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Abstract: Protein kinases orchestrate diverse cellular functions; however, their dysregulation is linked
to metabolic dysfunctions, associated with many diseases, including cancer. Mitogen-Activated
Protein (MAP) kinase is a notoriously oncogenic signaling pathway in human malignancies, where
the extracellular signal-regulated kinases (ERK1/2) are focal serine/threonine kinases in the MAP
kinase module with numerous cytosolic and nuclear mitogenic effector proteins. Subsequently,
hampering the ERK kinase activity by small molecule inhibitors is a robust strategy to control
the malignancies with aberrant MAP kinase signaling cascades. Consequently, new heterocyclic
compounds, containing a sulfonamide moiety, were rationally designed, aided by the molecular
docking of the starting reactant 1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) at the
ATP binding pocket of the ERK kinase domain, which was relying on the molecular extension tactic.
The identities of the synthesized compounds (4–33) were proven by their spectral data and elemental
analysis. The target compounds exhibited pronounced anti-proliferative activities against the MCF-7,
HepG-2, and HCT-116 cancerous cell lines with potencies reaching a 2.96 µM for the most active
compound (22). Moreover, compounds 5, 9, 10b, 22, and 28 displayed a significant G2/M phase arrest
and induction of the apoptosis, which was confirmed by the cell cycle analysis and the flow cytometry.
Thus, the molecular extension of a small fragment bounded at the ERK kinase domain is a valid tactic
for the rational synthesis of the ERK inhibitors to control various human malignancies.

Keywords: extracellular signal-regulated kinases (ERK); anti-proliferative; rational design;
sulfonamides; pyrazole; pyrimidine

1. Introduction

Protein kinases perform central regulatory roles in cell biology, namely: cell growth, proliferation,
survival, differentiation, and metabolic functions. However, their dysregulation mediates the
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pathogenesis of many disorders [1,2]. Accordingly, protein kinases are established as promising
druggable targets for controlling hyperproliferative diseases, including human cancers.

The Mitogen-Activated Protein (MAP) kinase is a pivotal oncogenic module in many human
malignancies, which transmits mitogenic extracellular signals to intracellular effector targets [3].
The MAP kinase signaling pathway is triggered by diverse transmembrane receptors as epidermal
growth factor (EGFRs) and hepatocyte growth factor (HGFR) receptors. Upon activation via specific
ligands, these cell surface receptors become autophosphorylated at the intracellular domains, which
is proceeded by their function as a docking scaffold for downstream adaptor proteins as guanine
nucleotide exchange factors (GEFs). The preceding factors mediate the activation of a small GTPases rat
sarcoma (Ras), located in the inner leaflet of the cell membrane. The Ras-GTP stimulates the dimerization
and activation of downstream protein-serine/threonine kinase Raf (rapidly accelerated fibrosarcoma).
As a result, the Raf catalyzes the phosphorylation and activation of MEK1/2, which sequentially,
invokes the catalysis of the phosphorylation of ERK1/2 (the extracellular signal-regulated kinases).
ERK1/2 are serine/threonine kinases that are able to accelerate the response of the phosphorylation of
numerous diverse cytosolic and nuclear mitogenic proteins, as RSK1 (ribosomal S6 kinase 1). Therefore,
the dysregulation of the MAP kinase pathway, either through the overexpression and/or activation of
the oncogenic extracellular receptors or the cytoplasmic downstream effectors-Raf, MEK, and ERK,
would promote the uncontrolled proliferation characteristic of cancerous cells [4].

Due to the recurrent MAP kinase-dependent malignancies, a substantial effort has been dedicated
to the discovery of small molecule ERK1/2 inhibitors. Through this vigor, it has led to the unearthing
of approximately 35 small molecule ERK1/2 inhibitors in different phases of clinical trials [5]. Most of
these inhibitors encompass nitrogen-containing heterocyclic scaffolds with amide functionality that
connect the heterocyclic ring system.

Disparate from the preceding reports, our report administers the incorporation of the sulfonamide
moiety. Sulfonamides comprise of a remarkable category of medicinally efficient derivatives and
possess several biological activities, such as antimicrobial [6–10], antiviral [11], insulin-releasing [12–14],
anti-carbonic anhydrase [15–17], hypoglycemic [18], anti-inflammatory [19], antiglaucoma [20,21],
anti-tumor [22–24] activities and effects. Additionally, pyrazole and pyrimidine nuclei are
pharmacophoric scaffolds and exemplify a group of heterocyclic compounds with a large range
of biological applications, including: antimicrobial [25–36], anticancer [37–46], analgesic and
anti-inflammatory [47,48], antileishmanial [49–51], and antimalarial activities [50–52].

Herein, we register a molecular extension strategy of
1-(4-((4-methylpiperidin-1-yl)sulfonyl)-phenyl)ethan-1-one, aided by the molecular docking
at the ERK kinase domain. The reactivity of the acetyl group was employed as a starting point for the
extension towards the core of the ATP binding site of the ERK kinase pocket. The diverse pyrazole,
pyrimidine, triazolo [4,3-a]pyrimidine, pyrazolo[1,5-a]pyrimidine, and pyrido[2,3-d]pyrimidine
derivatives were synthesized and presented excellent binding poses as well as interactions with critical
amino acids at the kinase domain. Moreover, they exhibited significant anti-proliferative activities
against three cancerous cell lines with potencies reaching low micromolar levels. The most active
molecules were evaluated for their impacts on cell cycle distribution and induction of apoptosis in
multiple cancerous cell lines.

2. Results and Discussion

2.1. Chemistry

The chemistry employed for the preparation of the novel target molecules and the general synthetic
pathways are illustrated in Schemes 1–5. Through this work, we illustrate a proficient methodology
for the production of several new heterocycles, containing a sulfonamide moiety, exploiting
1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) as a precursor. The aforementioned
derivative was generated through the reaction of 4-acetylbenzenesulfonyl chloride (1) [53] with
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4-methylpiperidine (2). The condensation of compound 3 with dimethylformamide-dimethylacetal
(DMF-DMA) under reflux conditions in dry xylene afforded the corresponding enaminone (4) while the
reaction of 3 with phenylhydrazine in an ethanol/acetic acid solution, delivered the phenylhydrazone
derivative (5).

The reaction of the enaminone (4) with phenylhydrazine in the refluxing EtOH/AcOH offered
the benzenesulfonyl-piperidine molecule (6). Alternatively, derivative 6 could be attained via the
interaction of compound 5 with DMF-DMA in boiling xylene, as portrayed in Scheme 1. The structural
composition and purity of the yielded molecules 4–6 were verified through their spectral data. The IR
spectra of the molecules 3 and 4 validated the existence of the distinctive CO absorption bands at the υ
1690 cm−1, υ 1649 cm−1, and NH and at υ 3332 cm−1 for compound 5.

On the other hand, the 1H NMR spectra of derivatives 3–6 divulged the singlet resonances of the
acetyl, methyl, –N(Me)2, and pyrazol protons at δ 2.6, δ 2.3, δ 3.0, δ 3.2, δ 6.8, and δ 7.8 ppm, respectively.
The 13C NMR spectra of derivatives 3 and 4 displayed signals, resonating at δ 26.9 and δ 45.1 ppm,
which is attributable to the acetyl and –n(Me)2 carbons. Furthermore, enaminone (4) was assigned
an E-configuration, established on its 1H NMR spectrum, which disclosed two singlet signals at δ 5.9
and δ 7.8 ppm that correspond to the two trans-olefinic protons. The coupling constant of the doublet
signals for the olefinic protons equate to 16 Hz, which is associated with E-isomer. Furthermore, the MS
spectra of compounds 3–6 provided the conclusive affirmation for their structures.
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The interaction of enaminone (4) with guanidine hydrochloride in a refluxing ethanol/acetic acid
atmosphere in the incidence of anhydrous potassium carbonate presented the sulfonyl pyrimidine
derivative (9) while refluxing compound 4 with the principal aromatic amines, specifically: p-toluidine
and p-anisidine, in an ethanolic/acetic acid mixture produced sulfonamide derivatives (10a, 10b),
Scheme 2.
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The formation of 9 was presumed to ensue through the addition of the amino moiety of guanidine to
an α,β-unsaturated group of enaminone 4 to generate the analogous acyclic non-isolable intermediate
7, followed by the exhibition of the intramolecular cyclization and subsequent aromatization by
the elimination of water and the dimethylamine compounds to deliver the concluding outcome 9,
Scheme 2. Meanwhile, the 1H NMR spectra of molecules 10a, 10b advocates that their demonstrated
structure is Z-form, in which the coupling constant equates to 8 and 7.6 Hz, respectively. Additionally,
the intramolecular hydrogen bonding afforded the stability of the Z-form, Scheme 2.

Enaminones formerly have been employed as prospective precursors for fused heterocyclic
sets, when responding with heterocyclic amines [54–57]. Consequently, the action
of enaminone (4) with several heterocyclic amines, such as 3-amino-1H-1,2,4-triazole,
5-phenyl-2H-pyrazol-3-ylamine, and 5-amino-3-methylthiopyrazole-4-carbonitrile in acetic acid
resulted in new ring systems of triazolo[4,3-a]pyrimidine (16), pyrazolo[1,5-a]pyrimidine (22), and
pyrazolo[1,5-a]pyrimidine-3-carbonitrile (28), respectively, Scheme 3.

In order to yield the molecules 16, 22, and 28, two promising methods have been proposed
to develop a credible mechanistic pathway, as illustrated in Scheme 3. Through the first course,
the exocyclic amino moiety attacks the carbonyl group to afford the intermediates 11, 17, and 23,
which is pursued by the prior methodology of cyclization to afford the final products 13, 19, and 25.
Alternatively, the second route utilizes the Michael addition of the nucleophilic exocyclic amino moiety
to the enaminone double bond, which allows the introduction of the intermediates 14, 20, and 26,
followed by dehydrated cyclization to produce 16, 22, and 28, as exemplified in Scheme 3. The latter
path has been unambiguously substantiated through the 1H NMR spectra, demonstrating two doublets
in the regions δ 7.60–7.94 and δ 8.35–9.03 ppm, and whose coupling constant, J = 12–4.4 Hz, has been
designated as a characteristic for the two vicinal H-5 and H-6 in the pyrimidine moieties [58,59].

In addition, the behavior of enaminone (4) towards the diazotized amino heterocyclic
molecules was scrutinized. Subsequently, the reaction of 4 with 4-(4-(hydroxyl, methyl or
chloro)phenylazo)-1H-pyrazole-3,5-diamine [60] in a refluxed acetic acid solution, in the presence
of fused sodium acetate, generated the corresponding pyrazolo[1,5-a]pyrimidine derivatives (31a–c),
as shown in Scheme 4.

The structural composition of 31a–c was established on the foundation of their elemental analysis
and spectral data, which will exclude the other possible structures (29). The IR spectra of compounds
31a–c confirmed the absence of carbonyl absorption band as well as the appearance of the OH band
at υ 3438 cm −1 for compound 31a. The 1H NMR spectra of derivatives 31a, b exhibited a singlet
at δ 9.9 ppm (exchangeable by D2O), due to the hydroxyl group; two doublet signals at δ 7.3 and
8.6 ppm, attributable to the pyrimidine H-5 and H-6, for compound 31a; and a singlet resonance at
δ 2.4 ppm, linked to the new methyl moiety, for compound 31b. Moreover, the MS spectra of 31a–c
provided verification for the structural data of 31a–c. Finally, the reaction of enaminone (4) with
6-Amino-2-thioxo-2,3-dihydro-1H-pyrimidine-4-one in acetic acid stemmed the synthesis of derivative
(33), as displayed in Scheme 5.

In the above Scheme, compound (33) developed as a product of the cyclization of the intermediate
32, which was preceded by the Michael addition procedure, rather than molecule (34). The identity of
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33 was confirmed through its elemental analyses and spectral data. The observed 1H-NMR spectrum
declared two singlet peaks at δ 12.65 and δ 13.24 ppm, assigned to the 2NH protons, which is only
obtainable from isomer 33, whereas the mass spectra revealed a peak at 416, comparable to the
molecular ion value.

2.2. Biological Activity

In Vitro Anti-Proliferative Activity

The anti-proliferative character of all the target derivatives 3–6, 9, 10, 16, 22, 28, 31, and 33 were
evaluated in vitro against three human tumor cell lines, mammary gland breast cancer (MCF-7),
human colon cancer (HCT-116), and liver cancer (HepG-2), in comparison with Doxorubicin and
Vinblastine as reference drugs, utilizing the standard sulphorhodamine B (SRB) assay [61]. The in vitro
anti-proliferative examination was carried out under several concentrations, 0–100 µM, where the
obtained data were expressed as proliferation inhibitory concentration (IC50) values, Figure 1 and
Table 1.
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HepG-2 tumor cells.

Table 1. The IC50 values of the target compounds against the MCF-7, HCT-116, and HepG-2 lines.

Compound
IC50 (µM) a

MCF-7 HCT-116 HepG-2

3 100 ± 0.12 85.4 ± 0.03 84.52 ± 0.12
4 27.05 ± 0.35 25.44 ± 0.16 26.27 ± 0.5
5 9.96 ± 0.2 6.92 ± 0.11 2.56 ± 0.14
6 22.28 ± 0.13 18.56 ± 0.12 16.78 ± 0.11
9 10.43 ± 0.12 10.14 ± 0.05 4.36 ± 0.02

10a 58.97 ± 0.3 48.48 ± 0.6 36.94 ± 0.1
10b 9.89 ± 0.4 7.09 ± 0.1 5.72 ± 0.12
16 100 ± 0.13 97.22 ± 0.12 97.05 ± 0.11
22 7.84 ± 0.02 7.28 ± 0.1 2.96 ± 0.12
28 8.19 ± 0.03 5.38 ± 0.2 4.21 ± 0.01
31a 14.69 ± 0.06 10.37 ± 0.18 9.36 ± 0.16
31b 45.75 ± 0.1 42.08 ± 0.04 35.23 ± 0.02
31c 57.61 ± 0.11 42.58 ± 0.13 31.19 ± 0.6
33 15.62 ± 0.12 14.07 ± 0.13 14.41 ± 0.11

Vinblastine 5.83 ± 0.13 3.2 ± 0.09 7.35 ± 0.42
Doxorubicin 8.19 ± 0.72 6.74 ± 0.68 7.52 ± 0.51

a IC50 values expressed in µM as the mean values of triplicate wells from at least three experiments and are reported
as the mean ± standard error.
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The toxicity assay explicated that the novel compounds demonstrated superb to fair growth
inhibitory features towards the screened cell lines. The assessment of the anti-proliferative behavior on
the tumor cells revealed that HepG-2 administered the highest susceptibility, regarding the impact of
the synthesized molecules. Meanwhile, derivatives 22 and 28 possess the most potency in evaluation
against MCF-7, which are competitive and almost equipotent/equipotent with Doxorubicin, respectively.
Furthermore, in comparison to the HCT-116 cell line, molecule 28 exhibited the highest potent behavior
while molecules 5, 10b, and 22 were almost equipotent as Doxorubicin. Alternatively, the prepared
molecules 5, 22, 28, 9, and 10b presented a more significant impact of against HepG-2 in assessment
against Vinblastine and Doxorubicin, whereas derivative 31a was almost equipotent as Vinblastine and
Doxorubicin. The remaining molecules demonstrated modest cytotoxicity in evaluation to Vinblastine
and Doxorubicin.

2.3. Molecular Docking and SAR Studies

Compound 3, (-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one, was docked at the ATP
binding pocket of the ERK1 kinase domain (PDB code: 6MGD). As depicted in Figure 2a, this molecule
was anchored at the kinase domain through a hydrogen bond with a side-chain guanido group of Arg
67. The 4-methylpyridinyl- moiety was imbedded in a hydrophobic sub-pocket created by amino acids
Ala 35, Pro 58, and Try 64. Examining the binding pocket by the surface representation of the ligand
binding site (Figure 2b) revealed that it was relatively twisted and elongated. The 4-methylpyridinyl-
moiety was oriented towards the terminal of the pocket while the phenyl ethan-1-one moiety was
directed inwards. This binding pose sparked a molecular extension hypothesis as to fill the unoccupied
pocket with moieties that are able to create new molecular interactions which, consequently, improve
the overall binding affinity.Int. J. Mol. Sci. 2019, 20, 5592 8 of 27 
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Figure 2. The virtual binding mode of compound 3 at the extracellular signal-regulated kinase 1 (ERK1)
kinase domain. (a) The molecular interactions of compound 3 with amino acid residues at the binding
pocket. (b) The surface representation of the binding mode of compound 3, depicting the rational of
the molecular extension (indicated by the arrow).

The chemically reactive acetyl group of molecule 3 was employed as a precursor for its
extension towards the deep end of the pocket. We adopted Schemes 1–5 for synthesizing
monocyclic and fused heterocyclic moieties, linked at the phenyl group’s para position for
3. In the first Scheme, 3 was condensed with dimethylformamide-dimethylacetal (DMF-DMA)
to afford (E)-3-(dimethylamino)-1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)prop-2-en-1-one (4).
Subsequently, the anti-proliferative activity of the enaminone (4) was assessed in vitro against three
cancerous lines (breast cancer “MCF-7”, liver cancer “HepG-2”, and colon cancer “HCT-116”) and to
the parent (3). Results divulged that the bioactivity of 4 was superior by more than 3-folds, reaching
approximately 25 µM against HCT-116, in appraisal to 85 µM for 3 (Table 1). Grounded on these
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outcomes, a further extension of 4 was fashioned via the reaction of 3 with phenylhydrazine to allow
4-methyl-1-[4-(1-phenyl-1H-pyrazol-3-yl)benzenesulfonyl]piperidine (6). However, the aforesaid
extension had not enhanced the bioactivity as expected against the exploited tumor cell lines. In an
additional attempt, derivative 3 was arranged to react with phenylhydrazine to yield phenylhydrazone
derivative (5). The anti-proliferative activity of 5 was significantly potentiated against the evaluated
carcinogenic lines, attaining 2.5 µM in the HepG-2 cells.

In Scheme 2, we reacted enaminone (4) with guanidine hydrochloride
and diverse primary aromatic amines, p-toluidine and p-anisidine, to
deliver4-[4-(4-methyl-piperidine-1-sulfonyl)-phenyl]pyrimidine-2-yl amine (9) and the
4-(3-((p-substituted amino) sulfonamide derivatives (10a,b), respectively. The pooled data
from the anti-proliferative analyses disclosed that molecule 9 presented an improvement on bioactivity
in comparison to molecule 4; however, it was comparable to the potency of the pyrazolo derivatives (6).
Interestingly, 10a and 10b exhibited differential anti-proliferative potencies against the malignant cells:
10b was relatively 6-folds higher than 10a in bioactivity. In an endeavor to rational these disparate
potencies, both derivatives were docked at the ATP binding site of the ERK kinase domain, and the
binding poses were carefully examined. 10b maintained the original binding pose of fragment 4 with
an extension directed to the core of the pocket (Figure 3a). The p-OMe group was well-fitted into a
hydrophobic sub-pocket, created by the side-chains of Ile 31, Ala 52, Leu 107, and Met 108. The extra
oxygen-bridge in compound 10b in assessment with 10a aided in the placement of the attached methyl
group to the vicinity of a hydrophobic sub-pocket at the back of the binding site (Figure 3b).Int. J. Mol. Sci. 2019, 20, 5592 9 of 27 
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Figure 3. The virtual binding mode of compound 10b at the ERK1 kinase domain. (a) The superposition
of 10b with 4 at the binding pocket, with the molecular interactions of 10b with nonpolar amino acid
residues. (b) The surface representation of the binding mode of 10b, portraying the fitting of p-methoxy
at a hydrophobic sub-pocket.

The third scheme demonstrates the aim of constructing fused azolopyrimidines ring systems
through the reaction of enaminone (4) with different 2-amino di- and triazoles. The diverse products
16, 22, and 28 were appraised for their anti-proliferative potencies against the screened cell lines.
Intriguingly, the bioactive behavior of 16 almost vanished, extending to approximately 100 µM in all
cancerous cells. This is a valid indication that the fused triazolopyrimidine ring system is not an optimal
scaffold for the molecular extension strategy. On the contrary, the pyrazolo[1,5-a]pyrimidine ring system
represented by compounds 22 and 28 illustrated a significant development in the anti-proliferative
potencies. Among all the synthesized molecules, compound 22 presented the highest potency in
evaluation against HepG-2 cells with an IC50 of 2.96 µM, the most potent derivative overall. To virtually
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rational the higher potency of 22, a molecular docking experiment was launched at the binding pocket
of ERK. As portrayed in Figure 4a, derivative 22 maintained the original binding pose of precursor 3
(displayed by the overlay of 3 and 22) with a molecular extension directed deeply to the pocket core.
Additionally, the 2-pyrazolo[1,5-a]pyrimidine ring system exhibited a critical π–π interaction with the
phenolic side-chain of Try36, located at the glycine rich ATP-phosphate binding loop (p-loop) within the
small n-terminal lobe of the kinase domain. The assignment of the pyrazolo[1,5-a]pyrimidine scaffold
to the attached phenolic ring enabled a cation –π interaction with the side-chain ammonium group of
Lys 54 (Figure 4b). This amino acid residue is renowned in the anchorage of non-transferable α- and
β-phosphates of ATP during the kinase reaction [62]. Certainly, these multiple molecular interactions
of 22 with critical residues at the kinase domain would improve the overall binding affinity, which is
translated as a noteworthy enhancement of the anti-proliferative potency. Subsequently, the virtual
binding pose of 22 and X-ray binding pose of the co-crystalized ligand have been analyzed at the
catalytic pocket (Figure 5). 22 was almost overlaid with the X-ray co-crystalized ligand and revealed a
shallow U-shaped conformation, which substantiates the ERK inhibition hypothesis. However, the
X-ray co-crystalized ligand was expanding in the pocket, occupying more space, in comparison to our
product 22. This could, at least, in part, justify the lower micromolar level of 22.
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Figure 4. The virtual binding mode of compound 22 at the ERK1 kinase domain. (a) The surface
representation, illustrating that 22 maintained the original binding pose as 3, where 22 was extending
deep in the pocket. (b) The interactions of 22 with amino acid residues at the kinase domain.
Pyrazolo[1,5-a]pyrimidine exhibited a π-π interaction with the phenolic side-chain of Try36 and a
cation-π interaction of the attached phenolic ring with the side-chain ammonium group of Lys54.

By the fourth scheme, the enaminone 4 was reacted with different diazotized amino pyrazolo
derivatives to yield the corresponding diazotized pyrazolo[1,5-a]pyrimidine derivatives (31a–c).
Furthermore, all the furnished products were assessed in the in vitro anti-proliferative platform.
The results indicated that derivative 31a, which bears a para phenolic OH, exhibited the highest potency
in this series with IC50, reaching 9.36 µM, against the HepG-2 line, in appraisal with 35 and 31 µM for
31b “bearing para CH3” and 31c “bearing para Cl”, respectively. This truly denoted the preference of a
polar electron-donating group at the para position, which is capable of increasing the π cloud on the
phenyl ring as well as forming hydrogen bonds with the nearby amino acids.

Lastly, constructing a fused 6 + 6 heterocyclic ring system was targeted through
the reaction of enaminone 4 with the aminopyrimidine-4-one derivative to yield the
corresponding pyrido[2–d]pyrimidin-4-one (33). The anti-proliferative assessment of 33
against the examined cancerous cell lines suggested a considerable improvement in the
potency, relative to its precursor enaminone 4 (Table 1); however, 33 does not exceed the
potency 22. Thereby, a conclusion was formulated, in which the molecular extension of
1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) with the fused 5 + 6 heterocyclic ring
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systems, bearing an aromatic set, would be the optimal extension strategy towards cultivating the
binding to the ERK kinase domain.
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Figure 5. The overlay of the virtual binding mode of 22 (represented by ball and stick) and the
X-ray binding mode of the co-crystalized ligand (represented by sticks) at the kinase domain. Both
compounds revealed shallow U-shaped conformations with an X-ray co-crystalized ligand extending
and occupying more space than 22.

2.4. Analysis of Cell Cycle Distribution

The progressive cell cycle is considered a hallmark of cancer. Though normal cells have restrictions
in cell cycle progression, allowing them to terminate cellular division under abnormal conditions
(as metabolic imbalance or DNA damage), cancerous cells overcome checkpoints and proceed with
cycle progression. Thus, the inhibition of the cell cycle is a promising therapeutic strategy for combating
cancer, evidenced by the incidence of many drug candidates in numerous phases of clinical trials [5].

To gauge the dynamics of the cell cycle regulations during the remedy of cells by the active
molecules (5, 9, 10b, 22, 28), the flow cytometric analyses were performed after the treatment of the
malignant cell lines with the desired compounds at their corresponding IC50 values. The pooled
results demonstrated a normal cell cycle distribution pattern in the DMSO-treated cells, where
approximately 52% of the cells were in the G1 phase, 37% were in the S phase, 7% in the G2/M
phase, and 2% were in the pre-G1 phase (Figure 6). In contrast, the standard positive control drugs
(Colchicine, Vinblastine, and Doxorubicin) initiated a substantial G2/M phase arrest in the three
cancerous lines. The phenylhydrazone derivative (5) stemmed 3.6, 2, and 2.3 fold surges in the
cell percentage of the G2/M phase in MCF-7, HepG-2, and HCT-116 in assessment with the control
cells. The 2-amino pyrimidine derivative 9 ensued a 39%, 21%, and 18% growth in cell population
in the G2/M phase in MCF-7, HepG-2, and HCT-116, respectively. The enaminone derivative 10b
was relatively less pronounced than 9 towards the induction of the G2/M phase arrest; yet, the IC50

values of both compounds was comparable in their anti-proliferation assays. As anticipated, 22,
presenting the most potency, was the leading molecule for the generation of the G2/M phase arrest with
MCF-7 being the most sensitive (45.95%) and HCT-116 being relatively resistant (24.09%). The other
active (methylthio)pyrazolo[1,5,b]pyrimidine-3-carbonitrile derivative (28) established a relatively
lesser potency in the stimulation of the G2/M cell population phase, when appraised against its
counterpart from the same scheme (22). This highlights the focal role of the substituents, attached to
the pyrazolo[1,5,b]pyrimidine scaffold on the cell cycle distribution.
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Figure 6. The effects of the DMSO, the standard anticancer drugs, and the synthesized compounds on
the cell cycle distribution of the (a) MCF-7, (b) HCT, and (c) HepG-2 cancer cell lines. (i) FACS-mediated
cell cycle analysis, (ii) A histogram shows the percentages of the DNA content in different cell
cycle phases.

2.5. Analysis of Cell Apoptosis

The aberrant activation of the ERK signaling pathway has been documented to overcome apoptosis,
prompted by an extensive array of stimuli, such as tumor necrosis factor (TNF) [63], radiation [64],
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and chemotherapeutic agents [65]. The mechanism by which the ERK activation inhibits cell apoptosis
is complicated, as it is depending on cell-type and other cellular regulatory effects. Consequently,
the inhibition of the ERK activity by small molecules develop apoptotic induction. A recognized
element of apoptotic cell death is the externalization of the phosphatidylserine (PS) residues from the
plasma membrane’s internal leaflet to the external ones (known as the membrane lipid scrambling),
thereby, facilitating the phagocytic recognition, engulfment, and destruction of the formed apoptotic
bodies. Annexin-V is a protein, which specializes in binding to the phosphatidylserine (PS) at the cell
surface, and the recognition of the externalized PS (apoptotic cells as well), through the means of the
flow cytometric assay, is acquired via the authorization of the fluorescent labelling of the Annexin-V.
To accurately distinguish amongst cells undergoing early apoptosis and late apoptosis/necrosis,
the Annexin-V is employed in conjunction with propidium iodide “PI” (a sensor of living/dead cells,
which gages membrane integrity).

In the present report, the Annexin V/PI double staining flow cytometric assay was exercised to
assess the impact of the most active compounds on cell apoptosis. Cells were treated with DMSO
(as a negative control); Colchicine, Vinblastine, Doxorubicin (as positive standard anticancer drugs);
and the analyzed derivatives (5, 9, 10b, 22, 28) at their corresponding IC50 values. The outcomes are
processed and summarized in Figure 7. The DMSO-treated cells disclosed the minimal percentage of
total apoptosis, attaining 2.14% of the entire cell population in MCF-7 cells. Alternatively, the positive
control-treated cells displayed significant elevated percentages of total apoptotic cell, up to 31.28,
for the HepG-2 cells, remedied with Doxorubicin. Molecule 5 was the most effective against the
MCF-7 line with a 14.25% apoptosis induction while being the least effective against HepG-2 with
only 9.41%. The 2-amino pyrimidine derivative 9 stimulated higher comparable percentages of
cell apoptosis in both the MCF-7 and HepG-2 cells with the production of minimal percentages
for the HCT cells. Intriguingly, 9 was verified as the highest active molecule in the cell apoptosis
evaluation; however, this case was not witnessed in the anti-proliferative assay. The deduction that
can be constructed, established on these results, is that derivative 9 centers on targeting a potential
apoptotic pathway rather than the ERK-mediated signaling cascade. Furthermore, compound 10b
was most effective against the MCF-7 cells, causing a 12.41% initiation of cell apoptosis with its least
exhibition of 8.17% for HCT-116. The most potent anti-proliferative derivative (22) demonstrated
extensive sensitivity: a 17.55% apoptosis induction (highest) for MCF-7, a moderate stimulation of cell
apoptosis for HepG-2, and a 5.77% generation of apoptotic cell death (lowest) for HCT-116. Lastly, the
analyzed molecule 28 illustrated a relatively lesser induction of cell apoptosis in assessment with 22;
however, both compounds possess the same imidazole[1,5,a]pyrimidine scaffold in the extension site.
The aforementioned data suggests that the function groups, attached to the scaffold, performs a pivotal
role in molecular interactions with biological targets.
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Figure 7. The effects of the DMSO, the standard anticancer drugs, and the synthesized compounds
on the cell apoptosis of the (a) MCF-7, (b) HCT, and (c) HepG-2 cancer cell lines. (i) Scatter plots of
Annexin-V FITC/PI cell staining. (ii) Histograms for the percentages of the cell apoptosis and necrosis.

3. Materials and Methods

3.1. General Methods

All melting points, measured with a SMP50 Digital APP (Bibby Scientific, Staffordshire, UK)
120/230V, are uncorrected. The IR spectra (KBr, υ cm−1) were recorded on the CARY 630 FT-IR
spectrometer (Agilent, Santa Clara, CA, USA). The pre-coated silica gel plates (silica gel 0.25 mm,
60 G F 254; Merck, Germany) were employed for thin layer chromatography. The 1H/13C NMR
(400/101 MHz) spectra were measured in (DMSO-d6) or (CDCl3) on a bruker NMR spectrometer
(Bruker, Billerica, MA, USA). The mass spectra were attained through a GC Ms-QP 1000 EX mass
spectrometer (Shimadzu, Kyoto, Japan) at 70 eV. The elemental analyses were executed on a Carlo
Erba 1108 Elemental Analyzer (Heraeus, Hanau, Germany) at the Micro analytical Research Center,
Faculty of Science, Cairo University (Cairo, Egypt). All of the compounds were within ± 0.4% of the
theoretical values.

3.1.1. 1-[4-(4-Methyl-piperidine-1-sulfonyl)phenyl]ethanone (3)

A mixture of 4-acetylbenzensulfonyl chloride (1) (0.01 mol), 4-methyl piperidine (2) (0.01 mol), and
ether (50 mL) in the presence of pyridine (0.5 mL), as a catalyst, was stirred for 3 h at room temperature.
The resulting solid was filtered, washed with dilute hydrochloric acid (37%), and recrystallized from
ethanol to afford compound 3. The physical and spectral data of compound 3 was as illustrated:

Colorless crystals; yield 65%; m.p. 120–122 ◦C; IR (KBr) υ (cm−1): 3075 (Ar–CH), 2928 (Ali–CH),
1690 (C=O), 1338, 1163 (SO2); 1H–NMR (400 MHz, CDCl3) δ: 0.9 (d, 3H, CH3), 1.3 (br s, 2H, CH2), 1.6
(br s, 2H, CH2), 1.8 (br s, 1H, CH), 2.3 (t, 2H, CH2–N–CH2), 2.6 (s, 3H, CH3CO), 3.7 (t, 2H, CH2–N–CH2),
7.9 (dd, 1H, J = 9.2, 4.4 Hz, AB–Ar–H), 8.1 (dd, 1H, J = 9.2, 4.8 Hz, AB–Ar–H); 13C-NMR (101 MHz,
DMSO-d6) δ: 21.4, 26.9, 30.1, 30.1, 33.3, 46.4, 46.4, 127.9, 127.9, 128.8, 128.8, 140.0, 140.5, 196.9; MS m/z
(%): 281 (M+, 30.2); Anal. Calcd for C14H19NO3S (281.37): C, 59.76; H, 6.81; N, 4.98; O; Found: C, 59.68;
H, 6.72; N, 4.90%.

3.1.2. (E)-3-(Dimethylamino)-1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)prop-2-en-1-one (4)

A mixture of 1-[4-((4-methylpiperidin-1-yl)sulfonyl)phenyl]ethenone (3) (0.01 mol) and
dimethylformamide-dimethylacetal (DMF–DMA) (0.01 mol) in dry xylene (30 mL) was heated under
reflux conditions for 5 h. The isolated solid was filtered off, washed with ethanol, and recrystallized
from ethanol/benzene to yield molecule 4. The physical and spectral data of compounds 4 was
as displayed:
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Orange crystals; yield 92%; m.p. 212–214 ◦C; IR (KBr) υ (cm−1): 3050 (Ar–CH), 2927 (Ali–CH),
1649 (C=O), 1335, 1159 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.1 (br s, 2H, CH2),
1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.2 (t, 2H, CH2–N–CH2), 3.0, 3.2 (2s, 6H, NMe2), 3.6 (t, 2H,
CH2–N–CH2), 5.9, 7.8 (dd, 2H, J = 16 Hz, olefinic CH=CH), 7.8 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.1 (dd,
1H, J = 8, 1.2 Hz, AB–Ar–H); 13C-NMR (101 MHz, DMSO-d6) δ: 21.8, 29.7, 29.7, 33.3, 37.7, 45.1, 46.5,
46.5, 91. 5, 127.8, 128.2, 128.4, 129.5, 137.6, 144.5, 155.5, 184.7; MS m/z (%): 336 (M+, 35.51); Anal. Calcd
for C17H24N2O3S (336.45): C, 60.69; H, 7.19; N, 8.33; O; Found: C, 60.61; H, 7.10; N, 8.26%.

3.1.3. (E)-4-Methyl-1-((4-(1-(2-phenylhydrazineylidene)ethyl)phenyl)sulfonyl)piperidine (5)

A mixture of 3 (0.01 mol) and phenylhydrazine (0.01 mol) in an ethanol/acetic acid solution
(40 mL) (1:1) was refluxed for 4 h, during which a crystalline solid was separated. The separated
solid was filtered off, washed with ethanol, and recrystallized from ethanol to produce compound 5.
The physical and spectral data of derivative 5 was as follows:

Orange crystals; yield 91%; m.p. 176–178 ◦C; IR (KBr) υ (cm−1): 3332 (NH), 3056 (Ar–CH), 2927
(Ali-CH), 1649 (C=O), 1334, 1163 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s,
2H, CH2), 1.6 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.2 (t, 2H, CH2–N–CH2), 2.3 (s, 3H, CH3C=N), 3.6 (t,
2H, CH2–N–CH2), 6.8–7.3 (m, 5H, phenyl ring), 7.7 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.0 (dd, 1H, J = 8 Hz,
AB–Ar–H), 9.6 (s, 1H, NH); MS m/z (%): 371 (M+, 48.51); Anal. Calcd for C20H25N3O2S (371.50): C,
64.66; H, 6.78; N, 11.31; O; Found: C, 64.72; H, 6.83; N, 11.37%.

3.1.4. 4-Methyl-1-[4-(1-phenyl-1H-pyrazol-3-yl)benzenesulfonyl]piperidine (6)

Procedure (a): A mixture of enaminone (4) (0.01 mol) and phenylhydrazine (0.01 mol) in a solution
of ethanol/acetic acid (40 mL) (1:1) was refluxed for 3 h. Upon cooling, the solid, which formed, was
recrystallized from ethanol to generate compound 6.

Procedure (b): A solution of (E)-4-methyl-1-((4-(1-(2-phenylhydrazineylidene)ethyl)phenyl)
sulfonyl)piperidine (5) (0.01 mol) in dry xylene (30 mL) and dimethylformamide-dimethylacetal
(DMF-DMA) (0.01 mol) was refluxed for 5 h. Pursuing the same preceding methodology, molecule 6
was formed (m.p. and mixed m.p.). The physical and spectral data of compound 6 was as presented:

Pale yellow crystals; yield 86%; m.p. 140–142 ◦C; IR (KBr) υ (cm−1): 3068 (Ar–CH), 2927 (Ali–CH),
1338, 1163 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.1 (br s, 2H, CH2), 1.6 (br s, 1H,
CH), 1.7 (br s, 2H, 2CH2), 2.2 (t, 2H, CH2–N–CH2), 3.6 (t, 2H, CH2–N–CH2), 6.8 (dd, 1H, J = 4 Hz,
pyrazole ring), 7.3 (dd, 1H, J = 4, AB–Ar–H), 7.4–7.5 (m, 5H, phenyl ring), 7.7 (dd, 1H, J = 4, AB–Ar–H),
7.8 (dd, 1H, J = 4 Hz, pyrazole ring); MS m/z (%): 381 (M+, 100); Anal. Calcd for C21H23N3O2S (381.49):
C, 66.12; H, 6.08; N, 11.01; O; Found: C, 66.05; H, 6.00; N, 10.92%.

3.1.5. 4-[4-(4-Methyl-piperidine-1-sulfonyl)-phenyl]pyrimidin-2-ylamine (9)

A mixture of enaminone (4) (0.01 mol) and guanidine hydrochloride (0.01 mol) in ethanol/acetic
acid (30 mL) and anhydrous potassium carbonate (2 gm) was inserted. The resulting mixture was
refluxed for 6 h, allowed to cool in room temperature, and diluted with water (20 mL). The solid
product formed was collected by filtration, washed with water, and recrystallized from ethanol to
afford compound 9. The physical and spectral data of compound 9 was as demonstrated:

Pale yellow crystals; yield 87%; m.p. 208–210 ◦C; IR (KBr) υ (cm−1): 3487, 3330 (NH2), 3090
(Ar–CH), 2925 (Ali–CH), 1337, 1162 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s,
2H, CH2), 1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2), 6.8
(s, 2H, NH2), 7.2 (dd, 1H, J = 8 Hz, CH–pyrimidine ring), 7.8 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.3 (dd, 1H,
J = 8 Hz, AB–Ar–H), 8.4 (dd, 1H, J = 8 Hz, CH–pyrimidine ring); MS m/z (%): 332 (M+, 10.57); Anal.
Calcd for C16H20N4O2S (332.42): C, 57.81; H, 6.06; N, 16.85; O; Found: C, 57.75; H, 5.98; N, 16.78%.
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3.1.6. General Procedure for Preparation of (10a, b)

A mixture of enaminone (4) (0.01 mol) and the primary aromatic amines: (p-toluidine and
p-anisidine) (0.01 mol) in a solution of ethanol/acetic acid (40 mL) (1:1) was refluxed for 3 h, where
a crystalline solid was separated. The separated solid was filtered off, washed with ethanol, and
recrystallized from ethanol/benzene to yield compounds 10a,10b. The physical and spectral data of
compounds 10a, b was as shown:

3.1.7. (E)-1-(4-((4-Methylpiperidin-1-yl)sulfonyl)phenyl)-3-(p-tolylamino)prop-2-en-1-one (10a)

Yellow crystals; yield 95%; m.p. 215–216 ◦C; IR (KBr) υ (cm−1): 3357 (NH), 3069 (Ar–CH), 2950
(Ali–CH), 1689 (C=O), 1338, 1162 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s,
2H, CH2), 1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 2.3 (s, 3H, CH3), 3.7 (t, 2H,
CH2–N–CH2), 6.1 (d, 1H, J = 8 Hz, COCH), 7.1 (m, 1H, CH-NH), 7.2 (dd, 1H, J = 8 Hz, AB–Ar–H), 7.3
(dd, 1H, J = 8 Hz, AB–Ar–H), 7.8 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.2 (dd, 1H, J = 8 Hz, AB–Ar–H), 12.2
(d, 1H, J = 12 Hz, NH); MS m/z (%): 398 (M+, 76.14); Anal. Calcd for C22H26N2O3S (398.52): C, 66.31;
H, 6.58; N, 7.03; O; Found: C, 66.24; H, 6.51; N, 6.96%.

3.1.8. (E)-3-((4-Methoxyphenyl)amino)-1-(4-((4-methylpiperidin-1-yl)sulfon-yl)phenyl)prop-2-en-1-
one (10b)

Yellow crystals; yield 89%; m.p. 188–190 ◦C; IR (KBr) υ (cm−1): 3357 (NH), 3069 (Ar–CH), 2927
(Ali–CH), 1689 (C=O), 1338, 1162 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s,
2H, CH2), 1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2), 3.8
(s, 3H, OCH3), 6.1 (d, 1H, J = 7.6 Hz, COCH), 7.2 (m, 1H, CH–NH), 7.0 (dd, 1H, J = 8 Hz, AB–Ar–H), 7.4
(dd, 1H, J = 8 Hz, AB–Ar–H), 7.8 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.2 (dd, 1H, J = 8 Hz, AB–Ar–H), 12.2 (d,
1H, J = 12 Hz, NH); 13C-NMR (101 MHz, DMSO-d6) δ: 21.8, 29.7, 29.7, 33.3, 46.5, 46.5, 55.8, 92.9, 115.4,
118.6, 128.1, 128.1, 128.3, 128.4, 133.6, 138.3, 142.8, 148.19, 156.6, 187.5; MS m/z (%): 414 (M+, 86.28);
Anal. Calcd for C22H26N2O4S (414.52): C, 63.75; H, 6.32; N, 6.76; O; Found: C, 63.67; H, 6.25; N, 6.69%.

3.1.9. General Procedure for Preparation of Compounds 16, 22, 28

A mixture of enaminone (4) (0.01 mol) and 3-amino-1H-1,2,4-triazole or
5-phenyl-2H-pyrazol-3-ylamine or 5-amino-3-methylthiopyrazole-4-carbonitrile (0.01 mol) in
acetic acid (30 mL) was refluxed for 3 h. The solvent was removed by the distillation under reduced
pressure, and the resultant was left to cool. The solid precipitate was collected by filtration and
recrystallized from ethanol and benzene, methanol and benzene, or ethanol to yield compounds 16, 22,
and 28, respectively. The physical and spectral data of compounds 16, 22, 28 were as follows:

3.1.10. 5-[4-(4-Methyl-piperidine-1-sulfonyl)phenyl][1,2,4]triazolo[4,3-a]pyrimidine (16)

Colorless crystals; yield 80%; m.p. 209–210 ◦C; IR (KBr) υ (cm−1): 3070 (Ar–CH), 2924 (Ali–CH),
1340, 1168 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s, 2H, CH2), 1.4 (br s,
1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2), 7.7 (dd, 1H, J = 8 Hz,
CH–pyrimidine ring H5), 8.0 (dd, 1H, J = 12 Hz, AB–Ar–H), 8.4 (dd, 1H, J = 12 Hz, AB–Ar–H), 8.8 (s,
1H, CH–triazole ring), 9.0 (dd, 1H, J = 8 Hz, CH–pyrimidine ring H6); 13C-NMR (101 MHz, DMSO-d6)
δ: 21.8, 29.7, 29.7, 33.4, 46.6, 46.6, 110.9, 128.0, 128.0, 131.1, 131.1, 134.1, 138.8, 146.2, 155.7, 156.1, 156.1;
MS m/z (%): 357 (M+, 28.87); Anal. Calcd for C17H19N5O2S (357.43): C, 57.13; H, 5.36; N, 19.59; O;
Found: C, 57.05; H, 5.27; N, 19.50%.

3.1.11. 7-(4-((4-Methylpiperidin-1-yl)sulfonyl)phenyl)-2-phenylpyrazolo[1,5-a]pyramidine (22)

Pale brown crystals; yield 87%; m.p. 321–323 ◦C; IR (KBr) υ (cm−1): 3054 (Ar–CH), 2925 (Ali–CH),
1340, 1168 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2, (br s, 2H, CH2), 1.3 (br s, 1H,
CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2), 7.5–7.9 (m, 6H, Ar–H and
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CH-pyrazole), 7.9 (dd, 1H, J = 8 Hz, CH–pyrimidine ring H5), 8.1 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.3
(dd, 1H, J = 8 Hz, AB–Ar–H), 8.4 (dd, 1H, J = 8 Hz, CH–pyrimidine ring H6); MS m/z (%): 432 (M+,
3.10); Anal. Calcd for C24H24N4O2S (432.54): C, 66.64; H, 5.59; N, 12.95; O; Found: C, 66.55; H, 5.52;
N, 12.87%.

3.1.12. 7-(4-((4-Methylpiperidin-1-yl)sulfonyl)phenyl)-2-(methylthio)pyrazolo[1,5-a]pyrimidine-3-
carbonitrile (28)

Pale yellow crystals; yield 85%; m.p. 182–184 ◦C; IR (KBr) υ (cm−1): 3092 (Ar–CH), 2930 (Ali–CH),
2223 (CN), 1328, 1166 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s, 2H, CH2), 1.4
(br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 2.7 (s, 3H, CH3S), 3.7 (t, 2H, CH2–N–CH2),
7.6 (dd, 1H, J = 4 Hz, CH–pyrimidine ring H5), 8.0 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.4 (dd, 1H, J = 8 Hz,
AB–Ar–H), 8.9 (dd, 1H, J = 4 Hz, CH–pyrimidine ring H6); 13C-NMR (101 MHz, DMSO-d6) δ: 13.7,
21.8, 29.71, 29.7, 33.3, 46.5, 46.5, 80.4, 111.2, 113.1, 127.8, 127.9, 131.2, 131.3, 133.9, 139.0, 145.5, 152.7,
154.2, 158.1; MS m/z (%): 427 (M+, 100); Anal. Calcd for C20H21N5O2S2 (427.54): C, 56.19; H, 4.95; N,
16.38; O; Found: C, 56.11; H, 4.88; N, 16.29.

3.1.13. General Procedure for Preparation of (31a–c)

A mixture of enaminone (4) (0.01 mol) and 4-(4-(hydroxyl, methyl or
chloro)phenylazo)-1H-pyrazole-3,5-diamine (0.01 mol) in glacial acetic acid (30 mL) and fused sodium
acetate (2 gm) was added. The subsequent mixture was refluxed for 6h, allowed at room temperature,
and diluted with water (20 mL). The formed solid product was collected by filtration, washed with
water, and recrystallized from methanol and benzene to furnish compounds 31a–c. The physical and
spectral data of molecules 31a-c were as illustrated:

3.1.14. (E)-4-((2-Amino-7-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)pyrazolo[1,5-a]pyrimidin-3-
yl)diazenyl)phenol (31a)

Burgundy crystals; yield 89%; m.p. 276–277 ◦C; IR (KBr) υ (cm−1): 3438 (OH), 3264, 3190 (NH2),
3094 (Ar–CH), 2917 (Ali–CH), 1333, 1168 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2
(br s, 2H, CH2), 1.4 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2),
6.9 (dd, 1H, J = 12 Hz, AB–Ar–H), 7.2 (s, 2H, NH2, exchangeable by D2O), 7.3 (dd, 1H, J = 4 Hz,
CH–pyrimidine ring H5),7.7 (dd, 1H, J = 12 Hz, AB–Ar–H), 7.9 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.3 (dd,
1H, J = 8 Hz, AB–Ar–H), 8.6 (dd, 1H, J = 4 Hz, CH–pyrimidine ring H6), 9.9 (s, 1H, OH, exchangeable
by D2O); MS m/z (%): 491 (M+, 12.05); Anal. Calcd for C24H25N7O3S (491.57): C, 58.64; H, 5.13; N,
19.95; Found: C, 58.55; H, 5.04; N, 19.87%.

3.1.15. (E)-7-(4-((4-Methylpiperidin-1-yl)sulfonyl)phenyl)-3-(p-tolyldiazenyl)pyrazolo[1,5-
a]pyramidin-2-amine (31b)

Brown crystals; yield 86%; m.p. 305–307 ◦C; IR (KBr) υ (cm−1): 3264, 3190 (NH2), 3094 (Ar–CH),
2917 (Ali–CH), 1333, 1168 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s, 2H, CH2),
1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 2.4 (s, 3H, CH3), 3.7 (t, 2H, CH2–N–CH2),
7.3 (s, 2H, NH2, exchangeable by D2O), 7.7 (dd, 1H, J = 4 Hz, AB–Ar–H), 7.9 (dd, 1H, J = 4 Hz,
AB–Ar–H), 8.3 (dd, 1H, J = 8 Hz, CH–pyrimidine ring H5), 8.6 (dd, 1H, J = 8 Hz, CH–pyrimidine ring
H6); 13C NMR (101 MHz, DMSO-d6) δ: 21.3, 21.8, 29.7, 29.7, 33.4, 46.7, 46.6, 109.9, 114.9, 121.6, 127.9,
127.6, 130.1, 130.1, 131.0, 131.0, 135.0, 134.9, 138.2, 138.9, 143.9, 148.0, 151.1, 151.4, 152.4; MS m/z (%):
489.19 (M+, 12.05); Anal. Calcd for C25H27N7O2S (489.59): C, 61.33; H, 5.56; N, 20.03; Found: C, 61.26;
H, 5.50; N, 19.98.
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3.1.16. (E)-3-((4-Chlorophenyl)diazenyl)-7-(4-((4-methylpiperidin-1-
yl)sulfonyl)phenyl)pyrazolo[1,5-a]pyrimidin-2-amine (31c)

Orange crystals; yield 88%; m.p. 310–312 ◦C; IR (KBr) υ (cm−1): 3261, 3186 (NH2), 3095 (Ar–CH),
2921 (Ali–CH), 1330, 1169 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br s, 2H, CH2),
1.4 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3, (t, 2H, CH2-N-CH2), 3.7 (t, 2H, CH2-N-CH2), 7.3 (s, 2H, NH2,
exchangeable by D2O), 7.4 (dd, 1H, J = 4 Hz, AB–Ar–H), 7.6 (dd, 1H, J = 4 Hz, AB–Ar–H), 7.9 (dd,
1H, J = 8 Hz, AB–Ar–H), 8.0 (dd, 1H, J = 8 Hz, AB–Ar–H), 8.3 (dd, 1H, J = 8 Hz, CH–pyrimidine ring
H5), 8.7 (dd, 1H, J = 8 Hz, CH–pyrimidine ring H6); MS m/z (%): 509 (M+, 35.44); Anal. Calcd for
C24H24ClN7O2S (509.50): C, 56.52; H, 4.74; N, 19.22; O; Found: C, 56.53; H, 4.67; N, 19.14.

3.1.17. 5-(4-((4-Methylpiperidin-1-yl)sulfonyl)phenyl)-2-thioxo-2,3-dihydropyrido[2–d]pyrimidin-
4(1H)-one (33)

A mixture of enaminone (4) (0.01 mol) and 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one
(0.01 mol) in glacial acetic acid (30 mL) was refluxed for 3h. The solvent was removed by distillation
under reduced pressure, which was, subsequently, left to cool. The solid precipitate was collected by
filtration and recrystallized from methanol/benzene to yield derivative 33. The physical and spectral
data of compounds 33 was as demonstrated:

Pale yellow crystals; yield 88%; m.p. 289–291 ◦C; IR (KBr) υ (cm−1): 3394 (NH), 3062 (Ar–CH),
2925 (Ali–CH) 1687 (C=O), 1341, 1162 (SO2); 1H-NMR (400 MHz, DMSO-d6) δ: 0.9 (d, 3H, CH3), 1.2 (br
s, 2H, CH2), 1.3 (br s, 1H, CH), 1.7 (br s, 2H, CH2), 2.3 (t, 2H, CH2–N–CH2), 3.7 (t, 2H, CH2–N–CH2),
7.9 (dd, 2H, J = 8 Hz, AB–Ar–H), 8.0 (dd, 2H, J = 8 Hz, AB–Ar–H), 8.4 (dd, 1H, J = 4 Hz, CH-pyridine
ring H6), 8.4 (dd, 1H, J = 4 Hz, CH-pyridine ring H7), 12.7, 13.2 (2s, 2H, 2NH); 13C-NMR (101 MHz,
DMSO-d6) δ: 21.8, 29.8, 29.9, 33.3, 46.7, 46.6, 112.1, 118.0, 128.5, 128.6, 128.7, 128.8, 137.7, 138.2, 141.2,
152.1, 159.4, 160.0, 176.7; MS m/z (%): 416 (M+, 13.65); Anal. Calcd for C19H20N4O3S2 (416.51): C, 54.79;
H, 4.84; N, 13.45; O; Found: C, 54.71; H, 4.77; N, 13.37%.

3.2. Molecular Modeling

The in-silico experiments were conducted using MOE software, Chemical Computing Group’s
Molecular Operating Environment, 2014.09 release, installed on a SAMSUNG workstation with Intel(R)
Core (TM) i7–6500U CPU @ 2.5 GHz processor and 12.0 GB RAM.

3.3. Protein Structure Preparation

The X-ray crystal structure of the ERK1 (PBD code: 6GDM) was acquired from the Protein Data
Bank (www.rcsb.com). The Structure Preparation application of MOE was implemented to prepare
the kinase domain, where structural issues as alternates, termini, hydrogen count, and incorrect
charges have been addressed and corrected. The Protonate3D was implemented to identify residues
with possible rotamers, protomers, or tautomeric states. Finally, energy minimization was applied,
exploiting an MMFF94x forcefield with default parameters.

3.4. Ligand Structure Preparation

The 2D structures of the molecules were sketched, employing ChemDraw User Interface version
15.0, and were saved as MDL Molfile. The structures were then imported on the MOE interface, and the
3D structures of the molecules were generated for conformational search. The geometry optimization
and energy minimization were then implemented for the generated 3D structures.

3.5. Molecular Docking

The prepared X-ray crystal structure ERK1 kinase domain and the 3D optimized structures of the
synthesized molecules were employed to the subsequent docking experiments. The Rigid Receptor

www.rcsb.com


Int. J. Mol. Sci. 2019, 20, 5592 23 of 27

docking protocol was implemented for docking studies, using the Triangle Matcher for Placement and
the London dG for Rescoring and Force field for Refinement.

3.6. Biological Screening

3.6.1. Cell Culture

The tumor cell lines: mammary gland breast cancer cell line (MCF-7), human colon carcinoma
(HCT-116), and hepatocellular carcinoma (HepG-2), were attained from the American Type Culture
Collection (ATCC, Rockville, MD, USA). The cells were grown on an RPMI-1640 medium, supplemented
with a 10% inactivated fetal calf serum and 50 µg/mL gentamycin. The cells were maintained at 37 ◦C
in a humidified atmosphere with 5% CO2 and were subculture two to three times a week.

3.6.2. Evaluation of Anti-Proliferative Activity

The cytotoxicity was appraised, exercising the standard sulphorhodamine B (SRB) assay,
as reported previously [61].

3.7. Cell Cycle Analysis

The cell cycle distribution was assessed, using the Propidium Iodide (PI) Flow Cytometry Kit
(ab139418, Abcam, Cambridge, UK), followed by the flow cytometric analysis. Briefly, the 5 × 104

cells were seeded in a 60 mm culture dish and incubated for 24 h to form a cell monolayer. The cells
were cultured for an additional 24 h. in the absence of DMSO (negative control) or in the presence of
Vinblastine and Doxorubicin (positive standard controls) or the synthesized compounds 5, 9, 10b, 22,
and 28 at their corresponding IC50 values in the proliferation assay. The adherent cells were trypsinized,
washed with PBS, and fixed in 100% ice-cold ethanol at 4 ◦C for at least 2 h. The ethanol was removed,
and the cells were washed with PBS before incubating with 200 µL 1X Propidium Iodide (PI)+RNase
Staining Solution for 30 min at room temperature in dark. The DNA content was determined by a
FACS Calibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Finally, the cell cycle phase
distribution was analyzed, using the Cell Quest Pro software (BD Biosciences), which displays the
collected propidium iodide fluorescence intensity on FL2.

3.8. Flow Cytometry by Annexin V-FITC

The cell apoptosis was evaluated by the Annexin V-FITC/PI double staining apoptosis detection
kit (K101, BioVision, Milpitas, CA, USA), using a flow cytometer. The cell culture was prepared, as
reported for the cell cycle analysis assay with or without the tested compounds. The staining procedure
was performed, following the manufacturer’s instructions. A minimum of 10,000 cells per sample
were acquired. The Annexin V-FITC binding (FL1) and PI (FL2) were analyzed, employing the Cell
Quest Pro software (BD Biosciences).

3.9. Statistical Analysis

All the biological data were expressed as means ± standard deviation (SD) of at least three
independent experiments. The statistical analysis was performed by the GraphPad Prism 5.01
(GraphPad software, San Diego, CA, USA). The data were analyzed, using ANOVA, followed by the
Tukey’s post hoc test. The statistical significance is indicated as * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.

4. Conclusions

Targeting oncogenic protein kinases is a robust molecular therapeutic strategy to control human
malignancies. The interference with a Mitogen-Activated Protein (MAP) kinase signaling pathway
by small molecule inhibitors has a distinguished and remarkable impact on hampering cancerous
cell proliferation, the stimulation of cell cycle arrest, and apoptosis. The rational synthesis of ERK
inhibitors based on a molecular extension tactic of a small fragment bounded at the kinase domain is
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a valid scheme to enhance the overall binding affinity and, thus, improving the biological potency.
This report establishes an efficacious route in developing a novel class of pyrimidine molecules bearing
sulfonamide moieties. The structural identities of the new derivatives were validated and their
cytotoxic behavior were explored. Alongside their in vitro assay, the molecular docking and cell cycle
analysis revealed that the sulfonamides, linked to triazolo[4,3-a]pyrimidine, pyrazolo[1,5-a]pyrimidine
and pyrido[2–d]pyrimidine, are excellent scaffolds for constructing small molecules ERK inhibitors.
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