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1  |  INTRODUC TION

In vitro fertilization (IVF) treatment is a form of assisted reproduc-
tive technology, with conventional IVF (c- IVF) typically used as the 
initial method of fertilization.1 However, approximately 5%–20% 

of patients experience complete fertilization failure (CFF) post 
c- IVF.2–4 CFF results in the cancellation of the treatment cycle, 
thereby requiring intracytoplasmic sperm injection (ICSI) for the 
subsequent cycle. CFF imposes considerable physical and financial 
burdens on patients. To circumvent CFF, rescue ICSI (r- ICSI), which 
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Abstract
Purpose: This	study	established	a	machine	learning	model	(MLM)	trained	on	embryo	
images to predict fertilization following short- term insemination for early rescue 
ICSI and compared its predictive performance with the embryologist's manual 
classification.
Methods: Embryo	 images	at	4.5	and	8 h	post-	insemination	were	preprocessed	 into	
vectors	 using	 ResNet50.	 The	 Light	 Gradient	 Boosting	 Machine	 (Light	 GBM)	 was	
employed	for	training	vectors.	Fertilization	in	the	test	dataset	was	assessed	by	MLM,	
with seven senior and 11 junior embryologists. Predictive metrics were analyzed using 
repeated	measures	ANOVA	and	paired	t- tests.
Results: Comparing	MLM,	senior	embryologists,	and	junior	embryologists,	significant	
differences	 were	 observed	 in	 accuracy	 (0.71 ± 0.01,	 0.75 ± 0.05,	 0.61 ± 0.05),	
recall	 (0.84 ± 0.02,	 0.84 ± 0.10,	 0.61 ± 0.07),	 F1-	score	 (0.78 ± 0.01,	 0.81 ± 0.04,	
0.66 ± 0.04),	 and	 area	 under	 the	 curve	 (0.73 ± 0.0	 3,	 0.73 ± 0.06,	 0.61 ± 0.07),	 the	
MLM	outperforming	junior	embryologists	with	<1 year	of	experience.	No	significant	
differences	were	observed	between	 the	MLM	and	 senior	 embryologists	with	over	
5 years	of	experience.
Conclusions: MLM	 can	 effectively	 predict	 fertilization	 following	 short-	term	
insemination by analyzing cytoplasmic changes in images. These results underscore 
the potential to enhance clinical decision- making and improve patient outcomes.
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involves	performing	 ICSI	 21–33 h	 after	 oocyte	 retrieval,	 has	been	
reported.5 The prolonged interval between oocyte retrieval and 
fertilization compromises the oocyte quality, leading to the fail-
ure	 of	 r-	ICSI.	On	 the	 other	 hand,	 early	 r-	ICSI,	 such	 as	within	 8 h,	
helps minimize oocyte damage and decline in quality by perform-
ing ICSI on unfertilized oocytes following short- term insemination. 
Previous studies have demonstrated that early r- ICSI can potentially 
prevent oocyte degradation and achieve higher pregnancy rates.6 
Therefore, the decision to perform early r- ICSI should be made by 
embryologists	4–8 h	after	insemination.6–9 Early r- ICSI is performed 
on oocytes that do not exhibit fertilization indicators, such as pro-
nuclei, extrusion of the second polar body, cytoplasmic wave, or 
fertilization cone.10 The second polar body, which is a by- product of 
meiosis,	is	extruded	within	4 h	after	fertilization.	Additionally,	pro-
nuclei	appear	as	early	as	8 h	after	insemination.	These	can	be	read-
ily used by embryologists to classify fertilization.8,11 Conversely, if 
polar bodies are fragmented and pronuclei have not appeared, the 
embryologist's classifications based solely on the cytoplasmic wave 
and fertilization cone are challenging due to their subjective nature 
and lack of objectivity. Furthermore, the precision of fertilization 
classification is contingent upon the expertise of embryologists. 
Unnecessary ICSI on fertilized embryos should be avoided to pre-
vent the risk of polyspermy. Errors in fertilization classification not 
only risk the oversight of unfertilized oocytes but also elevate the 
potential for polyspermy.12

According	 to	 a	 previous	 study,	 the	 spindle	 fiber	 observation	
using an inverted microscope made it possible to classify fertil-
ization in oocytes with fragmented polar bodies. The technique 
allows classification without depending on the second polar body. 
On the other hand, the spindle fibers observation has the prob-
lem of causing unavoidable environmental damage to the embryo 
when performed outside the incubator.11 Furthermore, classifica-
tion by observing spindle fibers requires trained embryologists 
and specialized equipment for differential interference contrast 
microscopy. Thus, spindle fiber observation requires the purchase 
of expensive equipment and increases the routine workload for 
the observation.

Machine	 learning	 (ML)	 has	 been	 shown	 to	 be	 an	 alternative	
observational technique as it excels at identifying intricate pat-
terns	 and	 hidden	 correlations	 through	 data-	driven	 learning.	 ML	
generates data- driven predictions without relying on experience 
or intuition.13	The	application	of	ML	to	fertilization	classification	
is expected to provide objective and reproducible outcomes, in-
dependent of the embryologist's experience. The feature patterns 
learned	 by	ML	 offer	 a	 unique	 perspective	 that	 differs	 from	 tra-
ditional human classification and provides valuable alternative 
insights.	 However,	 studies	 that	 implement	 ML	 for	 fertilization	
classification and evaluation of predictive performance have not 
yet been reported.

This	study	aims	to	establish	an	ML	model	 (MLM)	for	the	fertil-
ization classification of embryos following short- term insemination, 
trained on embryo images, and to compare the predictive perfor-
mance	of	the	MLM	and	the	embryologist's	manual	classification.

2  |  MATERIAL S AND METHODS

2.1  |  Study criteria

This retrospective study was approved by the ethical committee of 
the	 Japanese	 Institution	 for	 Standardizing	 Assisted	 Reproductive	
Technology	 (JISART;	 2024-	21).	 This	 study	 used	 data	 collected	
from January to October 2021. Data were gathered from short- 
term insemination cycles following oocyte retrieval. Fertilization 
was assessed by two embryologists observing the pronuclei from 
their appearance to their disappearance to avoid missing early 
disappearance or delayed appearance of pronuclei. The embryos 
were	 classified	 into	 two	 pronuclei	 (2PN)	 and	 no	 pronuclei	 (0PN)	
groups,	while	one	pronuclei	 (1PN)	and	three	pronuclei	 (3PN)	were	
excluded from this study due to their limited numbers. This study 
was non- interventional, and the results were not employed in any 
manner to influence treatment decisions.

2.2  |  Ovarian stimulation, oocyte retrieval, and IVF 
procedure

Patients underwent ovarian stimulation using the Progestin- 
Primed Ovarian Stimulation (PPOS) protocol. The optimal dosage 
of follicle- stimulating hormone (FSH) was determined based on the 
serum	 concentrations	 of	 basal	 FSH	 and	 anti-	Müllerian	 hormone	
(AMH),	 in	 conjunction	with	 the	patient's	 age.	FSH	dosage	 ranged	
from	 150	 to	 300 units	 per	 day.	 Additionally,	 medroxyprogester-
one	acetate	(MPA)	at	a	dosage	of	5–10 mg	or	dydrogesterone	at	a	
dosage	 of	 20 mg/day,	 was	 administered.	 Oocyte	 maturation	 was	
induced	using	a	GnRH	agonist	when	the	 leading	 follicle	diameter,	
measured	via	transvaginal	ultrasound,	was	≥18 mm.	The	procedure	
involved	oocyte	retrieval	34–35 h	post-	induction,	performed	under	
transvaginal ultrasound guidance. Semen samples were processed 
using the density gradient centrifugation method with Extra Sperm 
Selection™	(ORIZURU	ART	Family,	Kyoto,	Japan)	by	centrifugation	
at	400 g	for	20 min.	The	recovered	pellet	was	suspended	in	4 mL	of	
Gx-	IVF™	 (Vitrolife	 AB,	Gothenburg,	 Sweden)	 and	 centrifuged	 for	
5 min	at	300 g.	Finally,	the	pellet	was	resuspended	again	in	0.5 mL	of	
Gx-	IVF™	(Vitrolife	AB).	1 × 105 motile sperm were used for insemi-
nation	in	1 mL	of	Gx-	IVF™	(Vitrolife	AB)	containing	cumulus-	oocyte	
complexes.	The	sperm	were	co-	cultured	with	the	oocytes	for	4.5 h.	
Following co- culture, cumulus cells underwent denudation, and the 
resulting embryos were cultured in an EmbryoScope™ time- lapse 
incubator	(Vitrolife	AB).

2.3  |  Embryo imaging and preprocessing

Embryo	 images	 were	 captured	 at	 4.5	 and	 8 h	 post-	insemination	
using a time- lapse incubator. The images were resized from 
800 × 800	to	224 × 224	pixels.	The	circular	Hough	transform	algo-
rithm was used to detect the cytoplasm, thereby minimizing the 
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impact of noise, and the area outside the circle was masked in 
black.	 The	 RGB	 values	 of	 each	 pixel	 in	 the	 embryo	 images	were	
centralized	by	subtracting	the	mean	RGB	value	of	the	entire	image.	
Subsequently,	the	standard	deviation	of	the	RGB	values	of	the	en-
tire image was calculated, and each pixel value was normalized by 
dividing it by the standard deviation.

2.4  |  MLM

Initially, 10% of the images of 878 embryos were randomly selected 
as the test dataset, while the remaining 90% were designated as 
the training dataset. The weights of the pretrained convolutional 
neural	 network,	 ResNet50,	 were	 fixed	 and	 utilized	 as	 feature	
extractors.	 The	 preprocessed	 embryo	 images	 at	 4.5	 and	 8 h	were	
input	 into	 ResNet50,	 converting	 them	 into	 2048-	dimensional	
vectors.	 The	 vectors	 from	 the	 4.5	 and	 8 h	 images	 were	
concatenated. Consequently, the two images were transformed into 
4096- dimensional vectors (Figure 1). The training dataset, which 
was transformed into 4096- dimensional vectors, was partitioned by 
retaining	20%	of	 the	validation	data.	The	Light	Gradient	Boosting	
Machine	 (Light	 GBM)	 analysis	 algorithm	 was	 employed,	 which	 is	
known for its rapid processing and efficient enhancement of its 
predictive function.14 Compared to the standard gradient boosting 
tree	 algorithm,	 Light	 GBM	 enhances	 efficiency	 and	 accelerates	
computation by optimizing histograms, which improves segmenting 
features and conserves computational memory.15 Hyperparameter 
tuning was performed using validation data by employing Bayesian 
optimization through the Optuna framework. The training dataset 
was divided into training and validation sets in a 4:1 ratio. The 

Optuna framework explored the following hyperparameters (range) 
involved	 in	 the	training	of	Light	GBM:	the	metric	 (binary_log-	loss),	
lambda_l1	 (1e−8–10.0),	 lambda_l2	 (1e−8–10.0),	 num_leaves	 (2–256),	
feature_fraction	(0.4–1.0),	bagging_fraction	(0.4–1.0),	bagging_freq	
(1–7),	 and	 min_child_samples	 (5–100).	 Using	 the	 hyperparameters	
tuned by the Optuna framework, we evaluated the predictive 
performance with 5- fold cross- validation.

2.5  |  Fertilization predictive performance

The	trained	Light	GBM	model	was	applied	to	predict	the	outcomes	
of the test dataset. Furthermore, 10 different random seeds were 
configured, and 10 predictions on the test dataset were executed. 
To	determine	the	reliability	of	ML	predictions,	predictions	made	by	
embryologists	 were	 compared	 with	 the	ML	 predictions.	 Eighteen	
embryologists had predicted whether the sperm had fertilized 
the	 oocyte	 in	 the	 test	 dataset.	 Embryologists	 with	 over	 5 years	
of experience were classified as senior embryologists, and those 
with <1 year	of	experience	as	 junior	embryologists.	Embryologists	
reviewed	the	movie	of	each	embryo	taken	4.5	to	8 h	following	short-	
term	insemination	and	classified	them	as	either	2PN	or	0PN	based	on	
the comprehensive assessment of the appearance of the second polar 
body, cytoplasmic wave, and fertilization cone. The embryologist's 
review was performed in a blinded manner without knowledge of 
the true ratio in the test data set. The metrics evaluated for each 
prediction included accuracy, recall, specificity, precision, F1 score, 
area	under	the	ROC	curve	(AUC),	true	positive	ratio,	false	positive	
ratio,	true	negative	ratio,	and	false	negative	ratio.	Accuracy	is	the	ratio	
of correctly predicted instances to the total instances, reflecting the 

F I G U R E  1 Flowchart	depicting	the	preprocessing	of	embryo	images	captured	at	4.5	and	8 h	post-	insemination,	respectively.	Hough	
circle transformation was used to mask the cytoplasmic area outside to minimize the effect of noise. The masked images were converted to 
2048-	dimensional	vectors	for	input	into	ResNet50.	Converted	vectors	were	concatenated.
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overall correctness of the model. Recall is the proportion of actual 
positive cases that were correctly identified by the model, indicating 
its ability to detect positive instances. Specificity is the proportion 
of actual negative cases that were correctly identified by the model, 
indicating its ability to detect negative instances. Precision is the 
proportion of predicted positive cases that were correctly identified, 
reflecting the accuracy of positive predictions. The F1 score is the 
harmonic mean of precision and recall, providing a single measure 
of	 the	model's	 balance	 between	 precision	 and	 recall.	 The	 AUC	 is	
a performance measurement for classification models at various 
threshold settings, representing the degree of separability between 
classes. The confusion matrix metrics were calculated as a ratio of 
the number of instances in each category by the total number of 
instances. Furthermore, the error rate for each embryo in the test 
dataset	was	calculated	to	compare	the	error	trends.	A	comparison	
was performed on embryos with an error rate of over 50% in either 
MLM	 or	 senior	 embryologist	 classification.	 The	 error	 rate	 was	
calculated as the ratio of misclassified cases to the total number 
of	 classifications.	 The	 LIME	method	 visualizes	 how	 image	 regions	
contribute	 to	 the	 MLM	 prediction.16	 We	 used	 the	 LIME	 method	
to assess the validity of the classification by visualizing the critical 
cytoplasmic regions in an error rate of 0% embryos. Furthermore, to 
confirm the ability to adjust sensitivity, the predictive performance 
at	different	cutoff	values	of	the	MLM	prediction	score	was	evaluated.

2.6  |  Statistical analyses

Repeated	measures	ANOVA	was	conducted	on	the	predictions	made	
by	 the	MLM,	 junior,	 and	senior	embryologists.	Paired	 t- tests were 
conducted when significant differences were found in the repeated 
measures	ANOVA.	Multiple	comparisons	were	performed	using	the	
Bonferroni	correction.	A	comparison	of	error	rates	was	conducted	
using residual analysis. The significance level was set at α < 0.05.	
Statistical	 analyses	 were	 performed	 with	 EZR	 (Saitama	 Medical	
Center,	Jichi	Medical	University,	Saitama,	Japan).17

3  |  RESULTS

In	230 cycles,	1491	oocytes	underwent	short-	term	insemination.	Of	
these,	 91	 and	41	embryos	were	 classified	 as	3PN	and	1PN,	while	
391	and	90	immature	and	degenerated	oocytes	were	excluded	from	
the	 analysis,	 respectively.	 Ultimately,	 547	 and	 331	 embryos	were	
identified	as	2PN	and	0PN,	respectively,	resulting	in	878	embryos.	
The	0PN	group	 included	23	arrested	embryos	at	 the	second	polar	
body stage. The 878 embryos were divided using a random test split 
method, with 790 embryos allocated to the training dataset and 88 
embryos to the test dataset (Figure 2).

The	Light	GBM	hyperparameters	were	tuned	using	the	Optuna	
framework and adjusted based on 5- fold cross- validation. The tun-
ing	 results	 were	 as	 follows:	 the	 metric	 (binary_error),	 lambda_l1	
(9.209990901687287e-	08),	 lambda_l2	 (5.176175467675683e-	08),	

num_leaves	 (5),	 feature_fraction	 (0.5284113215213745),	 bagging_
fraction	 (0.6207237760711464),	 bagging_freq	 (7),	 and	max_depth	
(4).	 The	 metric	 was	 changed	 from	 binary_log-	loss	 to	 binary_error	
since	binary_error	had	higher	predictive	performance.	The	perfor-
mance	consistency	of	 the	 tuned	MLM	was	confirmed	using	5-	fold	
cross- validation on the training dataset (Table 1).

Table 2 shows the predictive performance of the test dataset, as 
estimated	by	the	MLM	after	10	iterations,	in	comparison	to	the	as-
sessments of the seven senior and 11 junior embryologists, respec-
tively.	Repeated	measures	ANOVA	revealed	statistically	significant	
differences	 in	 the	metrics	 of	 accuracy,	 recall,	 F1-	score,	AUC,	 true	
positive, and false negative. In contrast, no significant differences 
were observed for the other metrics. Upon conducting multiple 
comparisons	of	the	metrics	for	accuracy,	recall,	F1-	score,	AUC,	true	
positive, and false negative using paired t- tests, junior embryologists 
exhibited	 significantly	 lower	 performance	 than	 other	 groups.	 No	
significant	 differences	were	 observed	 between	 the	MLM	 and	 the	
senior embryologists. The individual predictive performance is de-
tailed in Table S1.

The	comparison	of	31	embryos	with	an	error	rate	of	over	50%	in	
either	the	MLM	or	the	senior	embryologist	classification	showed	a	
significant difference in 26 embryos within the test dataset using re-
sidual	analysis.	The	MLM	had	a	significantly	lower	error	rate	than	the	
mean error rate of three groups for six embryos and a significantly 
higher error rate for 17 embryos. The error rate of the senior embry-
ologist was significantly lower for nine embryos and higher for five 
embryos. The error rate of the junior embryologist was significantly 
lower for 11 embryos and higher for four embryos (Table 3).

The	LIME	method	visualizes	the	contributions	of	image	regions	
to the prediction score. Here, the green image regions indicate con-
tributions	to	2PN,	while	the	red	ones	indicate	contributions	to	0PN.	
The presence of green regions within the cytoplasm indicates that 
MLM	utilized	cytoplasmic	changes	(Figure 3).

It was indicated that the predictive performance could be ad-
justed	by	adopting	different	cutoff	values	for	 the	MLM	prediction	
score on the training dataset. The true positive ratio and false pos-
itive ratio both showed a declining trend with increasing cutoff 
values. The true negative ratio and false negative ratio showed an 
increasing trend (Table S2).

4  |  DISCUSSION

This	study	indicates	that	the	MLM	can	predict	fertilization	following	
short- term insemination by analyzing cytoplasmic changes 
from	 embryo	 images.	 The	 predictive	 performance	 of	 the	 MLM	
was significantly higher than that of the junior embryologists, 
with no statistical difference observed compared to the senior 
embryologists.	 These	 findings	 underscore	 the	 potential	 of	 ML	 to	
enhance the reliability of fertilization prediction, which could lead to 
more informed clinical decisions.

Previous studies have completely relied on manual classification 
for the implementation of early r- ICSI.18 Early r- ICSI permits clinical 
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utilization of unfertilized oocytes following short- term insemination. 
The clinical utilization of unfertilized oocytes contributes to the pre-
vention of CFF and a reduction in the number of oocyte retrievals. 
Reducing time to pregnancy significantly alleviates the psycholog-
ical and economic burdens on patients.19 Furthermore, previous 
research has indicated that early r- ICSI does not significantly differ 
from conventional ICSI in terms of clinical pregnancy rates, miscar-
riage rates, and neonatal outcomes.20 The rates of congenital birth 
defects were also similar across the groups, suggesting the safety 
of this approach.20,21 However, it is inherently associated with the 
increased risk of polyspermy owing to human error in fertilization 
classification. Embryologists' fertilization classification is highly 
dependent on their expertise and experience, leading to inevitable 
interindividual variability and susceptibility to human error.11	6–8 h	
post- insemination, extrusion of the second polar body is considered 

the most accurate fertilization indicator.12,18 When the polar body 
assumes fragmentation or sperm entry is delayed beyond the typ-
ical	 1–4 h,	 the	 accurate	 assessment	 of	 fertilization	 becomes	 chal-
lenging.22 In such cases, it is necessary to rely on the presence of a 
fertilization	cone	or	cytoplasmic	wave.	Nevertheless,	the	incidence	
of	 fertilization	 cones	 has	 been	 reported	 to	 be	 as	 low	 as	 3.6%.23 
Since	cytoplasmic	wave	typically	occurs	2–3 h	after	extrusion	of	the	
second polar body, sufficient information is not obtained from the 
observation	 at	 the	 8 h	 post-	insemination	 point.23 The fertilization 
classification based on limited information contributes to oversight 
of unfertilized oocytes and the occurrence of iatrogenic polyspermy. 
Conversely,	 this	 study	 demonstrated	 that	 the	ML-	based	 approach	
provides	a	more	consistent	and	reproducible	evaluation.	The	MLM	
can efficiently perform classification by learning complex correla-
tions from images.24 The consistency confirmed through 5- fold 

F I G U R E  2 Flowchart	depicting	the	study	design	and	results	of	the	subsequent	analyses.	The	878	embryos	underwent	short-	term	
insemination were divided using a random test split method, with 790 embryos allocated to the training dataset and 88 embryos to the test 
dataset. The predictive performance of the machine learning model and 18 embryologists was evaluated using the 88 embryos in the test 
dataset.	AUC,	area	under	the	ROC	curve;	Light	GBM,	Light	Gradient	Boosting	Machine.
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cross- validation demonstrates the robustness and generalizability 
of the data.25	Maintaining	consistent	predictive	performance	with	
different datasets underscores the advanced learning capabilities of 
the	ML	algorithm	and	highlights	its	potential	as	a	valuable	support	
tool	in	clinical	practice.	The	MLM	could	serve	as	an	effective	adjunct	
to human expertise and enhance the reliability and consistency of 
fertilization	 classification.	 Fertilization	 classification	 applying	 ML	
contributes to the conservation of human resources and the reduc-
tion of errors in clinical practice.

In	this	study,	the	MLM	was	trained	to	learn	and	predict	temporal	
changes	 in	 the	cytoplasm	from	embryo	 images.	The	LIME	method	
was	 used	 to	 visualize	 how	 image	 regions	 contribute	 to	 the	MLM	
prediction, but it was difficult to interpret why the highlighted re-
gions were relevant to the fertilization classification with the naked 

eye.	Accompanying	 fertilization,	cytoplasmic	changes	 include	vari-
ations in lipid droplets (LDs) and the cytoskeleton.26,27 Lipids are 
fundamental cellular components involved in cell construction, 
metabolism, and regulation, with LDs serving as pivotal intracellu-
lar structures for energy storage and membrane synthesis.28 It has 
been reported that LD size increases during the transition from 
maturation to development.26 In addition, the cytoskeleton under-
goes dramatic changes during fertilization. The actin cytoskeleton, 
particularly crucial for sperm entry and subsequent calcium signal 
transduction, undergoes significant reorganization.27	Microtubules	
play an essential role in organizing mitotic spindles and promoting 
pronuclear formation, with the sperm centrosome contributing to 
the microtubule dynamics.29 The changes in LDs are in the order of 
micrometers, and cytoskeletal alterations are extremely challenging 

Fold 1 2 3 4 5 Mean ± SD

Accuracy 0.66 0.74 0.72 0.72 0.70 0.71 ± 0.03

Recall 0.77 0.88 0.89 0.94 0.78 0.85 ± 0.07

Specificity 0.47 0.51 0.43 0.37 0.57 0.47 ± 0.07

Precision 0.71 0.75 0.72 0.71 0.75 0.73 ± 0.02

F1 score 0.74 0.81 0.79 0.81 0.76 0.78 ± 0.03

AUC 0.74 0.78 0.74 0.77 0.74 0.75 ± 0.02

True positive ratio 0.48 0.55 0.55 0.58 0.48 0.53 ± 0.04

False positive ratio 0.20 0.18 0.22 0.24 0.16 0.20 ± 0.03

True negative ratio 0.18 0.19 0.16 0.14 0.22 0.18 ± 0.03

False negative ratio 0.15 0.08 0.07 0.04 0.14 0.09 ± 0.04

Note:	The	predictive	performance	of	the	machine	learning	model	(MLM)	was	evaluated	using	5-	fold	
cross- validation on the training dataset (n = 790).	The	cutoff	value	for	the	prediction	score	using	
MLM	was	set	at	0.5.	The	confusion	matrix	metrics	were	calculated	as	a	ratio	by	the	number	of	
instances in each category by the total number of instances.
Abbreviation:	AUC,	area	under	the	ROC	curve.

TA B L E  1 Predictive	performance	of	
the machine learning model using 5- fold 
cross- validation on the training dataset.

TA B L E  2 Comparative	predictive	performance	of	machine	learning	model	and	embryologist	on	test	dataset.

Metric
Machine learning model 
(mean ± SD)

Senior embryologist 
(mean ± SD)

Junior embryologist 
(mean ± SD) rANOVA p- value

Accuracy 0.71 ± 0.01 0.75 ± 0.05 0.61 ± 0.05* <0.01

Recall 0.84 ± 0.02 0.84 ± 0.10 0.61 ± 0.07* <0.01

Specificity 0.50 ± 0.03 0.61 ± 0.15 0.62 ± 0.17 0.14

Precision 0.74 ± 0.01 0.79 ± 0.06 0.73 ± 0.07 0.22

F1 score 0.78 ± 0.01 0.81 ± 0.04 0.66 ± 0.04* <0.01

AUC 0.73 ± 0.03 0.73 ± 0.06 0.61 ± 0.07* <0.01

True positive ratio 0.53 ± 0.01 0.52 ± 0.06 0.38 ± 0.04* <0.01

False positive ratio 0.19 ± 0.01 0.14 ± 0.05 0.14 ± 0.06 0.16

True negative ratio 0.19 ± 0.01 0.23 ± 0.05 0.23 ± 0.06 0.14

False negative ratio 0.10 ± 0.01 0.10 ± 0.06 0.25 ± 0.04* <0.01

Note:	Repeated	measures	ANOVA	(rANOVA)	was	used	to	compare	the	mean	of	each	metric	for	the	machine	learning	model,	junior	embryologists,	
and senior embryologists. Paired t-	tests	were	used	for	multiple	comparisons	of	metrics	showing	significant	differences	in	the	rANOVA.	Superscripts	
(*)	indicate	junior	embryologists	have	significant	differences	from	both	the	machine	learning	model	(MLM)	and	senior	embryologists	(p < 0.01).	There	
was no statistically significant difference between the machine learning model and senior embryologist in each metric. The cutoff value for the 
prediction	score	using	MLM	was	set	at	0.5.	The	confusion	matrix	metrics	were	calculated	as	a	ratio	by	the	number	of	instances	in	each	category	by	
the total number of instances.
Abbreviation:	AUC,	area	under	the	ROC	curve.
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to	discern	with	the	naked	eye.	The	ML	algorithm	in	this	study	is	sug-
gested to learn the differences imperceptible to human observation 
and leverage them for predictions.

Within	this	investigation,	the	MLM	outperformed	junior	embry-
ologists	significantly	in	terms	of	accuracy,	recall,	F1-	score,	and	AUC	
but showed no statistical difference when compared with senior em-
bryologists.	These	findings	indicate	that	the	MLM	exhibits	a	superior	
predictive performance compared to that of junior embryologists. 
The	MLM	suggests	 that	 it	could	be	utilized	as	an	effective	educa-
tional tool, providing junior embryologists with additional resources 

for training and skill development.30	Regarding	recall,	ML's	ability	to	
detect critical cases with minimal omission is evident, which is par-
ticularly advantageous in clinical settings where the identification 
of crucial cases is imperative.31 The significant difference between 
the	MLM	and	junior	embryologists	indicates	that	the	overall	perfor-
mance	of	the	MLM	surpasses	that	of	junior	embryologists,	and	the	
MLM's	detection	capabilities	can	compensate	for	the	embryologist's	
experience and contribute to improved diagnostic reliability, demon-
strating	 the	 broader	 applicability	 of	ML	 algorithms	 in	 fertilization	
classification by embryologists. The F1- score demonstrates that the 

Embryo no. Fertilization
MLM error 
rate (n = 10)

Senior 
embryologist 
error rate (n = 7)

Junior 
embryologist 
error rate (n = 11)

43 0PN 0.0%* 57.1%* 27.3%

82 0PN 0.0%* 57.1% 36.4%

55 2PN 0.0%* 57.1% 72.7%*

72 2PN 0.0%* 57.1% 81.8%*

42 2PN 0.0%* 85.7%* 81.8%*

31 0PN 0.0%* 100.0%* 81.8%*

40 0PN 10.0% 57.1%* 9.1%

1 2PN 60.0% 14.3%* 63.6%

84 0PN 60.0% 28.6% 18.2%

74 0PN 60.0% 85.7%* 27.3%*

12 0PN 60.0% 85.7% 81.8%

36 2PN 70.0% 14.3% 45.5%

76 2PN 80.0%* 0.0%* 9.1%*

61 0PN 80.0%* 42.9% 0.0%*

4 0PN 80.0%* 42.9% 18.2%*

9 0PN 80.0% 57.1% 54.5%

71 0PN 90.0%* 14.3% 18.2%*

59 2PN 90.0%* 71.4% 18.2%*

53 0PN 100.0%* 0.0%* 18.2%*

73 2PN 100.0%* 0.0%* 18.2%*

77 2PN 100.0%* 0.0%* 45.5%

54 0PN 100.0%* 14.3%* 45.5%

16 2PN 100.0%* 14.3%* 54.5%

49 0PN 100.0%* 14.3%* 63.6%

68 0PN 100.0%* 28.6% 36.4%

33 0PN 100.0%* 28.6%* 54.5%

25 0PN 100.0%* 42.9% 27.3%*

27 0PN 100.0%* 42.9% 54.5%

66 0PN 100.0%* 57.1% 18.2%*

50 0PN 100.0% 57.1% 63.6%

48 0PN 100.0%* 85.7% 45.5%*

Note:	A	comparison	was	performed	on	embryos	with	an	error	rate	of	over	50%	in	the	machine	
learning	model	(MLM)	and	senior	embryologist	classification.	Sorted	by	MLM	error	rate	in	
ascending order. The error rate was calculated as the ratio of misclassified cases to the total 
number of classifications. Residual analysis was performed on the error rates in three groups.
*Significant	difference	between	the	error	rate	and	the	mean	error	rate	of	the	three	
groups (p < 0.05).

TA B L E  3 Comparison	of	error	
rate between senior embryologist 
classification and machine learning 
model classification in embryos with 
over 50% error rate by either machine 
learning model or senior embryologist 
classification.
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MLM	maintains	a	balanced	detection	ability,	highlighting	both	high	
precision and recall, which is paramount for clinical applications.32 
Moreover,	the	AUC	reflects	a	well-	balanced	trade-	off	between	true	
positive and false positive rates, providing a comprehensive measure 
of a model's predictive performance.33 The significant difference in 
the true positive ratio and false negative ratio was potentially at-
tributed to the experience level of the junior embryologists. The 
inability to detect cytoplasmic changes, due to their limited expe-
riential knowledge, is considered to be the cause of misclassifying 
fertilized	 embryos	 as	 unfertilized.	 The	 MLM's	 that	 don't	 rely	 on	
experiential knowledge serve as valuable support tool for junior 
embryologists. The false negative ratio of fertilized embryos mis-
classified as unfertilized represents the risk of iatrogenic polyspermy 
in early r- ICSI. In addition to showing no significant difference in the 

false	negative	ratio	compared	to	senior	embryologists,	the	MLM	can	
support the reduction of polyspermy by adjusting its sensitivity as 
needed.	Although	there	was	no	significant	difference,	the	specific-
ity of junior and senior embryologists tended to be higher than that 
of	the	MLM.	Additionally,	the	seven	embryos	with	an	error	rate	of	
over	50%	by	both	MLM	and	senior	embryologist	classification	were	
mostly	0PN	and	showed	minimal	cytoplasmic	changes.	The	possibil-
ity	that	the	MLM	is	less	proficient	in	classifying	unfertilized	embryos	
compared to embryologists is due to over- detecting irrelevant cyto-
plasmic changes.

The spindle fiber observations that do not depend on polar bod-
ies have been explored to reduce the incidence of polyspermy.34	As	
spindle fiber observation requires the use of an inverted microscope, 
potential damage from environmental changes is unavoidable.35 

F I G U R E  3 The	contributions	of	image	regions	to	the	prediction	score	in	the	two	input	images	were	calculated	using	the	LIME	method.	
The	LIME	method	indicates	that	the	green	regions	contribute	to	2PN	and	the	red	ones	contribute	to	0PN.	The	presence	of	regions	with	
high	contributions	within	the	cytoplasm	indicates	that	the	MLM	utilized	cytoplasmic	changes.	(A)	An	example	of	a	2PN	embryo	from	the	
test	dataset	with	an	error	rate	of	0%	(Embryo	No.	55).	(B)	An	example	of	an	0PN	embryo	from	the	test	dataset	with	an	error	rate	of	0%	
(Embryo	No.	82).
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The greater the number of embryos observed for the spindle, the 
greater the cumulative damage inflicted on the embryos. Conversely, 
the	ML	approach	reduces	potential	damage	by	eliminating	the	need	
for embryo exposure to the external environment. Providing ad-
ditional information to classify fertilization without transferring 
embryos from the incubator reduces the routine workload on em-
bryologists. Seamless integration into the incubation process opti-
mizes embryo quality and overall outcomes.

The	MLM	can	achieve	the	same	level	of	predictive	performance	
as senior embryologists in predicting fertilization, marking a signif-
icant	advancement	in	reproductive	medicine.	Analysis	of	the	error	
rates for individual embryos in the test dataset showed that the 
MLM	provided	accurate	classifications	 in	embryos	where	embry-
ologists tended to make classification mistakes. The six embryos 
that	the	MLM	statistically	had	a	lower	error	rate	exhibited	minimal	
cytoplasmic changes and polar body alterations. This finding sup-
ports	that	the	MLM	utilizes	subtle	cytoplasmic	changes	in	embryos	
that are difficult for embryologists to recognize. The embryos with 
a statistically higher than the mean error rate of the three groups 
in	the	MLM	had	a	greater	number	of	cumulus	cells	attached	to	the	
zona pellucida. Cumulus cells overlapping the cytoplasm contrib-
ute to misclassification by introducing noise. There is potential 
for improving predictive performance by increasing the training 
data for embryos with overlapping cumulus cells and by remov-
ing	these	cells.	Most	of	the	embryos	with	statistically	 lower	than	
the mean error rate of the three groups in the junior embryologist 
were	0PN.	The	junior	embryologist	classified	the	embryos	as	0PN	
due to being less sensitive to cytoplasmic changes, whereas the 
MLM	and	senior	embryologist	over-	detected	cytoplasmic	changes	
and	classified	them	as	2PN.	On	the	other	hand,	although	there	was	
no	significant	difference	between	the	MLM	and	senior	embryolo-
gists, the overall predictive performance of senior embryologists 
was better. Since senior embryologists perform classification using 
time-	lapse	movies,	and	the	MLM	relies	on	only	two	images,	there	
could be a discrepancy in the amount of information available for 
learning.	Incorporating	time-	lapse	videos	into	MLM	training	is	ex-
pected to further enhance its predictive performance. The results 
of this study highlight the sophisticated learning capabilities of 
the	ML	algorithm,	indicating	its	broad	applicability	across	various	
medical	 fields.	Applying	 the	ML	 algorithm	 to	 classification	 could	
enhance diagnostic and prognostic reliability across specialties in 
clinical practice.

In	 conclusion,	 this	 research	 revealed	 that	 the	MLM	can	 effec-
tively predict fertilization following short- term insemination by 
learning cytoplasmic changes in embryo images from a different per-
spective	of	embryologists.	The	predictive	performance	of	MLM	was	
significantly superior to that of junior embryologists, with no statis-
tical difference when compared with senior embryologists. These 
findings	underscore	the	potential	of	ML	to	significantly	enhance	fer-
tilization prediction performance, leading to more informed clinical 
decisions and improved patient outcomes. Despite these promising 
results, this study has limitations, including the specific conditions 
under	which	the	data	were	collected.	Without	the	inclusion	of	1PN	

and	 3PN	 in	 the	 training,	 classification	 accuracy	was	 affected	 due	
to the untrained abnormal cytoplasmic changes. Incorporating ab-
normal patterns into the training data is important to maintain the 
consistency of classification accuracy. Future research should aim 
to replicate these findings in diverse clinical settings and enhance 
the robustness of prediction by adding learning data to resist noise.
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