). Expressing the ROS levels per cell also showed similar pattern for the first six h (student 
t-test, p = 0.9531), however, the values were significantly higher in the WAF treatment compared to the Control 
at 24 and 48 h time point (student t-test, p = 0.0482) (Fig. 3d).

To confirm higher lipid peroxidation (as indicated by MDA levels) in WAF treated cells relative to the Control, 
we compared the fatty acid methyl ester (FAME) composition in both treatments. We observed lower levels of 
total FAMEs in WAF compared to the Control, however the values were not statistically significant (student t-test, 

Table 1.  Cellular morphology of T. pseudonana. Table summarizing morphological parameters such as cell 
volume, cell surface area, radius, height, silica content per cell and surface area of T. pseudonana cells grown 
under Control and WAF conditions (n = 3).

Control WAF

Cell volume (µm3) 116.66 (± 2.669) 277.43 (± 17.867)

Surface area (µm2) 130.69 (± 2.581) 235.75 (± 10.892)

Radius (µm) 2.69 (± 0.053) 3.15 (± 0.039)

Height (µm) 4.950 (± 0.037) 8.668 (± 0.423)

Silica content.Cell−1

(mg Silica.  Cell−1) 7.00e-05 (± 1.08e-06) 2.70e-04(± 1.95e-06)

Silica content.Surface  area−1

(mg Silica. µm2) 5.36e-07 (± 1.70e-08) 1.15e-06 (± 4.65e-08)

Figure 2.  Photo-physiological response of T. pseudonana. (a) average maximum quantum yield of PS II (Fv/Fm), 
(b) average functional absorption cross-section area of PS II (σPSII; Å2  quanta–1), (c) average maximum electron 
transport rates (rETRmax; µmol electrons  m−2.s−1), and (d) average  QA turnover rates of plastoquinone (τPQ; µs) of 
T. pseudonana ( ±) under Control and WAF treatments (n = 3).
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p = 0.0833) (Fig. S2). Analysis of FAME components between the two treatments showed variation in fatty acid 
composition, with no linoleic acid, and significantly lower myristic acid in WAF treatment compared to Control 
(student t-test, p = 0.0073) (Fig. 3b). Lower levels of palmitoleic acid, and elaidic acid were also observed in the 
WAF treatment compared to Control, however these differences were not significant (student t-test, p > 0.1588) 
(Fig. 3b). Similar levels of pentadecanoic, palmitic and heptadecanoic acid was observed in WAF treatment 
compared to the Control treatment (student t-test, p > 0.1789) (Fig. 3b).

To determine the chemical nature of oil components affecting the growth and physiology of T. pseudonana 
in the WAF treatment, we measured the photosynthetic electron transport in T. pseudonana after exposure to 
alkanes and PAHs for only 60 min. rETRmax were completely inhibited in the presence of both alkanes and PAHs, 
with no observed photosynthetic electron transport in these treatments (One-way ANOVA, p < 0.0001) (Fig. 4). 
Analysis of nonphotochemical quenching (NPQ) in T. pseudonana in both the Control and WAF treatments 
after 48 h showed no significant differences (student t-test, p = 0.2735) (Fig. S3), however, respiration rates were 
significantly higher in WAF compared to the Control (student t-test, p = 0.0398) (Fig. S4).

To understand the primary site of action of oil components in T. pseudonana leading to inhibition of photo-
synthesis, we compared both the physiological processes and pigments associated with light harvesting process 
of photosynthesis. The absorption coefficient, a function of pigment-protein complex associated with the light 
absorption process of photosynthesis, was significantly lower in WAF compared to the Control (student t-test, 
p < 0.0001) (Fig. 5a). Further analysis of pigment composition in both treatments suggested no significant differ-
ences for most pigments (student t-test, p > 0.0645) (Fig. 5b), except diatoxanthin, which was higher in the WAF 
treated cells (student t-test, p = 0.0030). In addition, determination of de-epoxidation of the xanthophyll cycle, 
which controls the dissipation of excess absorbed energy as NPQ, showed no significant difference between the 
treatments (student t-test, p = 0.0967) (Fig. S5).

To test the effects of oil exposure on proteins associated with light harvesting complex, we measured the 
photosynthetic yield (Fv’/Fm’), the relative functional absorption cross-section area (σ’), and estimated light 
absorption (σ’/(Fv’/Fm’)) in WAF and Control in the presence and absence of the protein synthesis inhibitor, 
lincomycin. No significant differences in Fv’/Fm’ values were observed between the Control and WAF or Con-
trol + lincomycin and WAF + lincomycin treatment (One-way ANOVA, p > 0.9248) (Fig. 6a). However, the Fv’/Fm’ 

Figure 3.  Biochemical response of T. pseudonana. (a) average malondialdehyde per cell (MDA) after 48 h of 
incubation, (b) average FAME composition per cell of T. pseudonana after 48 h of incubation, (c) average total 
reactive oxygen species per mL (ROS.mL−1) through time during the 48 h of incubation, and (d) average total 
reactive oxygen species to cell concentration ratio (ROS.cell−1) through time during the 48 h of incubation in T. 
pseudonana (± standard deviation) under Control and WAF treatments (n = 3).
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were significantly lower in both Control + lincomycin and WAF + lincomycin compared to Control and WAF 
treatment (One-way ANOVA, p < 0.0138) (Fig. 6a). Significantly lower σ’ was observed in WAF compared to the 
Control for the first 40 min of measurements (Student t-test, p = 0.0045), this difference then began to diminish 
over time, and the σ’ values were similar by 180 min (Fig. 6b). Presence of lincomycin led to a significant increase 
in σ’ under both Control and WAF treatments, especially after 60 min (One-way ANOVA, p < 0.0050) (Fig. 6b). 
However, σ’ values were significantly lower in WAF + lincomycin compared to Control + lincomycin (Student 
t-test, p = 0.0002) (Fig. 6b). σ’/(Fv’/Fm’), which is an indicator of light absorption showed trends similar to σ’, with 
significantly higher values in the presence of lincomycin for both Control and WAF treatment, especially after 
60 min (One-way ANOVA, p < 0.0074) (Fig. 6c). Lower σ’/(Fv’/Fm’) values were observed for WAF treatment 
compared to the Control for the first 120 min of measurements (Student t-test, p = 0.0261), followed by more 
similar values afterwards (Fig. 6c). In the presence of lincomycin, WAF treatment had significantly lower σ’/
(Fv’/Fm’) values compared to the Control (Student t-test, p = 0.0005) (Fig. 6c).

To test the deficiency of carbon and energy supply caused by negative effects of oil exposure on photosyn-
thesis, growth of T. pseudonana was compared in Control and WAF in the presence and absence of an external 
organic carbon and energy source- acetate. The cell numbers were significantly higher in WAF + Acetate treatment 
compared to WAF only (One-way ANOVA, p = 0.02) (Fig. 7). Moreover, the cell numbers in WAF + Acetate were 
similar to that in Control only treatment (One-way ANOVA, p = 0.137), although the numbers were significantly 
lower than Control + Acetate (One-way ANOVA, p < 0.0001) (Fig. 7).

Analysis of proteome data revealed 44 significant peptides that were differentially present between Control and 
WAF treatment (FDR adjusted p < 0.05) (Supplementary Table 1). All peptides were present in lower abundance 
with the exception of THAPSDRAFT_40669 (Ubiquitin-like domain-containing protein, associated with protein 

Figure 4.  Effects of short-term exposure of alkane, PAH mix, and the solvent DCM on relative electron 
transport rates of T. pseudonana (± standard deviation) after 48 h of incubation under Control and WAF 
treatments (n = 3).

Figure 5.  Light harvesting components of T. pseudonana. (a) average absorption coefficient, (b) average 
pigment composition of T. pseudonana (± standard deviation) after 48 h of incubation under Control and WAF 
treatments (n = 3).
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degradation), which was threefold higher in WAF treatment compared to the Control (FDR adjusted p = 0.04). 
Pathway enrichment analysis using the 43 peptides found in lower abundance in WAF revealed several biological 
functions that were downregulated (Fig. 8, Supplementary Table 1). Biological functions associated with photo-
synthesis, ferroxidase complex, high-affinity iron permease complex, transmembrane transport activity such as 
inorganic anion transmembrane transporter activity, ion transmembrane transporter activity, transmembrane 
transporter complex, cell periphery and plasma membrane were top ten significantly affected processes (Fig. S6, 
Supplementary Table 1). The most significant gene set (KEGG:00,195) (FDR q-value = 4.53241E-06) associated 

Figure 6.  Effect of WAF exposure on the protein components of light harvesting complex. (a) average 
functional cross-section area (σ), (b) average quantum yield of PS II (Fv’/Fm’), and (c) σ/(Fv’/Fm’) measured 
in of T. pseudonana cultures after 100 min of in Control and WAF conditions, followed by addition of 2 mM 
Lincomycin.
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with photosynthesis unfortunately could not be mapped while building the enrichment map. This gene set which 
was significantly lower in the WAF treatment contained proteins such as THAPSDRAFT_35934 (Cytochrome 
c domain-containing protein), THAPSDRAFT_270229 (similar to cytochrome b6/f), THAPSDRAFT_BD1611 
(predicted to be associated with PS I), THAPSDRAFT_20603 (similar to Oxygen-evolving enhancer protein 
3). Performing enrichment analysis for cellular component type revealed organelles such as plasma membrane 
outer, mitochondrial membrane, thylakoids and cell periphery plasma to be severely affected in WAF (Fig. S6).

Figure 7.  Effect of external organic carbon source (0.5 g.L−1) on the growth of T. pseudonana (± standard 
deviation) after 48 h of incubation under Control and WAF treatments (n = 3).

Figure 8.  Negatively affected biological functions or gene ontology terms in T.pseudonana after 48 h of 
exposure to WAF relative to Control. The size of the node corresponds to the size of the gene sets and the color 
of the node ranging from orange-white-blue indicates increasing FDR q values.
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Discussion
Understanding how oil negatively impacts phytoplankton will help explain how oil spills alter their community. 
While there are several reports on the negative effects of oil on phytoplankton, we still lack a clear understand-
ing on the molecular effects underlying the observations. Here we address a series of sequential hypothesizes to 
study how oil inhibits the growth and photosynthesis of a model diatom species, T. pseudonana. Unlike earlier 
studies, we measure alterations in growth, photosynthesis, physiology, pigments, proteins, ROS and proteomics 
in a comprehensive effort to target the mechanistic basis underlying the cellular response.

Growth of this diatom was negatively affected by the presence of oil in a concentration dependent response 
as observed in previous  studies26,27, with recovery of growth resuming as soon as oil levels fell to below detec-
tion limits (< 0.08 mg/L). Inhibition of silica uptake of T. pseudonana was reported by Carvalho et al.23; with 
follow up studies examining the transcriptomics and  proteomics24,25. We observed a higher silica content per 
cell and higher cellular surface area (Table 1), in contrast to these studies. This difference can be explained by 
the measured inhibition of cell multiplication and increased cellular volume of T. pseudonana when exposed to 
oil in the present study. Uptake of silica is a carrier-mediated saturable system that requires energy and is tightly 
coupled with the cell  cycle41. Therefore, the decreased expression and abundance of genes and proteins associ-
ated with silica uptake as observed in previous  studies22–25 could be simply due to the growth inhibition caused 
by oil exposure and the cellular need to conserve energy and cellular resources under such stressful conditions.

To develop a deeper understanding of the mechanism of growth inhibition caused by oil exposure, we ana-
lyzed the photo-physiology of the cells when exposed to WAF. We measured lower photosynthetic electron trans-
port rates between PSII and PSI (as rETRmax). This could be explained by the decreased functional light absorp-
tion cross-section area in WAF treated cells relative to the Control, which suggests that the upstream process of 
the light reactions of photosynthesis-light absorption were negatively affected in T. pseudonana when exposed to 
oil. Moreover, no significant change in plastoquinone  (QA) turnover rates in WAF treated cells compared to the 
Control suggests that the downstream process of light reactions-linear photosynthetic electron transport from 
 QA to  QB was largely unaffected. Together these results indicate that the observed lower electron transport rates 
in WAF treated cells compared to the Control was primarily due to lower light absorbed by T. pseudonana when 
exposed to WAF. To confirm this, non-photochemical quenching and rates of respiration of T. pseudonana were 
measured. Non-photochemical quenching allows the cells to dissipate excess of the absorbed light energy in 
the form of heat, when the balance of light absorption and light utilization is disrupted in a way that the former 
exceed the  latter42,43. Such a scenario occurs if the cells are exposed to higher than optimum light levels, or if the 
cells are continuing to absorb light when the downstream processes such as photosynthetic electron transport or 
carbon fixation are negatively affected resulting in photo-oxidative damage of the photosynthetic  apparatus44. In 
addition, photosynthetic electron transport itself can produce ROS as a  byproduct45. No significant differences 
in NPQ values between the Control and WAF treatments suggest that the light absorption was either below or in 
balance with the downstream light absorption led excitation energy utilization processes such as photosynthetic 
electron transport and carbon fixation.

Babu et al.37 suggested that anthracene photoproducts can block photosynthetic electron transport processes 
by inhibiting the cytochrome b6/f. Previous  studies46,47 have suggested that photosynthetic electron transport 
and mitochondrial electron transport processes have components that are structurally homologous, especially 
cytochrome b6/f. Therefore, if oil components were to inhibit the photosynthetic electron transport, one can 
expect the same fate for mitochondrial electron transport. However, we observed significantly higher rates of 
respiration in T. pseudonana when exposed to WAF compared to the Control, suggesting the mitochondrial 
electron transport were unaffected by the presence of oil. However, proteome analysis showed significantly lower 
abundance of THAPSDRAFT_270229, a protein similar to cytochrome b6/f in WAF, which aligns well with the 
observation made by Babu et al.37. This suggests that photosynthetic cytochrome b6/f were more prone to oil 
associated damage than mitochondrial. In addition, peptides such as THAPSDRAFT_BD1611 (predicted to be 
associated with PS I), THAPSDRAFT_20603 (similar to Oxygen-evolving enhancer protein 3) and THAPS-
DRAFT_35934 (Cytochrome c domain-containing protein) were also found in significantly lower abundance in 
WAF treatment, suggesting oil associated damage beyond cytochrome b6/f. These findings along with unaffected 
 QA turnover rates provides further evidence that the negative effects of oil on photosynthesis may not be due to 
the PAH components of oil accepting electrons from the reduced photosystems as previously  hypothesized38,39, 
rather by a direct damage of electron transport proteins by oil  interaction37. The lower functional absorption 
cross-section area and similar NPQ observed in WAF compared to the Control indicates that the site of dam-
age in presence of oil might also be in the upstream process of photosynthesis associated with light absorption. 
This was confirmed when the lower light harvesting efficiency and light absorption coefficient, which is the 
fundamental index of cellular light  absorption48,49, was observed in WAF treated cells compared to the Control.

Light harvesting process of photosynthesis are performed by the pigment-protein assembly called the light 
harvesting  complex50. To determine the site of damage in the light absorption processes, we compared the pig-
ment composition and absorption properties of T. pseudonana in Control and WAF treatments. Most pigments 
in WAF treated cells including Chlorophyll a, chlorophyll c, and diadinoxanthin were similar in concentration 
compared to the Control, with diatoxanthin and fucoxanthin present in higher levels. The xanthophyll cycle, 
which in diatoms has been correlated with the thermal dissipation of the excess energy at the antenna side of the 
photosynthetic  apparatus51, is found to be sensitive to oxidative  stress52. In contrary, the de-epoxidation status of 
the xanthophyll cycle was similar between WAF and Controls, which in turn supports the similar NPQ values 
observed in these treatments.

Aside from pigments involved in the photoprotective xanthophyll cycle, the major light harvesting pigment 
composition was not affected under oil exposure, pointing towards proteins. Bopp et al.22 and Carvalho et al.25 
reported that genes and proteins associated with light harvesting proteins were downregulated in T. pseudonana 
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when exposed to a mixture of PAHs. To confirm light harvesting proteins to be the site of damage under oil 
exposure, we conducted additional measurements with the chloroplastic protein synthesis inhibitor, lincomycin. 
This experiment was conducted under the premise that if proteins associated with light harvesting were damaged 
by oil exposure, presence of lincomycin would prevent the replacement of damaged proteins by inhibiting the 
synthesis of new proteins. Furthermore, following the addition of lincomycin, the cultures were moved to lower 
light levels in order to prevent photo-inhibition and induce rearrangement of light harvesting complex to adapt 
to the new lower light conditions. This process would be severely affected in case of any protein damage caused 
by oil exposure. We observed no significant changes to photosynthetic yield but significantly lower functional 
absorption cross section area in WAF treated T. pseudonana compared to the Control. This observation con-
firmed severe protein damage caused by oil exposure. Moreover, proteome analysis showed a higher abundance 
of THAPSDRAFT_40669 (Ubiquitin-like domain-containing protein, associated with protein degradation) in 
WAF relative to Control. This is a clear indication of enhanced protein degradation, presumably a result of the 
protein damage by oil exposure. Combination of the transfer of cells to a lower light condition and addition of 
lincomycin led to a significant increase in functional absorption cross section area in the Control treatment, 
which indicated that the cells rearranged the existing pigments and proteins in order to form a larger light har-
vesting antennae. Such increase in light harvesting antennae size on transfer to lower light levels has been previ-
ously  observed53,54. A comparatively lower functional absorption cross section area and severe effects on light 
absorption in WAF + lincomycin compared to the Control + lincomycin indicated inefficient rearrangement of 
the light harvesting complex and poor absorption and transfer of light energy. Even though the photosynthetic 
yield was not affected in WAF + lincomycin compared to the Control + lincomycin, which confirmed the down-
stream processes were intact, the amount of energy derived from light absorption transferred downstream was 
severely affected. In addition, proteome analysis revealed several light harvesting proteins such as Lhcr3, Lhcr11 
and Lhcf6 that were present in significantly lower abundance in WAF compared to Control, which aligns well 
with the findings of Bopp et al.22 and Carvalho et al.25.

Previous studies have shown an ambiguous outcome of oil exposure on the fate of fatty acid synthesis, with 
an increase in lipid synthesis observed in one  study24, and downregulation of lipid synthesis associated genes 
observed in the  other25. We therefore measured the levels of lipid peroxidation caused by oxidative stress in T. 
pseudonana when exposed to WAF and found significant damage to the lipids. Further analysis showed a slight 
decrease in total lipid content with significant changes in FAME composition upon WAF exposure, with certain 
components present in similar or lower concentration or entirely absent. This suggest the observed increased lipid 
peroxidation under oil exposure might preferentially affect certain fatty acids if not all, over a range of time scales. 
FAME measured in our study could have been derived by membrane (chloroplast and/or mitochondria) damage 
by depolarization and hydrolysis induced by oxidative  stress52,55. Lipids account for 31% of the major light har-
vesting chlorophyll a/b protein  complex56, therefore increased lipid peroxidation may have severely destabilized 
the light harvesting complex by interfering with polypeptide stacking and therefore the light absorption process.

Taken together, all these results suggests that growth inhibition caused by oil exposure could be due to the 
negative effects observed to the proteins and lipids in the light absorption apparatus and electron transport 
system of photosynthesis, which in turn reduced the ability of the cell to photosynthesize and therefore produce 
organic carbon and energy. To test the extent of energy and carbon deprivation caused by oil induced damage 
to the photosynthetic apparatus, we provided acetate as an external carbon source to T. pseudonana in the pres-
ence and absence of oil. Acetate served as an alternative carbon source, thereby will alleviate the dependency 
of the cell on photosynthesis to derive organic carbon and energy. The stimulation of growth in the presence of 
acetate was relatively lower in WAF compared to Control, however the observed growth was significantly higher 
than WAF alone and similar to Control only treatment. This response clearly underscores our results that the 
cells were limited in organic carbon and energy supply due to damage to photosynthetic apparatus caused by 
oil exposure. Simultaneously, the relatively poor stimulation of growth by acetate in WAF (2.1 fold) compared 
to Control (3.8 fold) suggests that the ability to catabolize organic carbon, could have been also affected by oil. 
Pathway enrichment analysis showed that biological function associated with organic substance catabolism were 
negatively affected in WAF, which backs the observation of poor growth stimulation under acetate supplementa-
tion in the presence of oil.

Multiple studies have suggested that exposure to oil induces oxidative stress in the exposed cells, thereby 
causing severe oxidative damage to the intracellular  components22–25,38. However, whether the oxidative stress 
is a primary/direct or secondary/indirect effect of oil exposure remains unknown. By monitoring the oxida-
tive stress in the Control and WAF treatments over a time course, we found that the total ROS levels are very 
similar between the treatments, however when expressed per cell, the amount of ROS load per cell significantly 
increases. This effect is primarily due to the inhibition of growth caused by oil exposure, which in turn reduces 
the cell numbers and thereby increasing the ROS to cell concentration ratio. This along with the observed lipid 
peroxidation indicates that the oxidative stress is not a primary effect of oil exposure but rather secondary.

Lastly, proteome and pathway enrichment analysis other than supporting the experimental observation also 
revealed several other processes that were negatively affected. These processes include ferroxidase complex, 
high-affinity iron permease complex, transmembrane transport activity such as inorganic anion transmembrane 
transporter activity, ion transmembrane transporter activity, transmembrane transporter complex, cell periphery 
and plasma membrane, indicating photosynthesis was not the sole target. While the negative effects in several 
membrane transport related processes aligns with the increased lipid peroxidation observed in the presence of oil, 
it also suggests that the ability to cells to assimilate and/or exchange ions and molecules both internally amongst 
the different organelle and externally from the environment could have been compromised. Enrichment analysis 
performed for cellular component supports this conclusion.

Overall, by using model diatom species T. pseudonana, we have developed a process based understanding of 
how oil affects growth and photosynthesis in phytoplankton. We provide clarity on previous  findings22–25 that had 
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shown silica uptake is not inhibited and lipid peroxidation is increased under oil exposure. More importantly, 
we show that the electron transport process and the light harvesting process of photosynthesis were negatively 
impacted. Through an in depth analysis of light harvesting components and associated processes during oil 
exposure, we show that the major pigments of the light harvesting pigment-protein complex were not affected, 
however the respective proteins and membrane lipids were damaged during oil exposure, thus decreasing the 
amount of light absorbed and therefore the overall energy derived from photosynthetic performance. Our study 
concludes that the decreased energy production caused by photosynthetic damage, severe detoriation to the 
several membrane transport processes, and increased spending of available carbon and energy towards protein 
and lipid repair eventually affected the growth of the diatom. Together with studies conducted by Bopp et al.22, 
Carvalho et al.23–25, we provide a detailed mechanism of how oil exposure leads to reduced photosynthesis and 
growth, and therefore how oil spills can alter phytoplankton community composition.

Material and methods
T. pseudonana (National Center for Marine Algae—CCMP1335) was maintained at 19 °C in f/2 medium at 
60 µmol photons  m−2  s−1 and a 12-h/12-h light/dark cycle. Five experiments were conducted under these envi-
ronmental conditions to understand how oil inhibits T. pseudonana growth in a laboratory settings between 
January and July 2019 in one liter Schott bottles, with no stirring and lids tightly closed to minimize loss of oil 
by evaporation. Cell density at the start of experiments was of  105 cells  mL−1. A Water Accommodated Fraction 
(WAF) of oil was prepared using the CROSERF  method40. Briefly, 400 µL of Macondo surrogate oil was added per 
L sterile f/2 growth media and stirred overnight in the dark. Afterwards, it is filtered using 20 µm Teflon sieve to 
obtain WAF free of large oil droplets. The resultant oil concentration in WAF medium resulted in an average of 
2.75 mg/L (± 2.26 mg/L) among all the experiments conducted in this study. Out of the five separate experiments 
conducted, the first experiment determined the growth and photo-physiology under Control and WAF treatment. 
In the second experiment, measurements such as proteomics and pathway enrichment analysis, fatty-acid methyl 
ester analysis, reactive oxygen species content, pigment analysis, silica content, malondialdehyde content and 
cellular morphology were performed under Control and WAF treatment. In the third experiment, the effects of 
alkane and PAH component on T. pseudonana was determined. The fourth experiment determined the extent 
of protein damage in the photosynthetic apparatus using chloroplastic protein synthesis inhibitor—Lincomycin. 
Lastly, the fifth experiment was conducted to determine the extent of carbon and energy deprivation caused by oil 
exposure by growing T. pseudonana in the presence and absence of an external organic carbon source—Acetate 
in Control and WAF. A complete description of the materials and methods used in this study is provided in the 
SI Appendix, Materials and Methods.
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