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Routine scalp EEG is essential in the clinical diagnosis and management of epilepsy. However, a normal scalp EEG (based on expert vis-

ual review) recorded from a patient with epilepsy can cause delays in diagnosis and clinical care delivery. Here, we investigated whether

normal EEGs might contain subtle electrophysiological clues of epilepsy. Specifically, we investigated (i) whether there are indicators of

abnormal brain electrophysiology in normal EEGs of epilepsy patients, and (ii) whether such abnormalities are modulated by the side of

the brain generating seizures in focal epilepsy. We analysed awake scalp EEG recordings of age-matched groups of 144 healthy individu-

als and 48 individuals with drug-resistant focal epilepsy who had normal scalp EEGs. After preprocessing, using a bipolar montage of

eight channels, we extracted the fraction of spectral power in the alpha band (8–13 Hz) relative to a wide band of 0.5–40 Hz within 10-s

windows. We analysed the extracted features for (i) the extent to which people with drug-resistant focal epilepsy differed from healthy

subjects, and (ii) whether differences within the drug-resistant focal epilepsy patients were related to the hemisphere generating seizures.

We then used those differences to classify whether an EEG is likely to have been recorded from a person with drug-resistant focal epi-

lepsy, and if so, the epileptogenic hemisphere. Furthermore, we tested the significance of these differences while controlling for confound-

ers, such as acquisition system, age and medications. We found that the fraction of alpha power is generally reduced (i) in drug-resistant

focal epilepsy compared to healthy controls, and (ii) in right-handed drug-resistant focal epilepsy subjects with left hemispheric seizures

compared to those with right hemispheric seizures, and that the differences are most prominent in the frontal and temporal regions. The

fraction of alpha power yielded area under curve values of 0.83 in distinguishing drug-resistant focal epilepsy from healthy and 0.77 in

identifying the epileptic hemisphere in drug-resistant focal epilepsy patients. Furthermore, our results suggest that the differences in alpha

power are greater when compared with differences attributable to acquisition system differences, age and medications. Our findings sup-

port that EEG-based measures of normal brain function, such as the normalized spectral power of alpha activity, may help identify

patients with epilepsy even when an EEG does not contain any epileptiform activity, recorded seizures or other abnormalities. Although

alpha abnormalities are unlikely to be disease-specific, we propose that such abnormalities may provide a higher pre-test probability for

epilepsy when an individual being screened for epilepsy has a normal EEG on visual assessment.
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Introduction
Epilepsy is a neurological disease characterized by recur-

rent, unprovoked seizures and affects 1% of the global

population.1 Epileptologists assess the potential for epi-

lepsy and related conditions by visually identifying abnor-

mal activity (also known as epileptiform activity) in a

short scalp EEG recording session (�20–60 min). A posi-

tive screen, the presence of abnormal epileptiform EEG

transients, is typically followed by the initiation of anti-

seizure medication (ASM) and further evaluation for an

aetiology. However, this initial assessment is not always

sensitive enough, as epileptiform activity may not be

recorded in a short EEG session. Unfortunately, such

scenarios are very common in clinical settings,2 and some

patients ultimately found to have drug-resistant epilepsy

(DRE) have normal EEGs on expert visual review (i.e.

the EEGs did not contain any epileptiform activity).3,4
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The inability to find evidence for epilepsy at the earliest

possible time can cause delays in delivering appropriate

and early clinical care.5 Even after ASMs are initiated,

approximately one-third of people will not completely re-

spond and continue to have seizures despite multiple dif-

ferent medication trials, i.e. DRE. Each medication trial

can take months, thus putting the patient at continued

risk for seizure-related injuries and comorbidities.6

Furthermore, in patients ultimately diagnosed with DRE,

a more comprehensive evaluation is indicated to deter-

mine if they are candidates for non-pharmacological

therapies, e.g. surgery and electrical stimulation. Thus, a

more rapid diagnosis of epilepsy, and in particular DRE,

is needed. In this study, we evaluate the hypothesis that

even short EEG recordings might contain subtle electro-

physiological abnormalities that can indicate the possibil-

ity of epilepsy even when recognizable epileptiform

activity is absent. If confirmed, this could improve the

diagnostic yield of routine EEG and facilitate more sensi-

tive, objective, and earlier diagnosis and treatment of

epilepsy.

EEG plays a crucial role in diagnosing epilepsy.7

Electrodes are attached to an individual’s scalp to record

brain electrical activity. In people with epilepsy, it is com-

mon to see transient voltage disruptions to the normal

pattern of brain waves, even in the interictal recording

when a patient is not having a seizure.8 The most com-

mon abnormalities in brain activity associated with epi-

lepsy are interictal spikes and sharp waves.9 Interictal

spikes and sharp waves represent the summated excita-

tory and inhibitory post-synaptic potentials of a large

population of neurons10 and have similar underlying

physiological causes. The difference in their appearances

reflects the rapidity of neuronal synchronization and

the way in which the epileptiform discharge spreads over

the cortex. In addition to providing evidence for epilepsy,

the spatial distribution of these events can identify

epilepsy as having generalized or focal origins. In focal

epilepsy, the distribution of interictal spikes and sharp

waves can help spatially map epileptogenic brain

regions.11 However, these abnormalities may not be

observed in short EEG recordings for multiple reasons,

e.g. they may be very infrequent and not captured on

routine �30-min recording, they may originate from

deeper brain structures like cingulate, hippocampus, etc.,

they are activated only during sleep that was not

recorded, or they involve an insufficient amount of cortex

to be measurable on the scalp.12

Pathologic changes, such as neuronal loss and gliosis,

are common in chronic epilepsy, though the same neur-

onal-glial circuits underlying seizure generation may sub-

serve normal brain functions.13,14 The cellular changes

associated with epilepsy may be expected to cause subtle

declines in EEG-based measures of normal brain function.

The presence of such abnormalities can provide a higher

pre-test probability for epilepsy when an individual is

first screened for epilepsy and could therefore warrant

additional testing when their EEG does not contain epi-

leptiform activity, e.g. prolonged EEG recording that

includes sleep. Several previous studies have analysed

EEG biomarkers of normal brain function in the EEG

segments of epilepsy patients without interictal abnormal-

ities and reported results supporting the aforementioned

hypothesis. The EEG measures investigated include spec-

tral connectivity measures based on phase-locking fac-

tor,15–17 spectral connectivity based on weighted partial

directed coherence,18 and local and global synchrony

measures based on network modelling of EEG activity.19

Furthermore, the alpha rhythm observed on EEG during

eyes-closed wakefulness is considered another potential

biomarker of normal brain function in adults, and its fre-

quency and power decrease with age.20 It is theorized to

arise through cortico-thalamic interactions and to reflect

processes that subserve a vast range of cognitive proc-

esses, including attention and memory.21 Alterations in

the alpha rhythm have been observed in many neuro-

logical diseases, including epilepsy, where it typically

slows in frequency and loses its characteristic anterior-to-

posterior gradient proportionally with clinical severity.22

Although alpha-rhythm-related abnormalities are well

known in epilepsy, including associations with poor seiz-

ure control,23,24 they are not included in diagnostic crite-

ria because they lack specificity to any neurological

disease.25,26 In addition, the analysis of alpha rhythm in

the EEGs of epilepsy patients is further complicated by

its changes related to ageing20 and antiepileptic, anti-

depressant and antipsychotic medications.27–29 Despite

the considerable literature focussing on normal EEG seg-

ments, there is very little evidence supporting whether

these findings translate to EEGs that are entirely free of

epileptiform abnormalities or whether quantitative ana-

lysis of these normal records could be clinically useful.

Furthermore, whether the previously established relation-

ships are resilient to changes induced by medications and

ageing and differences in EEG recording conditions

remains unclear.

In this study, we focus on spectral characteristics of the

alpha rhythm and investigate whether we can identify

subtle abnormalities in routine EEGs that were visually

classified as normal by practicing epileptologists, particu-

larly in DRE. Additionally, there is evidence that people

with epilepsy who have seizures originating from their

dominant hemisphere can experience relatively more dis-

ruptions in their normal brain function compared to

those with seizure foci in their non-dominant hemi-

spheres.30 Therefore, we further hypothesize that in add-

ition to indicating the potential for epilepsy, alpha

rhythm abnormalities can also help lateralize the seizure

focus in focal epilepsy. To test those hypotheses, we ana-

lysed the scalp EEG recordings of healthy individuals

age-matched to people with epilepsy, specifically drug-re-

sistant focal epilepsy (DRFE), who went through clinical
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evaluations at the Mayo Clinic. The EEGs of DRFE indi-

viduals were classified as normal based on expert visual

review performed by board-certified epileptologists. We

preprocessed the EEGs to remove artefacts and performed

spectral analysis to extract EEG features representing the

fraction of spectral powers contained within the alpha

band across the four major brain regions. We then used

the extracted features to analyse (i) the extent to which

DRFE patients deviated from healthy, and (ii) whether

there are differences within the DRFE patients based on

the hemisphere generating seizures. Furthermore, we ana-

lysed whether these differences are significant when com-

pared with confounders such as the individual’s age,

acquisition system differences, and antiepileptic drugs.

Materials and methods
Our primary analyses utilized the scalp EEG data of 144

healthy individuals age-matched to 48 patients with

DRFE. We also utilized the normal scalp EEG data of

104 patients with psychogenic non-epileptic seizures

(PNES) to analyse the effect of different EEG acquisition

systems on our findings. We obtained the data on healthy

individuals from the publicly available LEMON dataset31

and the data of DRFE and PNES patients from clinical

records at the Mayo Clinic, Rochester, MN, USA.

Data from healthy individuals

The LEMON dataset consisted of scalp EEG recordings

from 203 healthy individuals (median age 39, age-range

20–77, 82 females).31 The participants were stratified be-

tween young and old groups with age ranges 20–35 and

59–77, respectively. The EEGs were recorded using the

BrainAmp MR plus recording system with the ActiCAP

electrodes (both from Brain Products GmbH, Gilching,

Germany), including 62 channels according to the stand-

ard 10–10 localization system.32 The data were originally

recorded at a sampling rate of 2500 Hz and then down-

sampled to 250 Hz, and each EEG session comprised

eight eyes-closed (EC) and eight eyes-open (EO) segments,

each 60 s long. We rejected the channels that were deter-

mined as outlier channels by the investigators of the

LEMON study.31 As a result, we excluded the data of

59 individuals from our study because some channels

required for our analyses were either not available or

deemed outlier channels by the LEMON investigators.

Data from people with DRFE and
PNES

We obtained scalp-EEG recordings from 48 individuals

with DRFE (median age 39, age-range 18–66, 25

females) and 104 individuals with PNES (median age

30.5, age-range 18–62, 60 females) that were performed

as part of their clinical evaluations. Our study was

approved by the Mayo Clinic Institutional Review Board,

and patients provided informed consent. The EEGs were

recorded using the XLTEK EMU40EX headbox (from

Natus Medical Incorporated, Oakville, Ontario, Canada)

with the WaveGuard Original EEG cap (from Ant Neuro

GmbH, Berlin, Germany) including 31 channels according

to the extended 10–20 localization system33 at a sam-

pling rate of 256 Hz. The EEGs were visually reviewed

by board-certified epileptologists and classified as normal.

We selected EC segments based on the annotations made

by EEG technologists during the clinical video-EEG

review.

Main experiments

Our first analysis focussed on differences between epi-

lepsy patients and healthy individuals. We utilized the

data of all 144 healthy individuals from the LEMON

study and 48 Mayo patients for this analysis. Our second

analysis focussed on differences based on the seizure-gen-

erating hemisphere of the brain in epilepsy patients. In

addition to the EEG features, we utilized handedness

(right or left) to determine the dominant hemisphere. Of

the 48 epilepsy patients, 43 were right-handed, and 5

were left-handed. Furthermore, although there is evidence

that the dominant hemisphere of right-handed individuals

is generally deterministic (i.e. the left side), the dominant

hemisphere of left-handed individuals is non-deterministic

(can be the left or the right side).34 Therefore, we

excluded the (i) left-handed patients because of insuffi-

cient sample size and the non-deterministic nature of their

dominant hemisphere, and (ii) one right-handed patient

who had a central midline (non-lateralized) seizure onset

from this analysis. As a result, the second analysis uti-

lized the EEG data of 42 right-handed DRFE patients (28

patients with seizure focus on the left side and 14

patients with seizure focus on the right side).

Analysis of confounders

We compared the effect of age against the group differen-

ces between healthy and DRFE individuals. We divided

the healthy population into young (97 individuals between

ages 20 and 35) and old (47 individuals between ages 59

and 77) populations and compared them with the DRFE

patients. To analyse whether the group differences between

healthy and DRFE individuals were distinct from acquisi-

tion system differences, we performed a three-way com-

parison between all healthy, PNES and DRFE individuals.

Here, the EEGs of PNES and DRFE patients were

recorded using the same acquisition system. Because both

the DRFE and PNES populations were heterogeneous with

respect to medications, as an extension of the previous

comparison, we performed a second comparison by limit-

ing the two patient populations to those taking ASMs

only (27 PNES patients and 43 DRFE patients). We then

compared the effects of ASMs in three ways: (i) differences

4 | BRAIN COMMUNICATIONS 2021: Page 4 of 17 Y. Varatharajah et al.



between DRFE patients who were not taking any ASMs

(5 patients) compared to those who did (43 patients); (ii)

differences between PNES patients who were not taking

any ASMs (44 patients) compared to those who did (27

patients); and (iii) differences between DRFE patients who

were taking either levetiracetam (25 patients) or lamotri-

gine (19 patients), the most common ASMs in this study.

Note that we did not include any patients who were

receiving antipsychotics or selective serotonin reuptake in-

hibitor drugs and patients with other significant comorbid-

ities in the aforementioned groups comparing the effects of

ASMs. See Supplementary Tables 1 and 2 for more details.

Finally, we analysed the differences in arousal states be-

tween healthy and DRFE individuals. It is plausible that

DRFE patients are in a more drowsy state at the time of

EEG recording because of medication effects, previous seiz-

ures, and sleep deprivation. To analyse this effect, we uti-

lized the rate of eye blinks as a surrogate for

drowsiness35,36 and compared the number of eye blinks

per minute in the eyes open EEG segments of healthy and

DRFE individuals.

EEG preprocessing

Further preprocessing was done in EEGLAB for

MATLAB.37 First, the EEGs were bandpass-filtered with-

in 1–45 Hz (8th order, Butterworth filter). Next, an inde-

pendent component analysis was performed, and

components reflecting eye movement, eye blink or heart-

beat-related artefacts were removed, and bad channels

were rejected, all according to the widely recognized

Makoto’s EEG preprocessing pipeline.38 The retained in-

dependent components were back-projected to sensor

space for further analysis.

Counting eye blinks

Eye blinks were detected and counted using an auto-

mated tool available as part of the EEGLAB software.39

Eyeblink detection is performed at two levels of specifi-

city: (i) all potential eye blinks chosen as segments with

signal amplitude greater than 1.5 standard deviations

above the overall mean amplitude and durations longer

than 50 ms, and (ii) specific blinks within all potential

blinks that have significantly correlated upstrokes and

downstrokes (R2 > 0.90). More details on the tool’s im-

plementation can be found in the original manuscript.

Selection of EEG channels

Because the EEG data of healthy individuals were

recorded using a 62-channel 10–10 system, we selected a

subset of channels that matched the 10–20 system used

to record the EEG data from epilepsy patients. Within

the EEG data of selected channels from the healthy and

patient populations, we selected four bipolar pairs of

electrodes from each hemisphere, producing eight chan-

nels of EEG data for each participant. Table 1 shows the

electrodes that were used to form the bipolar montage

representing each major brain region and hemisphere.

Extracting spectral features

We first normalized (z-scored) each channel separately

within each segment and divided each segment into 10-s

non-overlapping windows (Fig. 1A, only 5 s long EEGs

are showed for visual clarity). Note that the number of

10-s windows was different for each participant in the

DRFE and PNES populations. We then computed the

power spectrum for each window using the multitaper

spectral estimation methods implemented in the Chronux

toolbox.40 In order to eliminate the subject-specific differ-

ences in total signal power, we also normalized all the

calculated power values by using the total power of the

signal within 0.5–40 Hz (Fig. 1B). We then separately

aggregated the normalized power within two frequency

bands: low-alpha (7.5–10.5 Hz) and high-alpha (10.5–

13.5 Hz); such a division of the alpha band allows the

detection of slowing (more power in low-alpha than in

high-alpha) as well as the overall reduction in alpha

power. As a result, each calculated feature was a fraction

of the total power within one of the alpha bands, and

each 10-s window produced 16 features (8 channels � 2

frequency bands). Furthermore, each participant’s EEG

data produced NEC � 16 features, where NEC is the num-

ber of EC windows. The healthy data consisted of an

average of 47 EC windows (min¼ 42, max¼ 48), the

DRFE patient data consisted of an average of 13 EC

windows (min¼ 4, max¼ 69), and the PNES patient data

consisted of an average of 11 EC windows (min¼ 5,

max¼ 22).

Characterizing normal brain activity

We performed a log transformation of the features and

used the cumulative density function (CDF) of the log-

transformed features in the healthy population to charac-

terize normal brain function. An example of this is

pictorially illustrated in Fig. 2A–C. Suppose that the CDF

of a single log-transformed feature xk (k 2 f1; . . . ; 16g) is

the feature number in the healthy population (considering

all participants) is denoted by FðxkÞ, where xk 2 ½�1;0�
and F xkð Þ 2 ½0;1�. We hypothesize that the samples repre-

senting abnormal brain function will fall near the lower

limit of xk, suggesting that the likelihood of those

Table 1 Channels used to form the bipolar montage

representing each major brain region and hemisphere

Left hemisphere Right

hemisphere

F7–F3 F8–F4

T7–C3 T8–C4

P7–P3 P8–P4

O1–P3 O2–P4
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samples coming from a population with normal brain

function, which we refer to as the probability-of-normal-

ity, is low. Therefore, the probability-of-normality for

such samples will be close to zero, while the probability-

of-normality for samples that are near the upper limit of

xk will be close to one. With this intuition, we use the

Figure 2 Characterizing normal brain function & classification framework. (A) Histogram of low-alpha (7.5–10.5 Hz) power

fraction in (F7-F3) in the EC windows of healthy individuals. (B) and (C) illustrate the histogram and the cumulative density of the log

transformation of the same features, respectively. (D) A random sample of 96 healthy participants is selected for characterizing normal brain

function. The data of the rest (48 healthy and 48 DRFE) are utilized to evaluate the classification potential. Cumulative density functions of the

16 features representing alpha power fractions in the EC segments are computed. Window-level probability-of-normality estimates were

aggregated to obtain participant-level probabilities. The goodness-of-fit metrics were computed by comparing participant level probabilities

with ground truth, separately for classifying (i) healthy versus epilepsy, and (ii) hemisphere with seizure focus. This procedure was repeated

ten times to estimate average metrics and standard deviations.
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Figure 1 Extraction of spectral features. (A) illustrates a sample EC segment (length: 5-s) of a healthy participant’s EEG. (B) illustrates

normalized power spectrums of EC segments, where the solid line indicates average values calculated across all the healthy participants and

the shaded areas indicate 95% confidence intervals.
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CDF of xk to estimate the probability-of-normality for a

new sample x0k, i.e. Pðx0k 2 NormalÞ ¼ Fðx0kÞ, as the CDF

satisfies the requirements above. However, note that this

estimation of probability-of-normality is based on a single

feature xk. Although these single-feature-based estimates

can be directly compared across individuals, an approach

to combine those differences within each individual is

necessary to develop an individual-level classification

scheme and evaluate the clinical value of those differen-

ces. In the following, we describe an approach to com-

bine the probability-of-normality estimates within each

individual.

Calculating probability-of-normality
for an EC window

To combine the values of all 16 features in an EC win-

dow, we assume that the individual estimations can be

independently combined. By applying the independence

assumption, we now derive a combined probability-of-

normality, as shown below.

P x
0 2 Normalð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y16

k¼1

Pðx0k 2 NormalÞ16

vuut

¼ e

P16

k¼1

log P x
0
k
2Normal

� �� �
16 (1)

Note that we use the geometric mean of the product of

the individual feature-based estimates as the combined es-

timate because the multiplication of 16 fractional num-

bers will produce a very small probability value.

Furthermore, we calculated P x0 2 Normalð Þ described in

(1) in the log domain to avoid numerical instability.

This derivation provides a single probability value

P x0 2 Normalð Þ for each EC window. Using the same

approach, we can calculate window-level probability-of-

normality values for all EC windows of all participants.

Individual-level probability
estimation

To estimate whether a participant’s EEG is normal, we

used a maximum likelihood estimation based on the win-

dow-level probability-of-normality values. We model the

window-level estimates of a participant Pi as independent

observations made from a Bernoulli trial with an un-

known probability pi, where pi is the probability-of-nor-

mality for participant Pi, i.e. pi ¼ PðPi 2 NormalÞ.
Suppose that we use x0 i;nð Þ to denote the nth window of

participant i, Yði; nÞ to denote P x0ði; nÞ 2 Normal
� �

,

and the total number of windows are denoted using

NðiÞ. Then, an estimate of pi that maximizes the likeli-

hood function
QN ið Þ

n¼1

pY i;nð Þ
i 1� pið Þð1�Y i;nð ÞÞ

is given as the

following.

p̂i ¼
1

NðiÞ
XNðiÞ

n¼1

Yði;nÞ (2)

Computing differences between
CDFs

In order to characterize the group differences based on

the CDFs, we utilized the Wasserstein distance (or earth

mover’s distance) metric.41

Visualizing group differences using
boxplots

We performed the following operations to generate box-

plots. First, we computed the CDFs of the 16 features

(i.e. the log-transformed alpha-power fractions of an EC

window) using the data of all 144 healthy individuals.

Then, we calculated the window-level probability-of-nor-

mality estimates for the groups of individuals we were

interested in comparing, using the computed CDFs (see

previous sections for more information). Those values

were then divided among the comparison groups to gen-

erate the boxplots. For reference, we also plot the prob-

ability-of-normality estimates for the same healthy

individuals whose CDFs are used to generate those

estimates.

Statistical analysis

In order to test the statistical significance of the differen-

ces between the two distributions, we used the Wilcoxon

rank-sum test.42 Furthermore, we performed multiple

comparisons between different stratifications in the study

population using Tukey’s honestly significant difference

procedure.43

Headplots

Headplots illustrating the spatial distributions of features

of interest were plotted using the headplot() function in

the EEGLAB toolbox.37 The headplots are generated

using a spherically splined field map of the feature of

interest on a semi-realistic head model.

Classification framework

Figure 2D illustrates the approach we utilized for classify-

ing healthy and DRFE patients using ten-fold cross-valid-

ation. During each cross-validation, we selected a random

sample of 96 healthy participants to generate the feature-

specific CDFs characterizing normal brain function (i.e.

training set). We used the data of the rest of the partici-

pants (48 healthy and 48 DRFE) to evaluate the classifi-

cation potential of our approach (i.e. testing set). This

scheme ensured that the training and testing datasets con-

sisted of two disjoint sets of participants and that the

testing set is class-balanced. First, we computed the CDFs

Improving the diagnostic yield of routine EEGs BRAIN COMMUNICATIONS 2021: Page 7 of 17 | 7



of the 16 features representing alpha power fractions in

the EC windows using the healthy sample in the training

set. Then, we computed the window-level probability-of-

normality values for each EC window in the testing set.

Then, we aggregated the window-level values to obtain

individual-level values as described previously. By com-

paring individual-level probabilities with ground truth, we

computed goodness-of-fit metrics for the classification

task, separately for classifying (i) healthy versus epilepsy,

and (ii) hemisphere with seizure focus.

Performance evaluation

We first plotted receiver operating characteristic (ROC)

curves and calculated the area under the ROC curve

(AUC) to compare model performances. An optimal

threshold on the ROC curve was selected using the con-

vex hull method.44 That threshold was used to calculate

precision, recall, and F1-score. The classification proced-

ure was repeated ten times to calculate the mean and

standard deviations of the metrics. In addition, because

frontal and temporal lobe epilepsy are the most common

forms of focal epilepsy, we performed the classification

approach using the features from those two regions alone

and compared the results with those obtained from the

approach using features extracted from all regions.

Data availability

The data of healthy controls is already publicly available.

The deidentified spectral features of healthy individuals

and patients and the software used to perform statistical

analyses are available at https://gitlab.engr.illinois.edu/vara

tha2/epilepsy_alpha_rhythm.git (last accessed: May 26,

2021).

Results

Characterizing normal brain

function in the healthy population

We used the frequency domain features based on the

alpha rhythm power to characterize normal brain func-

tion. Figure 3A illustrates the CDFs of log-transformed

alpha-power fractions in the healthy population in EC

and EO windows. The figure also highlights the differen-

ces between the four major brain regions with respect to

the same features, where the CDF of each brain region

was generated by taking the average of the CDFs of the

respective regions in the left and right hemispheres. Our

observations agree with the commonly known character-

istics of the alpha rhythm, i.e. (i) it is posteriorly domin-

ant, and (ii) its presence is amplified when the eyes are

Figure 3 Characterizing normal brain function in the healthy population. (A) Cumulative density functions of log-transformed

spectral power fractions in low-alpha (7.5–10.5 Hz) and high-alpha (10.5–13.5 Hz) bands, grouped based on eyes-closed and eyes-open

conditions. Solid lines indicate average values across 10-s windows, and shaded areas indicate 95% confidence intervals. Note that the

window-level features were averaged between the left and right hemispheres to generate the CDF plots. (B) and (C) are head plots

illustrating the location-specific Wasserstein distances between the CDFs of EC and EO windows in low-alpha (7.5–10.5 Hz) and high-alpha

(10.5–13.5 Hz) bands, respectively. The pins indicate the approximate locations of the channels.
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closed.25 In addition, Fig. 3B and C shows the spatial

patterns of the differences between EC and EO conditions

in the two alpha bands, based on Wasserstein distances

between the CDFs. We find that the differences are

greater in the posterior regions and are nearly symmetric

in the low-alpha range.

Evidence for disrupted

electrophysiologic brain activity in

normal EEGs of DRFE patients

The primary goal of this study is to understand whether

there are subtle abnormalities in the visually classified

normal EEGs of DRFE patients. To study this, we ana-

lysed how the distributions of the log-transformed alpha-

power fractions in the healthy and DRFE individuals dif-

fered using (i) their CDFs and (ii) the probability-of-nor-

mality values. Figure 4A illustrates the differences

between the log-transformed alpha-power fractions of

healthy and DRFE individuals, based on the Wasserstein

distance between CDFs. We observed that the differences

are notable in frontal and temporal regions. Particularly,

the alpha power values were significantly lower in the

DRFE population when compared with the healthy popu-

lation, and this was highlighted in the frontal and tem-

poral regions. We then used the probability-of-normality

values described previously to characterize the differences

across multiple brain regions. Figure 4B shows the box-

plots of the window-level probability-of-normality values

in the healthy and DRFE populations. We found that the

probability-of-normality values are significantly lower in

Figure 4 Disrupted normal brain function in the DRFE population. (A) Head plots illustrating the location-specific Wasserstein

distances between the CDFs of log-transformed alpha power features of healthy and DRFE individuals. (B) Boxplots of window-level

probability-of-normality estimates for healthy and DRFE individuals. (C) Head plots illustrating the location-specific Wasserstein distances

between the CDFs of log-transformed alpha power features of right-handed DRFE individuals who had right-hemispheric seizures and those

who had left-hemispheric seizures. (D) Boxplots of the window-level probability of normality estimates for healthy and right-handed DRFE

individuals where the DRFE individuals are further stratified based on the hemisphere generating seizures. In (B) and (D), the numbers N

indicate the number of participants whose data were used in generating the boxplot.
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the DRFE population compared to the healthy population

(P< 0.05 based on the Wilcoxon rank-sum test).

The side of seizure focus impacts

the extent of brain activity

disruptions in focal epilepsy

To understand the contribution of the seizure focus to dis-

ruptions in brain activity, we analysed how the distribu-

tions of the log-transformed alpha-power fractions within

the right-handed DRFE patients differed based on the

hemisphere generating seizures. As described previously,

the left side is generally the dominant hemisphere in right-

handed DRFE patients. Figure 4C illustrates the spatial

patterns of the differences between the log-transformed

alpha-power fractions of right-handed DRFE individuals

who had right-hemispheric seizures and those who had

left-hemispheric seizures, based on the Wasserstein distance

between CDFs. We found that the differences are empha-

sized notably in frontal and temporal regions. Similar to

the differences observed between healthy and DRFE

patients, the alpha power values were significantly lower

in the individuals with left-hemispheric seizures compared

to those with right-hemispheric seizures. We again utilized

the probability-of-normality values to demonstrate this.

Figure 4D shows the boxplots of the window-level prob-

ability-of-normality values between the two groups. We

found that the probability-of-normality values were signifi-

cantly lower in right-handed DRFE patients with left-hemi-

spheric seizures compared to those with right-hemispheric

seizures (P< 0.05, Wilcoxon rank-sum test).

Visually reviewed normal EEGs can

help diagnose DRFE and lateralize

seizure focus

Next, to evaluate the potential clinical usefulness of alpha

activity abnormalities and lateralize the hemisphere of the

seizure focus, we performed two classification experi-

ments: (i) classifying healthy and DRFE individuals, and

(ii) classifying the seizure-generating side of the brain,

both using the classification framework described previ-

ously. Figure 5A and B illustrates the ROC curves for

the two classification tasks. Furthermore, Table 2 displays

the goodness-of-fit metrics for the classification tasks, cal-

culated based on the ROC analysis. We found that the

probability-of-normality values derived based on a

healthy sample can be used to differentiate previously un-

seen healthy and DRFE patients (AUC¼ 0.77). Similarly,

we found that the same probability values can also be

used to differentiate the seizure-generating side of the

brain in a previously unseen DRFE population

(AUC¼ 0.68). In both cases, the classification perform-

ance was significantly better than chance (AUC > 0.5)

and showed minimal variation in a tenfold cross-valid-

ation scheme. We also found that the probability-of-nor-

mality values based on the frontal and temporal alpha

features provided marginally better results in both the

classification tasks compared to all regions (mean AUC

improvements of 0.01 and 0.05, respectively). In addition,

we observed additional improvements in the AUC when

we further restricted the features to the high-alpha fre-

quency band alone (mean AUC improvements of 0.05

and 0.04, respectively).
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Figure 5 Receiver operating characteristic (ROC) curves for the two classification tasks. (A) ROC curves for classifying healthy

individuals and DRFE patients. (B) ROC curves for classifying seizure generating side of the brain in right-handed DRFE patients. In both (A)

and (B), red, blue and black curves indicate classifications using features extracted in three ways: (i) from all regions and both alpha bands; (ii)

frontal–temporal regions and both alpha bands; and (iii) frontal–temporal regions and the high alpha band only, respectively. Furthermore,

solid lines indicate average values obtained using the tenfold cross-validation, and shaded areas indicate 95% confidence intervals.
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Epilepsy associated disruptions in
the alpha rhythm are significant
when controlled for age, acquisition
system differences and ASMs

Finally, we sought to distinguish the contribution of

chronic DRE in the observed spectral changes of the

alpha rhythm from the contributions of age and ASMs.

In these evaluations, we calculated probability-of-normal-

ity estimates using the normalized alpha power features

extracted from all brain regions and both low and high

alpha frequency bands.

Effects of ageing versus DRFE: In this analysis, we

used the alpha features of healthy-young individuals (age:

20–35, N¼ 97) for characterizing normal brain function

based on CDFs. Then, using those CDFs, we computed

the window-level probability-of-normality estimates (as

described in Methods) for healthy-old individuals (age:

59–77, N¼ 47) and DRFE patients (N¼ 48). Figure 6A

illustrates the results of multiple comparisons performed

on those probability-of-normality values between the dif-

ferent groups. Note that we used the data of healthy-

young individuals as a reference in this analysis. We

found that the differences between young and old healthy

individuals, and the differences between healthy and

DRFE individuals, were both significant (P< 0.01). We

also observed that the mean window-level probability-of-

normality of DRFE patients was significantly lower than

the means of the other two groups.

Effects of acquisition system differences versus DRFE:

In this analysis, we performed a three-way comparison

between the healthy (N¼ 144), PNES (N¼ 104) and

DRFE (N¼ 48) populations. Note that the EEGs of

PNES and DRFE patients were recorded using the same

acquisition system (XLTEK, Inc.). Figure 6B illustrates

the results of multiple comparisons performed on those

probability-of-normality values between the different

groups. Consistent with our hypothesis, we found a dif-

ference between PNES and DRFE (P< 0.01).

Interestingly, we also found a difference between PNES

and normal controls (P< 0.01). We also observed that

the mean window-level probability-of-normality of PNES

patients was significantly lower than those of healthy

individuals, and the mean probability-of-normality of

DRFE patients was significantly lower than the means of

both healthy and PNES groups.

We performed another comparison to further homogen-

ize the PNES and DRFE populations. We selected sub-

groups who were taking ASMs within PNES (N¼ 27)

and DRFE (N¼ 43) populations. Noteworthy is that

these two populations share similar characteristics with

respect to acquisition system, ASMs, and age range

(PNES age range: 19–62, DRFE age range: 18–66).

Figure 6C illustrates the results of multiple comparisons

performed on those probability-of-normality values be-

tween the two groups. We found that the difference be-

tween PNES and DRFE is still significant (P< 0.01) when

all confounders are controlled for.

Effects of ASMs in DRFE: In this analysis, we used the

alpha features of all healthy individuals (N¼ 144) for

characterizing normal brain function. Then, using those

CDFs, we computed the window-level probability-of-nor-

mality values for two groups of DRFE patients: patients

not taking any ASMs (N¼ 5) and patients taking ASMs

(N¼ 43). Figure 6D illustrates the results of multiple

comparisons performed on those probability-of-normality

estimates between the different groups. Like all previous

analyses, we used the data of healthy individuals as a ref-

erence in this analysis. We found that the difference be-

tween DRFE individuals based on whether or not they

took ASMs was significant (P< 0.05). However, the

mean probability-of-normality of DRFE individuals was

still lower than that of the healthy individuals, regardless

of whether or not they took ASMs. Furthermore, the

variance of the probability-of-normality values of the

DRFE patients not taking ASMs was notably large be-

cause of the small sample size (N¼ 5).

Effects of ASMs in PNES: We performed a similar

comparison within the PNES population to address the

sample size limitations. We identified 44 PNES patients

who were not taking any ASMs and 27 taking ASMs

and computed the window-level probability-of-normality

values with respect to the healthy population. The results

of multiple comparisons between those groups are illus-

trated in Fig. 6E. Although the effect of ASMs appears

Table 2 Cross-validated goodness-of-fit metrics for classifying (i) healthy and DRFE individuals, and (ii) the seizure-

generating side of the brain

Task Regions Frequency (Hz) AUC Precision Recall F1

Healthy vs. DRFE All 7.5–13.5 0.77 (0.02) 71.42 (2.69) 73.96 (4.31) 72.57 (2.20)

Healthy vs. DRFE Frontal, temporal 7.5–13.5 0.78 (0.04) 71.79 (5.39) 76.25 (10.50) 73.33 (4.06)

Healthy vs. DRFE Frontal, temporal 10.5–13.5 0.83 (0.02) 79.41 (3.65) 73.54 (3.55) 76.24 (1.49)

Seizure focus All 7.5–13.5 0.68 (0.00) 72.73 (0.00) 85.71 (0.00) 78.69 (0.00)

Seizure focus Frontal, temporal 7.5–13.5 0.73 (0.01) 74.19 (2.81) 93.21 (6.83) 82.39 (1.45)

Seizure focus Frontal, temporal 10.5–13.5 0.77 (0.00) 80.00 (0.00) 85.71 (0.00) 82.76 (0.00)

We list the goodness-of-fit metrics (AUC, precision, recall and F1-score) obtained for the test dataset, for the different evaluations using the alpha features: (i) from all regions and

both alpha bands; (ii) frontal–temporal regions and both alpha bands; and (iii) frontal–temporal regions and the high alpha band only, respectively. Average values and standard devia-

tions (within parentheses) were computed using tenfold cross-validation.
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to be in the same direction (i.e. reduction in probability-

of-normality), in contrast to the previous result, the dif-

ference with respect to consumption of ASMs was not

significant within the PNES patients (P¼ 0.19).

Comparison between major ASMs: In this analysis, we

divided the DRFE population based on the consumption

of two ASMs: levetiracetam (N¼ 25) or lamotrigine

(N¼ 19). We computed the window-level probability-of-

normality values for those two groups of DRFE patients

based on the CDFs obtained from the healthy population.

Supplementary Fig. 1A illustrates the results of multiple

comparisons performed on those probability-of-normality

estimates between the different groups. We found that

the difference between DRFE individuals based on

whether they took levetiracetam or lamotrigine was not

significant (P¼ 0.25).

Comparison between arousal states: We utilized the rate of

eye blinks as a surrogate measure for drowsiness and com-

pared the number of eye blinks within a minute between

healthy and DRFE populations. Figure 6F shows a compari-

son between the rates of eye blinks of the two groups where

the criterion that the upstrokes and downstrokes of the eye

blinks were significantly correlated (R2 > 0.90) was used to

identify robust eye blinks. We found that the two popula-

tions were not significantly different with respect to the rate

of eye blinks (P¼ 0.89). A comparison between all potential

eye blinks is provided in Supplementary Fig. 1B, where the

difference is still not significant (P¼ 0.23).

Figure 6 Multiple comparisons analyzing the contributions of age, acquisition systems, and antiepileptic drugs (AEDs).

Figures show the point estimates and comparison intervals of the mean probability of normality values. (A) A comparison

between healthy and DRFE individuals where the healthy individuals are stratified based on the age-group: Young (Healthy-Y): 20–35, and Old

(Healthy-O): 59–77. (B) A comparison between healthy individuals and patients with PNES and DRFE, where the EEGs of both patient groups

were acquired using the same acquisition system. (C) A comparison between healthy and patients with PNES and DRFE, where the patients were

limited to those consuming AEDs. (D) A comparison between healthy and DRFE individuals where the DRFE individuals are stratified based on

the number of AEDs consumed at the time of EEG. (E) A comparison between healthy and PNES individuals where the PNES individuals are

stratified based on the number of AEDs consumed at the time of EEG. (F) A comparison between healthy and DRFE individuals based on the

rate of eye blinks per minute. The numbers N indicate the number of participants whose data were used in the analyses.
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Discussion

Main contributions of the study

In this study, we investigated whether visually classified

normal EEGs of patients with epilepsy contain subtle

abnormalities that may have diagnostic and clinical value.

We conducted this retrospective study using the scalp

EEG recordings of 48 patients with DRFE that were visu-

ally classified as normal EEG by expert review and the

scalp EEGs of 144 age-matched healthy individuals. We

extracted alpha power-related measures from eyes-closed

(EC), awake segments in the EEGs of the healthy popula-

tion and used them to represent normal brain activity.

We then analysed how the same alpha power-related

measures in the DRFE population differed from the

healthy controls. Our analyses indicated that (i) alpha

power is significantly reduced in DRFE compared to

healthy controls and (ii) alpha power of right-handed

DRFE patients with left hemispheric seizures is signifi-

cantly lower compared to those with right hemispheric

seizures. We also utilized these findings in a classification

framework to classify (i) whether an EEG was recorded

from an epilepsy patient and (ii) if so, the seizure gener-

ating side of the patient’s brain by using EEG recordings

that do not contain any epileptiform activity. A 10-fold

cross-validation approach achieved mean AUC values of

0.83 and 0.77 for the respective classification tasks

(when high-alpha features from frontal-temporal regions

were used). These findings suggest that EEG measures

representing normal brain function may be useful in the

diagnosis of epilepsy even when the EEG is free of epilep-

tiform activity. This finding is significant because the

ability to diagnose epilepsy at the earliest possible time

can prevent significant delays in treatment and can sup-

port more efficient triage of patients to costly in-hospital

monitoring studies. In that context, our study presents a

promising research direction in the treatment of epilepsy.

We note that several previous studies have reported

alpha spectral abnormalities in epilepsy and suggested

the potential diagnostic value in routine EEG stud-

ies.22–24 Building on those existing studies, our study

makes several unique contributions: (i) evaluation of

alpha-rhythm abnormalities in DRFE using multiple

EEG windows extracted from routine EEG recordings

that were visually classified as normal; (ii) characteriz-

ing the spatial patterns of alpha-spectral abnormalities

in DRFE and their value in identifying the seizure gen-

erating hemisphere; (iii) development of an approach to

combine alpha-spectral abnormalities from several

channels and windows to generate the probability of

normality measures; (iv) classification analysis to clear-

ly evaluate the diagnostic value of alpha-spectral

abnormalities; and (v) validating our findings against

confounders such as acquisition system/condition differ-

ences, age and medications.

Spatial and spectral patterns of the
alpha abnormalities in DRFE

Our results showed significant abnormalities in the nor-

malized spectral power of the alpha rhythm in the frontal

and temporal regions of DRFE patients (Fig. 4A and C).

This observation was further highlighted in the classifica-

tion tasks; we found that using the alpha features

extracted from frontal and temporal regions provided

marginally better classification performances compared to

using the same features extracted from all brain regions.

These observations suggest that the alpha abnormalities

in DRFE are of focal nature and display frontal spread-

ing. We surmise that such characteristic changes in the

alpha rhythm could have been modulated by the specific

epilepsy syndrome because the majority of the DRFE

patients (38 out of 48) had frontal or temporal seizure

onset. Prior studies have also reported similar findings

indicating the frontal spread of alpha-rhythm alterations

in focal epilepsy and suggested that this effect could be

commensurate with the extent of cortico-thalamic

dysfunction.22

Our findings also agree with previously described slow-

ing of the alpha rhythm observed in the presence of

neurological diseases, including epilepsy.22 Headplots

showed in Fig. 4A and C indicate that the differences be-

tween healthy and DRFE populations and the differences

due to the side of seizure focus in the DRFE population

are both greater in the high alpha band (10.5–13.5 Hz)

compared to the low alpha band (7.5–10.5 Hz), based on

the Wasserstein distance between CDFs. This finding was

also signified in the classification performances; we found

that using the spectral power features extracted from the

high alpha band provided better classification performan-

ces in both the classification tasks compared to using the

entire alpha band.

Analysis of confounders

EEG spectral abnormalities related to neurological dis-

eases are typically confounded by age-related changes

and changes induced by certain medications.20

Furthermore, the EEGs of the two main populations in

this study, healthy control and DRFE, were acquired

using different systems under different conditions. All of

the above variables are potential confounders in our

study, and we conducted several experiments to under-

stand the contributions of those confounders. First, we

showed that the alpha abnormalities we observed in the

normal EEGs of DRFE patients were significant when

compared with changes related to ageing, using a mul-

tiple comparison approach (Fig. 6A). Second, we analysed

the contribution of acquisition system/environment differ-

ences using two experiments: (i) we compared the prob-

ability-of-normality measures estimated for DRFE patients

and PNES patients whose EEGs were recorded using the
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same system under similar conditions as the DRFE

patients (Fig. 6B), and (ii) a similar comparison between

the same patient groups but limited only to those receiv-

ing ASMs (Fig. 6C). Our results indicated that the differ-

ences between PNES and DRFE patients were significant

in both the experiments, although surprisingly, there were

sizeable differences between healthy individuals and PNES

patients. We believe that the differences between healthy

individuals and PNES patients are attributable to acquisi-

tion system differences, medications, psychiatric comor-

bidities of PNES (Supplementary Table 2), and possibly

the PNES aetiology itself.

Noteworthy is that all variables including, acquisition

system/environment, age and ASMs, were similar in the

second experiment between PNES and DRFE patients

(Fig. 6C). A significant difference between those two

groups strongly supports our main hypothesis that there

are significant disruptions in the alpha-power-related

characteristics of DRFE patients. To further support this

result, we performed a classification experiment between

PNES and DRFE patients, both taking ASMs, using the

same framework described in Fig. 2D. The results, illus-

trated in Supplementary Fig. 2 and Table 3, indicate an

AUC of 0.62 and F1-scores above 70% in classifying

those two groups. Based on these findings, we contend

that the difference between healthy and DRFE is unlikely

to be less significant than the aforementioned results, al-

though confirmation will require EEGs of healthy individ-

uals recorded using the same acquisition system. We then

analysed the effects of ASMs in DRFE and PNES popula-

tions separately (Fig. 6D and E). Although our results are

not consistent, the comparison within the PNES popula-

tion (Fig. 6D), supported by substantial sample size, sug-

gests that the ASM-induced changes in the EEG spectral

power of the alpha rhythm are not significant enough to

disprove our main hypothesis. However, we note that the

same analysis in the DRFE population can benefit from

additional samples to increase the statistical power.

Finally, we analysed the differences in arousal states be-

tween the healthy and DRFE populations to clarify

whether DRFE patients are in a more drowsy state dur-

ing EEG recording because of medications, previous seiz-

ures, and sleep deprivation. Specifically, we compared the

rate of eyeblinks as a measure of drowsiness.35,36 Our

results (Fig. 6F) showed that the difference is not signifi-

cant enough to be of concern. These findings, taken to-

gether, suggest that the EEGs of DRFE patients, which

were determined to be normal based on visual review, in

fact, contain strong pathological correlates that may be

sufficient to support clinical use.

Methodological contributions

We developed a probabilistic approach to characterize

normal brain function using EEG features based on the

alpha rhythm extracted from eight bipolar channels. This

involves computing the CDFs of log-transformed alpha

power features in the individual channels of 10-s EEG

windows and using those CDFs to assign a window-level

probability-of-normality estimate to new windows. We

combined the individual channel-based values to obtain a

combined probability-of-normality estimate for each win-

dow. Furthermore, we applied a maximum likelihood ap-

proach to aggregate the window-level probability-of-

normality values of a participant’s entire EEG recording

to obtain a probability-of-normality estimate for the par-

ticipant. These values were then used for classification

purposes. Our approach can be considered as an anom-

aly detection technique wherein we estimate whether a

new sample is anomalous compared to the reference

population. An advantage of this approach is that it can

be developed using the data of the reference population

alone without requiring data from anomalous samples.

Furthermore, our approach presents a general paradigm

for EEG-based anomaly detection, which can be benefi-

cial for other EEG applications such as seizure forecast-

ing.45 In addition, our approach to characterize the

health of brain function using the alpha rhythm can form

the basis for the growing area of research on EEG and

brain health46 and can be used to study a variety of

other neurological conditions.

Study limitations and future work

Our participants were limited to healthy individuals and

DRFE and PNES patients. However, a normal EEG could

be recorded from a patient with any number of other

neurologic or psychiatric diseases. As such, although our

study establishes the feasibility of using alpha spectral

features in aiding the clinical diagnosis of epilepsy,47 a

population-level study including EEGs from a heteroge-

neous sample is necessary to accurately evaluate the clin-

ical utility of our findings. In addition, our analysis relied

on expert EEG annotations regarding EC and EO condi-

tions, awake and sleep, and bad channels. Such annota-

tions are time-consuming, costly, susceptible to human

error, and clearly not scalable. Fully automated

approaches that can analyse raw EEG data without

requiring expert annotations of specific events can enable

large-scale studies, eliminate reviewer biases, and identify

novel EEG features and advance scientific knowledge.

Such automated approaches may also augment the visual

review of epileptologists by providing focussed inputs and

help reduce physician burnout.48

Another limitation of our study is that the EEGs of

two populations, healthy and DRFE, were acquired using

different systems under different conditions. To address

this limitation as best we could, (i) we undertook the

same preprocessing steps for both the EEG datasets, and

(ii) we used the fraction of alpha power within the wide-

band of 0.5–40 Hz to mask any subject-specific differen-

ces in total signal power. In addition, we also

demonstrated using a population of PNES patients that

the differences between healthy and DRFE populations
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are not entirely due to acquisition system/environment

differences. However, EEGs of both controls and patients

recorded using the same acquisition system are necessary

to confirm our results without this confounder. Our fu-

ture efforts will investigate this possibility.

Finally, there is substantial evidence in the literature

suggesting the value of EEG functional connectivity meas-

ures in increasing the diagnostic value of normal EEG

segments.15–18 An investigation focussing on whether

functional connectivity measures and the alpha rhythm

can complement each other and improve the combined

diagnostic value is worth exploring. The combination of

these two measures can increase the specificity and enable

a broader set of possibilities including, (i) differentiation

of focal versus generalized epilepsy; (ii) differentiation of

drug resistance versus drug-responsive epilepsy; and (iii)

differentiation of nonepileptic seizures from healthy and

epilepsy, and allow clinicians to individualize treatments

based on disease subtype, particularly in the absence of

epileptiform abnormalities in routine or prolonged EEG

studies.

Envisioned clinical applications

Upon further validation using population-level datasets

and sufficient automation of the proposed approach, we

envision that a clinical decision support tool will be

developed and deployed for prospective evaluation. This

tool will provide probability-of-normality estimates at a

patient level to guide decisions regarding costly inpatient

EEG studies in the absence of known epileptiform abnor-

malities. This could prove particularly useful in obtaining

payer authorizations for prolonged EEG studies in the

case of normal routine EEGs. Furthermore, this tool can

also help in the lateralization of focal epilepsy and can

potentially impact presurgical evaluations. Although there

is a possibility of misclassification, the risk associated

with such errors is minimal because prolonged EEG stud-

ies can only improve the diagnostic yield. As such, we

believe that the proposed approach and the findings have

the potential to directly impact clinical practice and there-

fore warrant further investigation.

Conclusion
EEG-based diagnosis of epilepsy, which is the gold-stand-

ard approach, relies on visual identification of epilepti-

form activity. However, epileptiform activity may not be

recorded in a short EEG recording session, and that

can cause delays in the delivery of clinical care.

Unfortunately, such scenarios are common in the clinic;

approximately 50% of the EEGs recorded from patients

with seizures are deemed normal based on expert visual

review. In this study, we investigated the possibilities of

diagnosing DRFE and lateralizing seizure focus based on

normal EEGs using a semi-automated approach. Our

results support the hypothesis that EEG-based measures

of normal brain function, based on the alpha rhythm,

can help diagnose DRFE and lateralize seizure focus

when an EEG does not contain any epileptiform activity,

recorded seizures, or other non-specific abnormalities.

Based on these findings, we further hypothesize that such

findings in a normal EEG can suggest a higher pre-test

probability for epilepsy when an individual is screened

for epilepsy for the first time. In addition, our findings

also suggest that automated analyses of scalp EEG can

help in developing scalable and cost-effective approaches

for advancing the current state of clinical electrophysi-

ology. However, prospective studies and addressing the

identified limitations of our work are necessary to fully

understand the clinical value of these hypotheses. Going

forward, our efforts will focus on expanding the study to

population-level datasets, including other biomarkers of

normal brain function, developing fully automated meth-

ods, and addressing systemic biases introduced by EEG

acquisition systems.

Supplementary material
Supplementary material is available at Brain

Communications online.
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