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Abstract: In this paper, a fast three-dimensional (3-D) frequency scaling algorithm (FSA) with large
depth of focus is presented for near-field planar millimeter-wave (MMW) holographic imaging.
Considering the cross-range range coupling term which is neglected in the conventional range
migration algorithm (RMA), we propose an algorithm performing the range cell migration correction
for de-chirped signals without interpolation by using a 3-D frequency scaling operation. First, to deal
with the cross-range range coupling term, a 3-D frequency scaling operator is derived to eliminate
the space variation of range cell migration. Then, a range migration correction factor is performed
to compensate for the residual range cell migration. Finally, the imaging results are obtained by
matched filtering in the cross-range direction. Compared with the conventional RMA, the proposed
algorithm is comparable in accuracy but more efficient by using only chirp multiplications and fast
Fourier transforms (FFTs). The algorithm has been tested with satisfying results by both simulation
and experiment.

Keywords: frequency scaling algorithm; near-field; millimeter-wave; 3-D holographic imaging

1. Introduction

The millimeter-wave (MMW) imaging technique holds large potential in the application of security
inspection for its unique electromagnetic properties [1,2]. Unlike optical and infrared radiation, MMW
offers the property of being able to “see through” non-polar and non-metallic materials such as clothing,
plastic, and cardboard with relatively little energy loss. Compared to microwaves and radio-frequency
waves, MMW can achieve better spatial resolution due to its shorter wavelength and make concealed
weapons easier to identify. Moreover, unlike the X-ray backscatter imaging technique, MMW is
harmless to human beings and is more likely to be accepted. Therefore, it is suitable for detecting
concealed threats in airport, stations, and other public places.

In recent years, many facilities have done research on security inspection using MMW
imaging systems, such as the Pacific Northwest National Laboratory (PNNL) [3–5], Rohde Schwarz
Company [6–8], Tsinghua University [9], and so on [10,11]. The MMW imaging system transmits
wideband electromagnetic waves with a spherical wave front to illuminate objects and reconstruct
three-dimensional (3-D) images using the amplitude and phase of the recorded reflected signals.
The system structure mainly includes a two-dimensional (2-D) uniform planar synthetic aperture [3,9],
a cylindrical synthetic aperture [4], and a 2-D sparse planar synthetic aperture [6–8]. In this paper, we
concentrate on the 2-D uniform planar synthetic aperture to achieve 3-D image reconstruction, which
is considered as holographic radar imaging and also can be regarded as 3-D synthetic aperture radar
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imaging. The 2-D uniform planar synthetic aperture is usually formed by electrical scanning in the
horizontal direction and mechanical scanning in the vertical direction with a linear antenna array.

For near-field wideband planar MMW holographic imaging, linear frequency modulation
continuous wave (LFMCW) and stepped frequency continuous wave (SFCW) are the most popular
signal systems because of the large time bandwidth product which brings high gain and high resolution
together. A series of algorithms have been developed, such as time-domain correlation algorithm
(TDCA), back projection algorithm (BPA) [12], range migration algorithm (RMA) [3,9], and range
stacking algorithm (RSA) [13]. Considering the application background of safety inspection, the target
distance is usually within one meter, but the distance is not known exactly, therefore, an imaging
algorithm with a large depth of focus is required. The TDCA and BPA are time-domain algorithms
that can achieve accurate imaging by coherent accumulation of each point in the imaging scene,
however, the amount of computation is proportional to the number of points leading to a significant
computation time which limits the real-time applications. RMA is an accurate algorithm with excellent
precision, and it adopts interpolation in a spatial domain to eliminate the spherical curve, which
leads to space variation of range cell migration and range cell migration in the 3-D spatial spectrum.
Until now, most near-field wideband planar MMW holographic imaging systems adopted RMA
as the imaging algorithm, and a series of improvements have been made based on RMA such as
replacing interpolation and fast Fourier transform (FFT) by non-uniform FFT [14], compensating
for the antenna position error which is caused by mechanical scanning of linear antenna array [15],
and so on. However, the interpolation process implies a high computational cost which slows down
the imaging speed, and the image reconstruction accuracy is also limited by interpolating kernel
function and the number of interpolation points. The RSA is a completely accurate algorithm without
interpolation which adopts different compensating distances to eliminate the spherical curve in the
corresponding distance and composes corresponding imaging results into the final 3-D reconstruction
image, but the computational complexity is far greater than that of RMA if the target is thick in
the range direction. Concerning synthetic aperture radar (SAR) processing, there are a family of
frequency domain approximation algorithms such as range-Doppler algorithm (RDA) [16], chirp
scaling algorithm (CSA) [17], and frequency scaling algorithm (FSA) [18]. Gimeno [19] has extended
the original 2-D CSA to 3-D near-field wideband radar imaging, but the CSA cannot be applied directly
on the de-chirped signal. Ge Jiang [20] has extended RDA to 3-D near-field wideband radar imaging,
but the focusing depth is limited. So far, there is no literature applying FSA to near-field wideband
planar MMW holographic imaging.

In this paper, we present a fast three-dimensional (3-D) frequency scaling algorithm with large
depth of focus for near-field planar millimeter-wave holographic imaging. The proposed algorithm
performs range cell migration correction for de-chirped signals based on LFMCW without interpolation
by using only chirp multiplications and FFTs. Compared with the conventional RMA, the proposed
algorithm is comparable in accuracy but more efficient.

In the next section, the near-field planar millimeter-wave holographic imaging scene and the
proposed fast three-dimensional (3-D) frequency scaling algorithm with large depth of focus is
described. In Section 3, both point targets simulation results and experimental results in the 35 GHz
band are performed to verify the effectiveness of the algorithm. Finally, Section 4 summarizes
this paper.

2. Model and Method

Figure 1 illustrates a typical geometry of near-field planar millimeter-wave holographic imaging.
An ideal point target is located at position (x, y, z) with scattering intensity σ in the Cartesian coordinate
system. The signal is transmitted and received by a pair of antennas whose equivalent phase center
is located at capital coordinate (X, Y, 0) and the quasi monostatic planar antenna array is formed by
mechanical scanning in the vertical direction with a linear antenna array. The antenna transmits a
linear frequency modulation continuous wave with large time bandwidth product and receives the



Sensors 2017, 17, 2438 3 of 14

echo signal in a de-chirping manner with a reference distance Rre f . Ignoring the energy loss during
the transmission process and assuming the 3-D envelope of the echo signal is rectangular, then the
echoed data of the ideal point target takes the form of

s (X, Y, t) = σrect ( X
LX

) rect ( Y
LY
) rect ( t−2R/c

Tp
)

× exp (−j 4π
c (γ(t − 2Rre f

c ) + fc) (R − Rre f )) exp (j 4πγ
c2 (R − Rre f )

2)
(1)

where
R =

√
(X − x)2 + (Y − y)2 + z2 (2)

Here, R is the distance between target and antenna probe, c is the speed of light, fc is center
frequency, γ is the chirp rate of LFMCW, Tp is the time length of signal, LX and LY are the length and
height of the planar antenna array, respectively.

Sensors 2017, 17, 2438  3 of 14 

 

2
2

2 /( , , ) rect ( )rect ( )rect ( )

24 4exp (

  

( ( ) ) ( )) exp ( ( ) )

    

   




     

X Y p

ref
c ref ref

X Y t R cs X Y t
L L T

R
j t f R R j R R

c c c



 


 (1) 

where 

2 2 2( ) ( )R X x Y y z      (2) 

Here, R  is the distance between target and antenna probe, c  is the speed of light, cf  is 
center frequency,   is the chirp rate of LFMCW, pT  is the time length of signal, XL  and YL  are 
the length and height of the planar antenna array, respectively. 

antenna phase center

scan plane

O

targetbeam width

z
x

y

X

Y

θ 
target point

V

 
Figure 1. Geometry of near-field planar millimeter-wave holographic imaging. 

The second exponential term in Equation (1) is residual video phase (RVP) which is introduced 
by a de-chirping manner and should be removed by phase compensation in most imaging algorithms. 
However, in this paper, the 3-D frequency scaling algorithm is realized based on the RVP. For the 
convenience of the latter discussion, the waveform is moved forward by 2 /refR c . On the basis of the 
stationary phase principle, the Equation (1) can be transformed as 
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Figure 1. Geometry of near-field planar millimeter-wave holographic imaging.

The second exponential term in Equation (1) is residual video phase (RVP) which is introduced
by a de-chirping manner and should be removed by phase compensation in most imaging algorithms.
However, in this paper, the 3-D frequency scaling algorithm is realized based on the RVP. For the
convenience of the latter discussion, the waveform is moved forward by 2Rre f /c. On the basis of the
stationary phase principle, the Equation (1) can be transformed as

s (X, Y, t) = A (X, Y, t) exp (−j
4π

c
(γt + fc) (R − Rre f ))⊗ exp (−jπγt2) (3)

where A (X, Y, t) = σrect ( X
LX

) rect ( Y
LY
) rect ( t−2R/c

Tp
) is the product of target scattering intensity and

the 3-D envelope of the echo signal in order to simplify the formula expression, and symbol ⊗ indicates
convolution. In order to prove the equivalence of Equations (1) and (3), the theory of stationary
phase principle should be illustrated. The stationary phase principle is used for the integration of
oscillatory signals with slowly varied amplitude. Except for the zero frequency and its adjacent area,
the rest of the integral signal changes rapidly between positive and negative and has no contribution
to integral result. The echo signal in Equation (1) approximates to a single frequency signal with
frequency −2(R − Rre f )/c, and the echo envelope is also proportional to the time delay 2 (R − Rre f )/c.
According to the theory of stationary phase principle, only the area with frequency −2 (R − Rre f )/c of
the chirp signal exp (−jπγt2) makes contribution to the integral result in Equation (3) and then it can
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be transformed to Equation (1) by numerical integration. The detailed formula deduction process is
given in the appendix of [18].

Let KRc = 4π fc/c, ∆KR = 4πγt/c, KR = KRc + ∆KR, we have

s (X, Y, ∆KR) = A (X, Y, ∆KR) exp (−jKR(R − Rre f ))⊗ exp (−j
∆K2

R
2b

) (4)

where b = 8πγ/c2. In order to eliminate the spherical curve which leads to space variation of range
cell migration and range cell migration in 3-D spatial spectrum, the echo signal needs to be converted
to the spatial spectrum domain. After performing the 2-D spatial Fourier transformation of the echo
signal s (X, Y, ∆KR) over variables X and Y, we can obtain the spatial spectrum based on the stationary
phase principle

S (Kx, Ky, ∆KR) = A (Kx, Ky, ∆KR) exp (jKRRre f ) exp (−j
√

K2
R − K2

x − K2
yz)

× exp (−jKxx) exp (−jKyy)⊗ exp (−j ∆K2
R

2b )

(5)

where Kx and Ky indicate the spatial frequency corresponding to variables X and Y, respectively.

Taking the cross-range range coupling term exp (−j
√

K2
R − K2

x − K2
yz) into consideration, the

Equation (5) can be transformed as follows based on the Taylor expansion over ∆KR.

S(Kx, Ky, ∆KR) = A1(Kx, Ky, ∆KR) exp (−j( z
AXY

− Rre f )∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc A3

XY
∆K2

R) exp (−j
(K2

x+K2
y)z

2K4
Rc A5

XY
∆K3

R)⊗ exp (−j ∆K2
R

2b )
(6)

where

AXY =

√
1 −

K2
x + K2

y

K2
Rc

(7)

A1 (Kx, Ky, ∆KR) = A (Kx, Ky, ∆KR) exp (jKRcRre f ) (8)

In order to simplify the formula expression, the Taylor expansion is limited to the third-order.
From Equation (6), we can find that the scaling factor of vertical distance z is 1/AXY and it varies with
Kx and Ky. In order to eliminate the space variation of range cell migration, a 3-D frequency scaling
function is introduced

HFS(Kx, Ky, ∆KR) = exp (−j
∆K2

R
2b

(AXY − 1)) (9)

Multiply Equation (9) with Equation (6) and we can obtain

S1 (Kx, Ky, ∆KR) = A2 exp (−j(z − AXYRre f ) ∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc AXY

∆K2
R) exp (−j

(K2
x+K2

y)z
2K4

Rc A2
XY

∆K3
R)

× exp (−j AXY∆K2
R

2b (AXY − 1))⊗ exp (−j AXY∆K2
R

2b )

(10)

The derivation is given in the Appendix A. It can be seen from Equation (10) that the scaling factor
of vertical distance z is constant and the space variation of range cell migration has been eliminated.
The RVP will be removed in the following step based on the FFT to achieve de-convolution, and we
can obtain
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S2(Kx, Ky, ∆KR) = FT∆KR(IFT∆KR(S1 (Kx, Ky, ∆KR)) · conj (IFT∆KR(exp (−j AXY∆K2
R

2b ))))

= A2 exp (−j (z − AXYRre f ) ∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc AXY

∆K2
R) exp (−j

(K2
x+K2

y)z
2K4

Rc A2
XY

∆K3
R) exp (−j AXY∆K2

R
2b (AXY − 1))

(11)

where conj ( ) indicates conjugate function, IFT∆KR indicates the inverse Fourier transform over ∆KR,
and FT∆KR indicates the corresponding Fourier transform. The last exponential term in Equation (11)
is the quadratic phase error introduced by HFS, and it can be eliminated by multiplying the inverse
frequency scaling function

HIFS (Kx, Ky, ∆KR) = exp (j
AXY∆K2

R
2b

(AXY − 1)) (12)

Then we can obtain

S3(Kx, Ky, ∆KR) = A2 exp (−j (z − AXYRre f )∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc AXY

∆K2
R) exp (−j

(K2
x+K2

y)z
2K4

Rc A2
XY

∆K3
R)

(13)

So far, the scaling operation has been accomplished, and the range curve of targets located
at different distances is the same. Therefore, a linear phase function can be multiplied in the 3-D
spatial frequency domain to compensate for the stationary range migration. In addition, the high
order exponential term of ∆KR should be compensated by secondary range compression. The range
migration correction function (RMCF) and secondary range compressing function (SRCF) are

HRMC (Kx, Ky, ∆KR) = exp (−j (AXYRre f − zc) ∆KR) (14)

HSRC (Kx, Ky, ∆KR) = exp (−j
(K2

x + K2
y) z

2K3
Rc AXY

∆K2
R) exp (j

(K2
x + K2

y) z

2K4
Rc A2

XY
∆K3

R) (15)

The SRCF has spatial varying distortion and we can replace z with the center distance zc of the
imaging scene to compensate for it. It should be noted that the step of secondary range compressing can
be neglected here. Different from the imaging scene in SAR, the target distance z in MMW holographic
imaging is always within one meter, and the phase value in exponential terms of SRCF is quite small
that nearly has no impact on the final imaging results. This is also the reason why the proposed FSA
has a large depth of focus. After range migration correction and secondary range compressing, we
can obtain

S4(Kx, Ky, ∆KR) = A2 exp (−j∆KR(z − zc)) exp (−jAXYKRcz − jKxx − jKyy) (16)

Implementing inverse fast Fourier transforms (IFFT) over ∆KR in Equation (16) to achieve range
compression, we can obtain

S5 (Kx, Ky, Z) = A3sinc (
bcTP

4
(Z + zc − z)) exp (−jAXYKRcz − jKxx − jKyy) (17)

where Z indicates the spatial domain corresponding to variable ∆KR. By multiplying Equation (16)
by the azimuth reference function HAREF(Kx, Ky, z) = exp (jAXYKRcz) and then implementing 2-D
IFFT over the Kx and Ky dimensions, we can get the final imaging result of the targets to be imaged.
To summarize, the flow chart of the proposed algorithm is displayed in Figure 2.
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Figure 2. Flow chart of the near-field wideband 3-D frequency scaling algorithm. FFT = fast Fourier
transform, IFFT = inverse fast Fourier transform, HFS = frequency scaling function, HIFS = inverse
frequency scaling function, HRMC = range migration correction function, HAREF = azimuth
reference function.

3. Results and Analysis

3.1. Computational Complexity

In order to evaluate the computational cost of the 3-D FSA, the echoed data are assumed to be
recorded at Nx × Ny positions in the x × y plane with N f sampling points in the frequency domain.
The computational cost depends on the total number of real multiplications, real additions, and sine or
cosine calculations, as given in Table 1.

Table 1. Computational complexity of the 3-D frequency scaling algorithm. RVP = residual video phase.

Operation Real Multiplications Real Additions Sine and Cosine

2-D azimuth FFT 2Nx Ny N f (log2 Nx + log2 Ny) 3Nx Ny N f (log2 Nx + log2 Ny)

Multiply by HFS 7Nx Ny N f 3Nx Ny N f 2Nx Ny N f

RVP correction 6Nx Ny N f log2 N f + 7Nx Ny N f 9Nx Ny N f log2 N f + 2Nx Ny N f 2Nx Ny N f

Multiply by HIFS 8Nx Ny N f 3Nx Ny N f 2Nx Ny N f

Multiply by HRMC 6Nx Ny N f 2Nx Ny N f 2Nx Ny N f

Range IFFT 2Nx Ny N f log2 N f 3Nx Ny N f log2 N f

Multiply by HAREF 6Nx Ny N f 2Nx Ny N f 2Nx Ny N f

2-D azimuth IFFT 2Nx Ny N f (log2 Nx + log2 Ny) 3Nx Ny N f (log2 Nx + log2 Ny)

Total
4Nx Ny N f (log2 Nx + log2 Ny)+
8Nx Ny N f log2 N f + 34Nx Ny N f

6Nx Ny N f (log2 Nx + log2 Ny)+
12Nx Ny N f log2 N f + 12Nx Ny N f

10Nx Ny N f

The conventional holographic imaging method is RMA and the 3-D image is reconstructed by

σ (x, y, z) = IFTkx ,ky ,kz(STOLTkz(FTX,Y (s(X, Y, t)) exp (jkzzc))) (18)
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where STOLTkz indicates Stolt interpolation over kz since the spatial frequency is non-uniformly
distributed, FTX,Y indicates the 2-D Fourier transform from (X, Y) to (kx, ky), IFTkx ,ky ,kz indicates the
3-D inverse Fourier transform from (kx, ky, kz) to (x, y, z), zc is the center distance of the imaging scene,
σ(x, y, z) is scattering intensity of the target, and s(X, Y, t) is the echo data. The computational
complexity of RMA is mainly limited by the interpolating kernel function and the number of
interpolation points, and the interpolation process implies a far higher computational cost than
the other steps. Compared with 3-D RMA, the proposed 3-D FSA uses only chirp multiplications and
FFTs which have higher efficiency.

3.2. Point Targets Simulations

To demonstrate the effectiveness of the 3-D FSA proposed in the previous section, a simulation
with point targets was performed based on the near-field planar millimeter-wave holographic imaging
model. The center frequency of the transmitted LFMCW is set to 35 GHz and the bandwidth is set
to 5 GHz with 625 steps. The beam width is set to 45 degrees in both x- and y-directions. In order to
satisfy the Nyquist sampling theorem to avoid aliasing in azimuth, the antenna scans along a planar
array of 64 cm × 64 cm with a sample interval of 5 mm. There are five ideal point targets in the image
area with unit scatter intensity and the coordinates of the point targets are shown in Table 2.

Table 2. Coordinates of ideal point targets.

Target Number x-Axis (m) y-Axis (m) z-Axis (m)

1 0 0 0.51
2 −0.1 0 0.51
3 0.1 0 0.51
4 0 −0.1 0.51
5 0 0.1 0.51

Figures 3 and 4 are the 3-D reconstructed images by compensating different center distances zc of
the imaging scene with conventional RMA and proposed FSA, respectively. The dynamic range in
both Figures 3 and 4 is −20 ~ 0 dB. As can be seen, the different compensation distance has almost no
effect on the 3-D imaging results of RMA and FSA. It indicates that the proposed 3-D FSA also has a
large depth of focus.
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Figure 3. 3-D imaging results of the conventional range migration algorithm (RMA) with compensation
distance 0 (left), 0.51 m (middle), and 1.02 m (right).
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Figure 4. 3-D imaging results of the proposed frequency scaling algorithm (FSA) with compensation
distance 0 (left), 0.51 m (middle), and 1.02 m (right).

MMW holographic imaging is concerned with azimuth resolution and range resolution so as to
identify the target. The azimuth resolution of the proposed FSA should be nearly the same as RMA if
the space variation of range cell migration and range cell migration have already been removed. As we
know, the azimuth resolution will reduce if there still exists residual range migration. Taking these
conditions into consideration, we concentrated on the comparison of azimuth profile and range profile
to evaluate the effectiveness of the proposed FSA. It should be noted that the azimuth profile along y
is the same as along x and can be neglected. Figure 5 shows the profile along x in the targets plain by
compensating different center distances of the imaging scene with conventional RMA and proposed
FSA. Figure 6 shows the profile along z of the point target located at (0, 0, 0.51) by compensating
different center distances of the imaging scene with conventional RMA and proposed FSA. Here, there
are eight times the data interpolation in the range profile and no interpolation in azimuth profile. As is
known, RMA is an accurate algorithm with excellent precision and the compensation distance has no
effect on its performance in range resolution and azimuth resolution. We can find that the azimuth
profile and range profile is nearly the same in every compensating distance of the two methods, and it
illustrates that the proposed FSA is comparable in accuracy with conventional RMA.
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Figure 5. Profile comparisons along x with compensating distance 0 (left), 0.51 m (middle), and 1.02 m
(right) by RMA and FSA.
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Figure 6. Profile comparisons along z with compensating distance 0 (left), 0.51 m (middle), and 1.02 m
(right) by RMA and FSA.
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All the results of this paper were obtained on a laptop with Intel core i7-6500U 2.50 GHz central
processing unit (CPU) and 8 GB random access memory (RAM) using Matlab codes. In order to
guarantee the imaging quality of RMA, the interpolation interval was chosen as the spatial frequency
sampling interval of the transmitted signal and the interpolation kernel function was the interp1
function in Matlab with linear mode. The computational time of RMA and FSA were 15.2109 s and
5.4883 s, respectively. Compared with the conventional RMA, the proposed algorithm is more efficient.

To further compare the efficiency of RMA and FSA, the relationship between imaging time and the
number of array elements is shown in Figure 7. N is the number of array elements in both the x cross
range and y cross range. It can be seen that the time cost of the proposed FSA increases slowly with the
increase of the number of array elements, while that of RMA increases dramatically. It indicates that
the proposed FSA is more suitable for MMW holographic imaging when the number of array elements
is large.
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3.3. Experimental Results

In order to validate the behavior of the proposed method in practice, a near-field planar
millimeter-wave holographic prototype imager was developed in the 35 GHz band. The experimental
system parameters were the same as the point targets simulation condition. There was a mannequin
located at a perpendicular distance of zc = 0.43 m away from the measured antenna array. The echo
data was collected by a pair of horn antennas scanning over a square aperture of 64 cm × 84 cm with a
4 mm spatial sampling interval in both x- and y-directions. The two antennas were nearly bound to
each other, so it could be regarded as monostatic, and the transmitting antenna was located at the front
of the receiving antenna so as to avoid signal coupling. The experimental system is shown in Figure 8a
and the mannequin to be imaged is shown in Figure 8b.

Figures 9 and 10 are the 3-D reconstructed images of the mannequin by compensating different
center distances zc of the imaging scene with conventional RMA and proposed FSA, respectively.
The dynamic range in both Figures 8 and 9 is −20 ~ 0 dB. Similar to the point targets simulation results,
the different compensation distance has almost no effect on 3-D imaging results of the mannequin
by RMA and FSA. The experimental results have fully proved that the proposed 3-D FSA has a large
depth of focus.
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Figure 10. Three-dimensional imaging results of the mannequin by proposed FSA with compensation
distance 0 (left), 0.43 m (middle), and 0.86 m (right).

The 3-D imaging results do not include scattering intensity information. To further compare the
imaging quality, Figures 11 and 12 show the front view of the 3-D reconstructed image in Figures 9 and 10,
respectively. It can be seen that the front view of the 3-D imaging results between RMA and FSA are
comparable, and the compensation distance has almost no effect on the imaging results.
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(left), 0.43 m (middle), and 0.86 m (right).

In order to acquire a quantitative analysis of the imaging quality, entropy was introduced to
evaluate the focusing quality of the imaging results. Entropy is widely used in the autofocusing
techniques of SAR imaging [21,22] to evaluate the focusing quality of an SAR image. The smaller the
entropy is, the better the image quality. We calculated the entropy of the above front view images, as
given in Table 3. The entropy of the proposed FSA was a little smaller than that of RMA because of the
truncation effect of the interpolating kernel function in RMA. On the whole, the imaging performance
of the two methods is comparable.

Table 3. Entropy of the front view images.

Compensation Distance (m) RMA FSA

0 8.5002 8.3528
0.43 8.5008 8.3859
0.86 8.5010 8.4195

In order to guarantee the imaging quality of RMA, the interpolation interval was chosen as the
spatial frequency sampling interval of the transmitted signal, and the interpolation kernel function
was the interp1 function in Matlab with a linear mode. The computational time of RMA and FSA were
28.3548 s and 10.8127 s, respectively. Compared with the conventional RMA, the proposed algorithm
is more efficient.
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4. Conclusions

In this paper, a fast 3-D FSA with large depth of focus is presented for near-field planar MMW
holographic imaging. The 3-D FSA takes the cross-range range coupling term, which is neglected in
conventional RMA, into consideration and performs the range cell migration correction for de-chirped
signal without interpolation by using a 3-D frequency scaling operation. The key step of the proposed
algorithm is the introduction of a 3-D frequency scaling operator to eliminate the space variation
of range cell migration, which improves the focusing depth. Simulation and experimental results
have proved that the 3-D FSA proposed in this paper is comparable in accuracy and more efficient
when compared with conventional RMA. Our method can be directly used for safety inspection in a
near-field planar MMW holographic imaging system, and the performance can be further improved
by adopting parallel computation of the graphics processing unit.
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Appendix A

In this section, the derivation of Equation (10) is presented. We have

S (Kx, Ky, ∆KR) = A1 (Kx, Ky, ∆KR) exp (−j( z
AXY

− Rre f )∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc A3

XY
∆K2

R) exp (−j
(K2

x+K2
y)z

2K4
Rc A5

XY
∆K3

R)⊗ exp (−j ∆K2
R

2b )
(A1)

HFS(Kx, Ky, ∆KR) = exp (−j
∆K2

R
2b

(AXY − 1)) (A2)

Multiplying Equation (A1) by Equation (A2), the convolution integral of the product is

S1(Kx, Ky, ∆KR) =
∫

A1(Kx, Ky, ∆L) exp (−j( z
AXY

− Rre f )∆L) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc A3

XY
∆L2) exp (−j

(K2
x+K2

y)z
2K4

Rc A5
XY

∆L3)

× exp (−j ∆K2
R

2b (AXY − 1)) exp (−j (∆KR−∆L)2

2b )d∆L

(A3)

The last two index terms in Equation (A3) can be transformed as

exp (−j ∆K2
R

2b (AXY − 1)) exp (−j (∆KR−∆L)2

2b )

= exp (−j AXY
2b (∆KR − ∆L

AXY
)

2
) exp (j (1−AXY)∆L2

2bAXY
)

(A4)

Substituting Equation (A4) into Equation (A3), we have

S1(Kx, Ky, ∆KR) =
∫

A1(Kx, Ky, ∆L) exp (−j( z
AXY

− Rre f )∆L) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc A3

XY
∆L2) exp (−j

(K2
x+K2

y)z
2K4

Rc A5
XY

∆L3)

× exp (−j AXY
2b (∆KR − ∆L

AXY
)

2
) exp (j (1−AXY)∆L2

2bAXY
)d∆L

(A5)
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Letting ∆L = AXY∆L1, the Equation (A5) can be transformed as

S1(Kx, Ky, ∆KR) =
∫

A1(Kx, Ky, AXY∆L1) exp (−j( z
AXY

− Rre f )AXY∆L1)

× exp (−jAXYKRcz − jKxx − jKyy) exp (j
(K2

x+K2
y)z

2K3
Rc AXY

∆L1
2)

× exp (−j
(K2

x+K2
y)z

2K4
Rc A2

XY
∆L1

3) exp (−j AXY
2b (∆KR − ∆L1)

2)

× exp (j AXY(1−AXY)
2b ∆L1

2)AXYd∆L1

(A6)

Converting Equation (A6) to convolution form, we finally get

S1(Kx, Ky, ∆KR) = A2 exp (−j(z − AXYRre f )∆KR) exp (−jAXYKRcz − jKxx − jKyy)

× exp (j
(K2

x+K2
y)z

2K3
Rc AXY

∆K2
R) exp (−j

(K2
x+K2

y)z
2K4

Rc A2
XY

∆K3
R)

× exp (−j AXY∆K2
R

2b (AXY − 1))⊗ exp (−j AXY∆K2
R

2b )

(A7)
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