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1  |  INTRODUC TION

In vitro fertilization (IVF) treatment is a form of assisted reproduc-
tive technology, with conventional IVF (c-IVF) typically used as the 
initial method of fertilization.1 However, approximately 5%–20% 

of patients experience complete fertilization failure (CFF) post 
c-IVF.2–4 CFF results in the cancellation of the treatment cycle, 
thereby requiring intracytoplasmic sperm injection (ICSI) for the 
subsequent cycle. CFF imposes considerable physical and financial 
burdens on patients. To circumvent CFF, rescue ICSI (r-ICSI), which 
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Abstract
Purpose: This study established a machine learning model (MLM) trained on embryo 
images to predict fertilization following short-term insemination for early rescue 
ICSI and compared its predictive performance with the embryologist's manual 
classification.
Methods: Embryo images at 4.5 and 8 h post-insemination were preprocessed into 
vectors using ResNet50. The Light Gradient Boosting Machine (Light GBM) was 
employed for training vectors. Fertilization in the test dataset was assessed by MLM, 
with seven senior and 11 junior embryologists. Predictive metrics were analyzed using 
repeated measures ANOVA and paired t-tests.
Results: Comparing MLM, senior embryologists, and junior embryologists, significant 
differences were observed in accuracy (0.71 ± 0.01, 0.75 ± 0.05, 0.61 ± 0.05), 
recall (0.84 ± 0.02, 0.84 ± 0.10, 0.61 ± 0.07), F1-score (0.78 ± 0.01, 0.81 ± 0.04, 
0.66 ± 0.04), and area under the curve (0.73 ± 0.0 3, 0.73 ± 0.06, 0.61 ± 0.07), the 
MLM outperforming junior embryologists with <1 year of experience. No significant 
differences were observed between the MLM and senior embryologists with over 
5 years of experience.
Conclusions: MLM can effectively predict fertilization following short-term 
insemination by analyzing cytoplasmic changes in images. These results underscore 
the potential to enhance clinical decision-making and improve patient outcomes.
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involves performing ICSI 21–33 h after oocyte retrieval, has been 
reported.5 The prolonged interval between oocyte retrieval and 
fertilization compromises the oocyte quality, leading to the fail-
ure of r-ICSI. On the other hand, early r-ICSI, such as within 8 h, 
helps minimize oocyte damage and decline in quality by perform-
ing ICSI on unfertilized oocytes following short-term insemination. 
Previous studies have demonstrated that early r-ICSI can potentially 
prevent oocyte degradation and achieve higher pregnancy rates.6 
Therefore, the decision to perform early r-ICSI should be made by 
embryologists 4–8 h after insemination.6–9 Early r-ICSI is performed 
on oocytes that do not exhibit fertilization indicators, such as pro-
nuclei, extrusion of the second polar body, cytoplasmic wave, or 
fertilization cone.10 The second polar body, which is a by-product of 
meiosis, is extruded within 4 h after fertilization. Additionally, pro-
nuclei appear as early as 8 h after insemination. These can be read-
ily used by embryologists to classify fertilization.8,11 Conversely, if 
polar bodies are fragmented and pronuclei have not appeared, the 
embryologist's classifications based solely on the cytoplasmic wave 
and fertilization cone are challenging due to their subjective nature 
and lack of objectivity. Furthermore, the precision of fertilization 
classification is contingent upon the expertise of embryologists. 
Unnecessary ICSI on fertilized embryos should be avoided to pre-
vent the risk of polyspermy. Errors in fertilization classification not 
only risk the oversight of unfertilized oocytes but also elevate the 
potential for polyspermy.12

According to a previous study, the spindle fiber observation 
using an inverted microscope made it possible to classify fertil-
ization in oocytes with fragmented polar bodies. The technique 
allows classification without depending on the second polar body. 
On the other hand, the spindle fibers observation has the prob-
lem of causing unavoidable environmental damage to the embryo 
when performed outside the incubator.11 Furthermore, classifica-
tion by observing spindle fibers requires trained embryologists 
and specialized equipment for differential interference contrast 
microscopy. Thus, spindle fiber observation requires the purchase 
of expensive equipment and increases the routine workload for 
the observation.

Machine learning (ML) has been shown to be an alternative 
observational technique as it excels at identifying intricate pat-
terns and hidden correlations through data-driven learning. ML 
generates data-driven predictions without relying on experience 
or intuition.13 The application of ML to fertilization classification 
is expected to provide objective and reproducible outcomes, in-
dependent of the embryologist's experience. The feature patterns 
learned by ML offer a unique perspective that differs from tra-
ditional human classification and provides valuable alternative 
insights. However, studies that implement ML for fertilization 
classification and evaluation of predictive performance have not 
yet been reported.

This study aims to establish an ML model (MLM) for the fertil-
ization classification of embryos following short-term insemination, 
trained on embryo images, and to compare the predictive perfor-
mance of the MLM and the embryologist's manual classification.

2  |  MATERIAL S AND METHODS

2.1  |  Study criteria

This retrospective study was approved by the ethical committee of 
the Japanese Institution for Standardizing Assisted Reproductive 
Technology (JISART; 2024-21). This study used data collected 
from January to October 2021. Data were gathered from short-
term insemination cycles following oocyte retrieval. Fertilization 
was assessed by two embryologists observing the pronuclei from 
their appearance to their disappearance to avoid missing early 
disappearance or delayed appearance of pronuclei. The embryos 
were classified into two pronuclei (2PN) and no pronuclei (0PN) 
groups, while one pronuclei (1PN) and three pronuclei (3PN) were 
excluded from this study due to their limited numbers. This study 
was non-interventional, and the results were not employed in any 
manner to influence treatment decisions.

2.2  |  Ovarian stimulation, oocyte retrieval, and IVF 
procedure

Patients underwent ovarian stimulation using the Progestin-
Primed Ovarian Stimulation (PPOS) protocol. The optimal dosage 
of follicle-stimulating hormone (FSH) was determined based on the 
serum concentrations of basal FSH and anti-Müllerian hormone 
(AMH), in conjunction with the patient's age. FSH dosage ranged 
from 150 to 300 units per day. Additionally, medroxyprogester-
one acetate (MPA) at a dosage of 5–10 mg or dydrogesterone at a 
dosage of 20 mg/day, was administered. Oocyte maturation was 
induced using a GnRH agonist when the leading follicle diameter, 
measured via transvaginal ultrasound, was ≥18 mm. The procedure 
involved oocyte retrieval 34–35 h post-induction, performed under 
transvaginal ultrasound guidance. Semen samples were processed 
using the density gradient centrifugation method with Extra Sperm 
Selection™ (ORIZURU ART Family, Kyoto, Japan) by centrifugation 
at 400 g for 20 min. The recovered pellet was suspended in 4 mL of 
Gx-IVF™ (Vitrolife AB, Gothenburg, Sweden) and centrifuged for 
5 min at 300 g. Finally, the pellet was resuspended again in 0.5 mL of 
Gx-IVF™ (Vitrolife AB). 1 × 105 motile sperm were used for insemi-
nation in 1 mL of Gx-IVF™ (Vitrolife AB) containing cumulus-oocyte 
complexes. The sperm were co-cultured with the oocytes for 4.5 h. 
Following co-culture, cumulus cells underwent denudation, and the 
resulting embryos were cultured in an EmbryoScope™ time-lapse 
incubator (Vitrolife AB).

2.3  |  Embryo imaging and preprocessing

Embryo images were captured at 4.5 and 8 h post-insemination 
using a time-lapse incubator. The images were resized from 
800 × 800 to 224 × 224 pixels. The circular Hough transform algo-
rithm was used to detect the cytoplasm, thereby minimizing the 
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impact of noise, and the area outside the circle was masked in 
black. The RGB values of each pixel in the embryo images were 
centralized by subtracting the mean RGB value of the entire image. 
Subsequently, the standard deviation of the RGB values of the en-
tire image was calculated, and each pixel value was normalized by 
dividing it by the standard deviation.

2.4  |  MLM

Initially, 10% of the images of 878 embryos were randomly selected 
as the test dataset, while the remaining 90% were designated as 
the training dataset. The weights of the pretrained convolutional 
neural network, ResNet50, were fixed and utilized as feature 
extractors. The preprocessed embryo images at 4.5 and 8 h were 
input into ResNet50, converting them into 2048-dimensional 
vectors. The vectors from the 4.5 and 8 h images were 
concatenated. Consequently, the two images were transformed into 
4096-dimensional vectors (Figure  1). The training dataset, which 
was transformed into 4096-dimensional vectors, was partitioned by 
retaining 20% of the validation data. The Light Gradient Boosting 
Machine (Light GBM) analysis algorithm was employed, which is 
known for its rapid processing and efficient enhancement of its 
predictive function.14 Compared to the standard gradient boosting 
tree algorithm, Light GBM enhances efficiency and accelerates 
computation by optimizing histograms, which improves segmenting 
features and conserves computational memory.15 Hyperparameter 
tuning was performed using validation data by employing Bayesian 
optimization through the Optuna framework. The training dataset 
was divided into training and validation sets in a 4:1 ratio. The 

Optuna framework explored the following hyperparameters (range) 
involved in the training of Light GBM: the metric (binary_log-loss), 
lambda_l1 (1e−8–10.0), lambda_l2 (1e−8–10.0), num_leaves (2–256), 
feature_fraction (0.4–1.0), bagging_fraction (0.4–1.0), bagging_freq 
(1–7), and min_child_samples (5–100). Using the hyperparameters 
tuned by the Optuna framework, we evaluated the predictive 
performance with 5-fold cross-validation.

2.5  |  Fertilization predictive performance

The trained Light GBM model was applied to predict the outcomes 
of the test dataset. Furthermore, 10 different random seeds were 
configured, and 10 predictions on the test dataset were executed. 
To determine the reliability of ML predictions, predictions made by 
embryologists were compared with the ML predictions. Eighteen 
embryologists had predicted whether the sperm had fertilized 
the oocyte in the test dataset. Embryologists with over 5 years 
of experience were classified as senior embryologists, and those 
with <1 year of experience as junior embryologists. Embryologists 
reviewed the movie of each embryo taken 4.5 to 8 h following short-
term insemination and classified them as either 2PN or 0PN based on 
the comprehensive assessment of the appearance of the second polar 
body, cytoplasmic wave, and fertilization cone. The embryologist's 
review was performed in a blinded manner without knowledge of 
the true ratio in the test data set. The metrics evaluated for each 
prediction included accuracy, recall, specificity, precision, F1 score, 
area under the ROC curve (AUC), true positive ratio, false positive 
ratio, true negative ratio, and false negative ratio. Accuracy is the ratio 
of correctly predicted instances to the total instances, reflecting the 

F I G U R E  1 Flowchart depicting the preprocessing of embryo images captured at 4.5 and 8 h post-insemination, respectively. Hough 
circle transformation was used to mask the cytoplasmic area outside to minimize the effect of noise. The masked images were converted to 
2048-dimensional vectors for input into ResNet50. Converted vectors were concatenated.
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overall correctness of the model. Recall is the proportion of actual 
positive cases that were correctly identified by the model, indicating 
its ability to detect positive instances. Specificity is the proportion 
of actual negative cases that were correctly identified by the model, 
indicating its ability to detect negative instances. Precision is the 
proportion of predicted positive cases that were correctly identified, 
reflecting the accuracy of positive predictions. The F1 score is the 
harmonic mean of precision and recall, providing a single measure 
of the model's balance between precision and recall. The AUC is 
a performance measurement for classification models at various 
threshold settings, representing the degree of separability between 
classes. The confusion matrix metrics were calculated as a ratio of 
the number of instances in each category by the total number of 
instances. Furthermore, the error rate for each embryo in the test 
dataset was calculated to compare the error trends. A comparison 
was performed on embryos with an error rate of over 50% in either 
MLM or senior embryologist classification. The error rate was 
calculated as the ratio of misclassified cases to the total number 
of classifications. The LIME method visualizes how image regions 
contribute to the MLM prediction.16 We used the LIME method 
to assess the validity of the classification by visualizing the critical 
cytoplasmic regions in an error rate of 0% embryos. Furthermore, to 
confirm the ability to adjust sensitivity, the predictive performance 
at different cutoff values of the MLM prediction score was evaluated.

2.6  |  Statistical analyses

Repeated measures ANOVA was conducted on the predictions made 
by the MLM, junior, and senior embryologists. Paired t-tests were 
conducted when significant differences were found in the repeated 
measures ANOVA. Multiple comparisons were performed using the 
Bonferroni correction. A comparison of error rates was conducted 
using residual analysis. The significance level was set at α < 0.05. 
Statistical analyses were performed with EZR (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan).17

3  |  RESULTS

In 230 cycles, 1491 oocytes underwent short-term insemination. Of 
these, 91 and 41 embryos were classified as 3PN and 1PN, while 
391 and 90 immature and degenerated oocytes were excluded from 
the analysis, respectively. Ultimately, 547 and 331 embryos were 
identified as 2PN and 0PN, respectively, resulting in 878 embryos. 
The 0PN group included 23 arrested embryos at the second polar 
body stage. The 878 embryos were divided using a random test split 
method, with 790 embryos allocated to the training dataset and 88 
embryos to the test dataset (Figure 2).

The Light GBM hyperparameters were tuned using the Optuna 
framework and adjusted based on 5-fold cross-validation. The tun-
ing results were as follows: the metric (binary_error), lambda_l1 
(9.209990901687287e-08), lambda_l2 (5.176175467675683e-08), 

num_leaves (5), feature_fraction (0.5284113215213745), bagging_
fraction (0.6207237760711464), bagging_freq (7), and max_depth 
(4). The metric was changed from binary_log-loss to binary_error 
since binary_error had higher predictive performance. The perfor-
mance consistency of the tuned MLM was confirmed using 5-fold 
cross-validation on the training dataset (Table 1).

Table 2 shows the predictive performance of the test dataset, as 
estimated by the MLM after 10 iterations, in comparison to the as-
sessments of the seven senior and 11 junior embryologists, respec-
tively. Repeated measures ANOVA revealed statistically significant 
differences in the metrics of accuracy, recall, F1-score, AUC, true 
positive, and false negative. In contrast, no significant differences 
were observed for the other metrics. Upon conducting multiple 
comparisons of the metrics for accuracy, recall, F1-score, AUC, true 
positive, and false negative using paired t-tests, junior embryologists 
exhibited significantly lower performance than other groups. No 
significant differences were observed between the MLM and the 
senior embryologists. The individual predictive performance is de-
tailed in Table S1.

The comparison of 31 embryos with an error rate of over 50% in 
either the MLM or the senior embryologist classification showed a 
significant difference in 26 embryos within the test dataset using re-
sidual analysis. The MLM had a significantly lower error rate than the 
mean error rate of three groups for six embryos and a significantly 
higher error rate for 17 embryos. The error rate of the senior embry-
ologist was significantly lower for nine embryos and higher for five 
embryos. The error rate of the junior embryologist was significantly 
lower for 11 embryos and higher for four embryos (Table 3).

The LIME method visualizes the contributions of image regions 
to the prediction score. Here, the green image regions indicate con-
tributions to 2PN, while the red ones indicate contributions to 0PN. 
The presence of green regions within the cytoplasm indicates that 
MLM utilized cytoplasmic changes (Figure 3).

It was indicated that the predictive performance could be ad-
justed by adopting different cutoff values for the MLM prediction 
score on the training dataset. The true positive ratio and false pos-
itive ratio both showed a declining trend with increasing cutoff 
values. The true negative ratio and false negative ratio showed an 
increasing trend (Table S2).

4  |  DISCUSSION

This study indicates that the MLM can predict fertilization following 
short-term insemination by analyzing cytoplasmic changes 
from embryo images. The predictive performance of the MLM 
was significantly higher than that of the junior embryologists, 
with no statistical difference observed compared to the senior 
embryologists. These findings underscore the potential of ML to 
enhance the reliability of fertilization prediction, which could lead to 
more informed clinical decisions.

Previous studies have completely relied on manual classification 
for the implementation of early r-ICSI.18 Early r-ICSI permits clinical 
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utilization of unfertilized oocytes following short-term insemination. 
The clinical utilization of unfertilized oocytes contributes to the pre-
vention of CFF and a reduction in the number of oocyte retrievals. 
Reducing time to pregnancy significantly alleviates the psycholog-
ical and economic burdens on patients.19 Furthermore, previous 
research has indicated that early r-ICSI does not significantly differ 
from conventional ICSI in terms of clinical pregnancy rates, miscar-
riage rates, and neonatal outcomes.20 The rates of congenital birth 
defects were also similar across the groups, suggesting the safety 
of this approach.20,21 However, it is inherently associated with the 
increased risk of polyspermy owing to human error in fertilization 
classification. Embryologists' fertilization classification is highly 
dependent on their expertise and experience, leading to inevitable 
interindividual variability and susceptibility to human error.11 6–8 h 
post-insemination, extrusion of the second polar body is considered 

the most accurate fertilization indicator.12,18 When the polar body 
assumes fragmentation or sperm entry is delayed beyond the typ-
ical 1–4 h, the accurate assessment of fertilization becomes chal-
lenging.22 In such cases, it is necessary to rely on the presence of a 
fertilization cone or cytoplasmic wave. Nevertheless, the incidence 
of fertilization cones has been reported to be as low as 3.6%.23 
Since cytoplasmic wave typically occurs 2–3 h after extrusion of the 
second polar body, sufficient information is not obtained from the 
observation at the 8 h post-insemination point.23 The fertilization 
classification based on limited information contributes to oversight 
of unfertilized oocytes and the occurrence of iatrogenic polyspermy. 
Conversely, this study demonstrated that the ML-based approach 
provides a more consistent and reproducible evaluation. The MLM 
can efficiently perform classification by learning complex correla-
tions from images.24 The consistency confirmed through 5-fold 

F I G U R E  2 Flowchart depicting the study design and results of the subsequent analyses. The 878 embryos underwent short-term 
insemination were divided using a random test split method, with 790 embryos allocated to the training dataset and 88 embryos to the test 
dataset. The predictive performance of the machine learning model and 18 embryologists was evaluated using the 88 embryos in the test 
dataset. AUC, area under the ROC curve; Light GBM, Light Gradient Boosting Machine.
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cross-validation demonstrates the robustness and generalizability 
of the data.25 Maintaining consistent predictive performance with 
different datasets underscores the advanced learning capabilities of 
the ML algorithm and highlights its potential as a valuable support 
tool in clinical practice. The MLM could serve as an effective adjunct 
to human expertise and enhance the reliability and consistency of 
fertilization classification. Fertilization classification applying ML 
contributes to the conservation of human resources and the reduc-
tion of errors in clinical practice.

In this study, the MLM was trained to learn and predict temporal 
changes in the cytoplasm from embryo images. The LIME method 
was used to visualize how image regions contribute to the MLM 
prediction, but it was difficult to interpret why the highlighted re-
gions were relevant to the fertilization classification with the naked 

eye. Accompanying fertilization, cytoplasmic changes include vari-
ations in lipid droplets (LDs) and the cytoskeleton.26,27 Lipids are 
fundamental cellular components involved in cell construction, 
metabolism, and regulation, with LDs serving as pivotal intracellu-
lar structures for energy storage and membrane synthesis.28 It has 
been reported that LD size increases during the transition from 
maturation to development.26 In addition, the cytoskeleton under-
goes dramatic changes during fertilization. The actin cytoskeleton, 
particularly crucial for sperm entry and subsequent calcium signal 
transduction, undergoes significant reorganization.27 Microtubules 
play an essential role in organizing mitotic spindles and promoting 
pronuclear formation, with the sperm centrosome contributing to 
the microtubule dynamics.29 The changes in LDs are in the order of 
micrometers, and cytoskeletal alterations are extremely challenging 

Fold 1 2 3 4 5 Mean ± SD

Accuracy 0.66 0.74 0.72 0.72 0.70 0.71 ± 0.03

Recall 0.77 0.88 0.89 0.94 0.78 0.85 ± 0.07

Specificity 0.47 0.51 0.43 0.37 0.57 0.47 ± 0.07

Precision 0.71 0.75 0.72 0.71 0.75 0.73 ± 0.02

F1 score 0.74 0.81 0.79 0.81 0.76 0.78 ± 0.03

AUC 0.74 0.78 0.74 0.77 0.74 0.75 ± 0.02

True positive ratio 0.48 0.55 0.55 0.58 0.48 0.53 ± 0.04

False positive ratio 0.20 0.18 0.22 0.24 0.16 0.20 ± 0.03

True negative ratio 0.18 0.19 0.16 0.14 0.22 0.18 ± 0.03

False negative ratio 0.15 0.08 0.07 0.04 0.14 0.09 ± 0.04

Note: The predictive performance of the machine learning model (MLM) was evaluated using 5-fold 
cross-validation on the training dataset (n = 790). The cutoff value for the prediction score using 
MLM was set at 0.5. The confusion matrix metrics were calculated as a ratio by the number of 
instances in each category by the total number of instances.
Abbreviation: AUC, area under the ROC curve.

TA B L E  1 Predictive performance of 
the machine learning model using 5-fold 
cross-validation on the training dataset.

TA B L E  2 Comparative predictive performance of machine learning model and embryologist on test dataset.

Metric
Machine learning model 
(mean ± SD)

Senior embryologist 
(mean ± SD)

Junior embryologist 
(mean ± SD) rANOVA p-value

Accuracy 0.71 ± 0.01 0.75 ± 0.05 0.61 ± 0.05* <0.01

Recall 0.84 ± 0.02 0.84 ± 0.10 0.61 ± 0.07* <0.01

Specificity 0.50 ± 0.03 0.61 ± 0.15 0.62 ± 0.17 0.14

Precision 0.74 ± 0.01 0.79 ± 0.06 0.73 ± 0.07 0.22

F1 score 0.78 ± 0.01 0.81 ± 0.04 0.66 ± 0.04* <0.01

AUC 0.73 ± 0.03 0.73 ± 0.06 0.61 ± 0.07* <0.01

True positive ratio 0.53 ± 0.01 0.52 ± 0.06 0.38 ± 0.04* <0.01

False positive ratio 0.19 ± 0.01 0.14 ± 0.05 0.14 ± 0.06 0.16

True negative ratio 0.19 ± 0.01 0.23 ± 0.05 0.23 ± 0.06 0.14

False negative ratio 0.10 ± 0.01 0.10 ± 0.06 0.25 ± 0.04* <0.01

Note: Repeated measures ANOVA (rANOVA) was used to compare the mean of each metric for the machine learning model, junior embryologists, 
and senior embryologists. Paired t-tests were used for multiple comparisons of metrics showing significant differences in the rANOVA. Superscripts 
(*) indicate junior embryologists have significant differences from both the machine learning model (MLM) and senior embryologists (p < 0.01). There 
was no statistically significant difference between the machine learning model and senior embryologist in each metric. The cutoff value for the 
prediction score using MLM was set at 0.5. The confusion matrix metrics were calculated as a ratio by the number of instances in each category by 
the total number of instances.
Abbreviation: AUC, area under the ROC curve.
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to discern with the naked eye. The ML algorithm in this study is sug-
gested to learn the differences imperceptible to human observation 
and leverage them for predictions.

Within this investigation, the MLM outperformed junior embry-
ologists significantly in terms of accuracy, recall, F1-score, and AUC 
but showed no statistical difference when compared with senior em-
bryologists. These findings indicate that the MLM exhibits a superior 
predictive performance compared to that of junior embryologists. 
The MLM suggests that it could be utilized as an effective educa-
tional tool, providing junior embryologists with additional resources 

for training and skill development.30 Regarding recall, ML's ability to 
detect critical cases with minimal omission is evident, which is par-
ticularly advantageous in clinical settings where the identification 
of crucial cases is imperative.31 The significant difference between 
the MLM and junior embryologists indicates that the overall perfor-
mance of the MLM surpasses that of junior embryologists, and the 
MLM's detection capabilities can compensate for the embryologist's 
experience and contribute to improved diagnostic reliability, demon-
strating the broader applicability of ML algorithms in fertilization 
classification by embryologists. The F1-score demonstrates that the 

Embryo no. Fertilization
MLM error 
rate (n = 10)

Senior 
embryologist 
error rate (n = 7)

Junior 
embryologist 
error rate (n = 11)

43 0PN 0.0%* 57.1%* 27.3%

82 0PN 0.0%* 57.1% 36.4%

55 2PN 0.0%* 57.1% 72.7%*

72 2PN 0.0%* 57.1% 81.8%*

42 2PN 0.0%* 85.7%* 81.8%*

31 0PN 0.0%* 100.0%* 81.8%*

40 0PN 10.0% 57.1%* 9.1%

1 2PN 60.0% 14.3%* 63.6%

84 0PN 60.0% 28.6% 18.2%

74 0PN 60.0% 85.7%* 27.3%*

12 0PN 60.0% 85.7% 81.8%

36 2PN 70.0% 14.3% 45.5%

76 2PN 80.0%* 0.0%* 9.1%*

61 0PN 80.0%* 42.9% 0.0%*

4 0PN 80.0%* 42.9% 18.2%*

9 0PN 80.0% 57.1% 54.5%

71 0PN 90.0%* 14.3% 18.2%*

59 2PN 90.0%* 71.4% 18.2%*

53 0PN 100.0%* 0.0%* 18.2%*

73 2PN 100.0%* 0.0%* 18.2%*

77 2PN 100.0%* 0.0%* 45.5%

54 0PN 100.0%* 14.3%* 45.5%

16 2PN 100.0%* 14.3%* 54.5%

49 0PN 100.0%* 14.3%* 63.6%

68 0PN 100.0%* 28.6% 36.4%

33 0PN 100.0%* 28.6%* 54.5%

25 0PN 100.0%* 42.9% 27.3%*

27 0PN 100.0%* 42.9% 54.5%

66 0PN 100.0%* 57.1% 18.2%*

50 0PN 100.0% 57.1% 63.6%

48 0PN 100.0%* 85.7% 45.5%*

Note: A comparison was performed on embryos with an error rate of over 50% in the machine 
learning model (MLM) and senior embryologist classification. Sorted by MLM error rate in 
ascending order. The error rate was calculated as the ratio of misclassified cases to the total 
number of classifications. Residual analysis was performed on the error rates in three groups.
*Significant difference between the error rate and the mean error rate of the three 
groups (p < 0.05).

TA B L E  3 Comparison of error 
rate between senior embryologist 
classification and machine learning 
model classification in embryos with 
over 50% error rate by either machine 
learning model or senior embryologist 
classification.
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MLM maintains a balanced detection ability, highlighting both high 
precision and recall, which is paramount for clinical applications.32 
Moreover, the AUC reflects a well-balanced trade-off between true 
positive and false positive rates, providing a comprehensive measure 
of a model's predictive performance.33 The significant difference in 
the true positive ratio and false negative ratio was potentially at-
tributed to the experience level of the junior embryologists. The 
inability to detect cytoplasmic changes, due to their limited expe-
riential knowledge, is considered to be the cause of misclassifying 
fertilized embryos as unfertilized. The MLM's that don't rely on 
experiential knowledge serve as valuable support tool for junior 
embryologists. The false negative ratio of fertilized embryos mis-
classified as unfertilized represents the risk of iatrogenic polyspermy 
in early r-ICSI. In addition to showing no significant difference in the 

false negative ratio compared to senior embryologists, the MLM can 
support the reduction of polyspermy by adjusting its sensitivity as 
needed. Although there was no significant difference, the specific-
ity of junior and senior embryologists tended to be higher than that 
of the MLM. Additionally, the seven embryos with an error rate of 
over 50% by both MLM and senior embryologist classification were 
mostly 0PN and showed minimal cytoplasmic changes. The possibil-
ity that the MLM is less proficient in classifying unfertilized embryos 
compared to embryologists is due to over-detecting irrelevant cyto-
plasmic changes.

The spindle fiber observations that do not depend on polar bod-
ies have been explored to reduce the incidence of polyspermy.34 As 
spindle fiber observation requires the use of an inverted microscope, 
potential damage from environmental changes is unavoidable.35 

F I G U R E  3 The contributions of image regions to the prediction score in the two input images were calculated using the LIME method. 
The LIME method indicates that the green regions contribute to 2PN and the red ones contribute to 0PN. The presence of regions with 
high contributions within the cytoplasm indicates that the MLM utilized cytoplasmic changes. (A) An example of a 2PN embryo from the 
test dataset with an error rate of 0% (Embryo No. 55). (B) An example of an 0PN embryo from the test dataset with an error rate of 0% 
(Embryo No. 82).
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The greater the number of embryos observed for the spindle, the 
greater the cumulative damage inflicted on the embryos. Conversely, 
the ML approach reduces potential damage by eliminating the need 
for embryo exposure to the external environment. Providing ad-
ditional information to classify fertilization without transferring 
embryos from the incubator reduces the routine workload on em-
bryologists. Seamless integration into the incubation process opti-
mizes embryo quality and overall outcomes.

The MLM can achieve the same level of predictive performance 
as senior embryologists in predicting fertilization, marking a signif-
icant advancement in reproductive medicine. Analysis of the error 
rates for individual embryos in the test dataset showed that the 
MLM provided accurate classifications in embryos where embry-
ologists tended to make classification mistakes. The six embryos 
that the MLM statistically had a lower error rate exhibited minimal 
cytoplasmic changes and polar body alterations. This finding sup-
ports that the MLM utilizes subtle cytoplasmic changes in embryos 
that are difficult for embryologists to recognize. The embryos with 
a statistically higher than the mean error rate of the three groups 
in the MLM had a greater number of cumulus cells attached to the 
zona pellucida. Cumulus cells overlapping the cytoplasm contrib-
ute to misclassification by introducing noise. There is potential 
for improving predictive performance by increasing the training 
data for embryos with overlapping cumulus cells and by remov-
ing these cells. Most of the embryos with statistically lower than 
the mean error rate of the three groups in the junior embryologist 
were 0PN. The junior embryologist classified the embryos as 0PN 
due to being less sensitive to cytoplasmic changes, whereas the 
MLM and senior embryologist over-detected cytoplasmic changes 
and classified them as 2PN. On the other hand, although there was 
no significant difference between the MLM and senior embryolo-
gists, the overall predictive performance of senior embryologists 
was better. Since senior embryologists perform classification using 
time-lapse movies, and the MLM relies on only two images, there 
could be a discrepancy in the amount of information available for 
learning. Incorporating time-lapse videos into MLM training is ex-
pected to further enhance its predictive performance. The results 
of this study highlight the sophisticated learning capabilities of 
the ML algorithm, indicating its broad applicability across various 
medical fields. Applying the ML algorithm to classification could 
enhance diagnostic and prognostic reliability across specialties in 
clinical practice.

In conclusion, this research revealed that the MLM can effec-
tively predict fertilization following short-term insemination by 
learning cytoplasmic changes in embryo images from a different per-
spective of embryologists. The predictive performance of MLM was 
significantly superior to that of junior embryologists, with no statis-
tical difference when compared with senior embryologists. These 
findings underscore the potential of ML to significantly enhance fer-
tilization prediction performance, leading to more informed clinical 
decisions and improved patient outcomes. Despite these promising 
results, this study has limitations, including the specific conditions 
under which the data were collected. Without the inclusion of 1PN 

and 3PN in the training, classification accuracy was affected due 
to the untrained abnormal cytoplasmic changes. Incorporating ab-
normal patterns into the training data is important to maintain the 
consistency of classification accuracy. Future research should aim 
to replicate these findings in diverse clinical settings and enhance 
the robustness of prediction by adding learning data to resist noise.
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