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Cerebral stroke is a leading cause of death and persistent disability of elderly in the

world. Although stroke prevention by targeting several risk factors such as diabetes

and hypertension has decreased the stroke incidence, the total number of strokes

is increasing due to the population aging and new preventive therapies are needed.

Moreover, post-stroke acute pharmacological strategies aimed to reduce stroke-induced

brain injury have failed in clinical trials despite being effective in animal models.

Finally, approximately 30% of surviving stroke patients do not recover from stroke and

remain permanently dependent on supportive care in activities of daily living. Therefore,

strategies to improve stroke recovery in the post-acute phase are highly needed.

Linagliptin is a dipeptidyl peptidase-4 inhibitor which is clinically approved to reduce

hyperglycemia in type 2 diabetes. The regulation of glycemia by dipeptidyl peptidase-4

inhibition is mainly achieved by preventing endogenous glucagon-like peptide-1 (GLP-1)

degradation. Interestingly, linagliptin has also shown glycaemia-independent beneficial

effects in animal models of stroke, Parkinson’s disease and Alzheimer’s disease. In

some case the preclinical data have been supported with some clinical data. Although

potentially very interesting for the development of new strategies against stroke and

neurodegenerative disorders, the mode of action of linagliptin in the brain is still largely

unknown and seems to occur in a GLP-1R-independent manner. The purpose of this

mini-review is to summarize and discuss the recent experimental and clinical work

regarding the effects of linagliptin in the central nervous system, with special emphasis

on acute neuroprotection, stroke prevention and post-stroke recovery. We also highlight

the main questions in this research field that need to be addressed in clinical perspective.
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INTRODUCTION

Stroke is a highly prevalent condition and a major cause of death and disabilities (1–5). Globally, 15
million people suffer a stroke every year with up to a 40% death rate (6). Of the surviving patients,
up to 30% remain permanently disabled and require assistance in activities of daily living (5). In
recent years, the incidence and mortality rates of stroke have significantly declined in high-income
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countries (4, 7). The decrease in stroke incidence is probably
due to targeted intervention programs against major stroke
risk factors such as type 2 diabetes (T2D), obesity, smoking,
sedentary lifestyle, hypertension, and alcohol abuse (8), while
the decrease in mortality rate and disability could be attributed
to faster intervention by thrombolytics and/or clot removal
surgery resulting in blood flow restorationwhichminimize stroke
damage (9). However, there is a significant geographic variations
of stroke burden (10), and the total number of strokes and
associated disability burden have substantially increased due to
the increase of global population and life expectancy (4, 7). For
instance, in Europe the number of elderly is projected to increase
by 35% by 2050 (11). Thus, the total number of stroke cases is
unlikely to decrease, unless more advanced preventive and/or
curative strategies will be developed.

Potential future approaches to reduce acute stroke damage
that have been investigated over the last decades are therapeutic
hypothermia and pharmacological neuroprotection (12, 13).
However, neither of these strategies have seen successful
translation into clinical practice. The major obstacle for this
type of strategies is the rapid tissue death in ischemic core and
the limited effective intervention time-window in the ischemic
penumbra (14–16).

Pharmacological interventions of stroke aimed toward
recovery to combat chronic post-stroke disabilities is also
promising based on animal studies, although full translation from
bench-to-bed remains to be achieved (17–20).

Recent research suggests that stroke therapeutics could be
developed from diabetes research. In fact, several studies have
shown that anti-diabetic drugs targeting the glucagon-like
protein 1 receptor [(GLP-1-receptor agonists and dipeptidyl
peptidase-4 inhibitors (DPP-4i)] can mediate anti-stroke efficacy
in animal models, and has been suggested to decrease the
incidence of stroke in some clinical studies [reviewed in (21, 22)].
These drugs are in clinical use for T2D and their robust safety
profile suggest high potential for the possible repositioning into
stroke therapies.

The aim of this review was to summarize the recent
experimental and clinical data regarding the effects of DPP-4i
(also named gliptins) in the central nervous system, with special
emphasis on linagliptin and stroke. Specifically, we focused our
discussion about the effects of DPP-4i in relation to stroke
prevention, acute neuroprotection, and post-stroke recovery. We
also highlighted the main gaps of knowledge that will need to be
addressed in clinical perspective.

METHODS

This review is based on a literature search in Pubmed, or at the
scientific conference websites of major international cardiology
(e.g., ESC, ESC HF, ACC, or AHA) or diabetes (i.e., EASD or
ADA) societies until Jan 31st 2019. Pubmed was searched using
free-text terms and medical subject heading. A uniform search
strategy was applied to Pubmed to identify the reported studies.
The primary MeSH terms and keywords used were as follows:
dipeptidyl peptidase 4 inhibitor, DPP IV, gliptins, linagliptin,

stroke, ischemia, neuroprotection, Parkinson’s, Alzheimer’s,
dementia, neurogenesis, and neuroplasticity. Studies were
screened by title, abstract and full text.

LINAGLIPTIN’S PHARMACOLOGY

Linagliptin is a once daily oral DPP-4i launched in 2011 for the
treatment of T2D. The IC50 of linagliptin on its primary target,
DPP-4, is 1 nM, which makes it one of the most potent inhibitors
within the class (23). The other DPP-4 inhibitors possess lower
potency in the range of IC50 7–95 nM. Linagliptin shows high
selectivity for DPP-4, over other dipeptidyl peptidases and related
proteases (such as DPP-8 and 9) Chemically the drug is based
on an optimized and unique xanthine scaffold (See Figure 1)
possessing very slow dissociation from the humanDPP-4 enzyme
(koff < 0.00002 s−1). This extremely slow off-rate is the main
factor for the high affinity (KD =6.6 pM) and results in a
prolonged drug-target residence time over several hours (24).

Following absorption, linagliptin is distributed into tissues
with high DPP-4 expression, e.g., the kidney and liver. At
low concentrations (< 1 nM), 99% of linagliptin is bound
to soluble and circulating DPP-4 and elimination is low. In
higher concentrations (>100 nM) plasma DPP-4 is saturated
and protein binding decreases to 70–80%. That is one of the
reasons why in contrast to other DPP-4 inhibitors with linear
pharmacokinetics, linagliptin is unique in having non-linear
pharmacokinetics in the therapeutic dose (5mg, human dose)
range. The linagliptin’s binding characteristics were shown to
be absent in DPP-4 deficient animals (25). Moreover, renal
excretion of linagliptin at its therapeutic dose is <7%, which is
unique in the DPP-4 inhibitor class, that are primarily eliminated
via the kidney (26). Linagliptin further shows low interaction
with Cytochrom P450 and high stability in human cytosolic

FIGURE 1 | The molecular structure and weight of selected DPP-4i.
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and microsomal compartment, however linagliptin is a P-gp (P-
glycoprotein) substrate (27) limiting penetration across the blood
brain barrier (bbb) under normal conditions (28).

LINAGLIPTIN AND THE TREATMENT OF
T2D

The concept behind DPP-4i for therapeutic use in T2D is based
on the prolongation of the half-life of the incretins GLP-1
and glucose-dependent insulinotropic polypeptide (GIP), both
secreted via specific endocrine gut cells following meal digestion.
Incretins cause subsequently glucose-dependent insulin secretion
for mainly postprandial glucose regulation. Further, DPP-4
inhibition suppresses glucagon secretion from α-cells. Numerous
other substrates for DPP-4 have been described (29) such
as SDF1α, GLP-2, NPY, substance P, which are activated or
deactivated by the DPP-4 protease and play additional roles
in inflammation, food intake, pain and vascular regulation,
however less contribute to glucose control. Most clinically used
DPP-4 inhibitors, like linagliptin, are once daily drugs because
they show >80% inhibition of DPP-4 activity over 24 h. This
is associated with the high increase of plasma GLP-1 and
consistent reductions in elevated plasma glucose and HbA1c
in various patient populations and across various background
therapies (30). The recently completed cardiovascular outcome
trial CARMELINA (CArdiovascular and Renal Microvascular
outcomE study with LINAgliptin) confirmed the tolerability of
linagliptin, and its cardiovascular (CV) safety, without any signal
of heart failure (31). Due to an excretion primarily via the bile,
linagliptin does not need dose adjustment, including in patients
with T2D and impaired kidney function. CARMELINA proved
safety in these renally impaired patients, and additionally showed
a significant reduction in risk for progression albuminuria (32),
which has not been assessed in a similar robust manner with the
other members of the class of DPP-4 inhibitors.

LINAGLIPTIN MEDIATES BENEFICIAL
EFFECTS IN EXPERIMENTAL MODELS OF
BRAIN DISORDERS

Beside their glycemic properties, it has been recently reported
that DPP-4 inhibitors can also affect the brain. For instance,
studies have shown that DPP-4i exert neuroprotective actions
in animal models of Parkinson’s disease (PD) (33–35) and
ongoing studies investigating the safety of intranasal delivery of
the DPP-4i omarigliptin for the treatment of PD are ongoing
(36). Moreover, D’Amico et al. (37) have shown that sitagliptin
delayed AD-like pathology in a mouse model, and several studies
confirmed these findings by using different DPP-4i inhibitors,
including linagliptin [(38–41) and reviewed in (42)]. Other effects
improving cognitive function, neuroplasticity and neurogenesis
have been recently reported by employing vildagliptin (43),
sitagliptin (44–48), and linagliptin (49). Furthermore, Hasegawa
et al. (50) showed that linagliptin decreased hippocampal
neuronal cell death and improved cognitive function in a model
of aging. However, one study has also shown negative effects

of sitagliptin in the brain, i.e., increased tau phosphorylation
and insulin resistance (51). Finally, a recent study showed
neuroprotection by sitagliptin in a model of brain trauma (52).
In summary, although the passage of DPP-4i through the bbb
in the damaged brain is undetermined and the mechanisms are
unknown, the evidence of favorable effects of DPP-4i on brain
complications is substantial.

LINAGLIPTIN PROVIDES ACUTE
NEUROPROTECTION AFTER STROKE IN
EXPERIMENTAL MODELS

It is difficult to study the potential efficacy of candidate drugs to
reduce stroke risk using animal models. However, to determine
the efficacy for acute neuroprotection, several animal models
exist. A few studies have tested the potential efficacy of DPP-4i for
acute neuroprotection and/or recovery after stroke. Moreover,
acute ischemic stroke severity has been recently associated to
changes in DPP-4 activity (53), suggesting that the regulation of
this enzyme might have a therapeutic value.

Rohnert et al. (54) first showed that DPP-4 inhibition is
neuroprotective in stroke via intracerebral administration of
sitagliptin in the rat. We recently showed that 4 weeks per-oral
pretreatment followed by 3 weeks post-stroke treatment with
linagliptin reduced brain damage after stroke, in both normal
and T2D/obese mice (55). Similar effects in non-diabetic rats
were recently shown by Yang et al. (56) using alogliptin and
by El-Sahar et al. (57) using vildagliptin. In the Yang et al.
study, neuroprotection correlated to increased levels of brain
BDNF. Moreover, DPP-4 inhibition by genistein resulted in
similar findings (58). By using an experimental design consisting
of chronic administration of linagliptin before and after stroke,
Darsalia et al. (59) also showed that linagliptin-mediated
neuroprotection against stroke occurred in correlation with
increased neural stem cells proliferation (60) and, importantly,
was not mediated by the GLP-1R.

A recent work by Ma et al. (61) has shown that the linagliptin
treatment starting after stroke can decrease the stroke-induced
brain damage in a rat model of transient cerebral ischemia
induced by bilateral common carotid artery occlusion. Similar
data using transient middle cerebral occlusion were reported by
Chiazza et al. (62) who also showed that linagliptin improved
functional recovery 3 days after stroke through the activation
of the SDF-1α/CXCR4 pathway. Although one cannot rule out
that the results of these two studies are due to the presence of
linagliptin close to stroke time (suggesting acute neuroprotective
effects), the data also suggest a pharmacological effect that goes
beyond acute neuroprotection because the study design allowed
extending the observation period from days to weeks after
experimental stroke, thus evaluating the effects of linagliptin
treatment in the post-stroke recovery phase. The likelihood of
positive effects during the post-stroke recovery phase is also
supported by the work of Darsalia et al. (59) showing that a
single, acute bolus administration of linagliptin at stroke time
was ineffective in reducing the brain damage. Furthermore, the
potential role of DPP-4 inhibition in endogenous brain tissue
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remodeling and repair processes after stroke has been recently
suggested by Wesley et al. (63).

Whether DPP-4i leads to neuroprotection and promotes
recovery after stroke by directly acting on neurons remains to
be determined, although a recent in vitro study suggested direct
neuroprotection in neural cells (64). However, additional cellular
mechanisms may be involved. Indeed, Mi et al. (65) showed
that linagliptin increases the in vitro proliferation of rat brain
microvascular endothelial cells via the SIRT1/HIF-1α/VEGF
pathway. Furthermore, recent works have shown that linagliptin
improves cerebrovascular dysfunction and remodeling in a rat
model of T2D, independent of glycemic control (66, 67).

Admission hyperglycemia is per se a negative prognostic
marker for patients suffering acute ischemic stroke. Interestingly,
hyperglycemia in patients without previously known diabetes
is associated with a greater risk for poor outcome compared
to patients with identified diabetes prior the stroke (68–
70). Remarkably most of the effects reviewed here occurred
independently from the regulation of glycemia in both normal
and diabetic models, suggesting that the potential efficacy of
DPP-4i to increase acute neuroprotection and/or recovery may
be clinically relevant not only for the diabetic population under a
DPP-4i-mediated therapy.

DPP-4 INHIBITORS AND STROKE
PREVENTION WITH A FOCUS ON
CARMELINA, A CARDIORENAL OUTCOME
TRIAL WITH LINAGLIPTIN

The incidence of CV complications in T2D, including stroke,
has declined substantially but it is still high (71). An increasing
CV risk factor control attainment has probably contributed to
this, and recently, it was demonstrated that maintaining control
of glycated hemoglobin level, low-density lipoprotein cholesterol
level, albuminuria, and blood pressure, as well as abstaining from
smoking, was associated with no excess risk of CV death or stroke
in T2D as compared to the general population (72). Interestingly,
glycated hemoglobin was the strongest risk factor for stroke in
this registry analysis.

Because, historically, there have been CV safety concerns
regarding anti-diabetic drugs in the treatment of T2D, regulators
in US and Europe focus specifically on this issue [(73) and http://
www.ema.europa.eu/docs/en_GB/document_library/Scientific_
guideline/2012/06/WC500129256.pdf], and as a response, fifteen
CV outcome trials assessing 3 novel classes of antihyperglycemic
therapies (i.e., DPP-4 inhibitors, GLP-1 receptor agonists, and
SGLT-2 inhibitors) had been completed by end of 2018, of which
none reported an increase in risk for major adverse CV events
(MACE), whereas 6 agents have demonstrated CV benefits (74).
Within the class of DPP-4i, four large CV outcome trials have
been published till date for saxagliptin (75), sitagliptin (76),
alogliptin (77), and linagliptin (32).

These trials have used the compositeMajor Adverse CV events
(MACE); i.e., CV death, non-fatal myocardial infarction and
stroke, with or without hospitalized unstable angina, as primary
outcome. All trials have demonstrated CV safety, without
incremental benefit forMACE, including no statistical significant

difference in risk for non-fatal stroke. In the saxagliptin trial
there was however a significantly higher numbers of patients
hospitalized for heart failure (75), a signal also reported in
the alogliptin trial (77). Due to this, the class has received a
heart failure warning by the US Food and Drug Administration,
especially if used in patients with high CV risk underlying heart
and kidney disease (73). The linagliptin trial (CARMELINA R©)
(32) was designed to evaluate the CV safety and kidney outcomes
of linagliptin in patients with T2D at high CV risk (75%
of patients had prevalent kidney disease). Despite a frailer
population, in comparison with the other DPP4i trials, linagliptin
resulted in a non-inferior risk of MACE [compared to placebo
added to standard care; hazard ratio 1.02 (95% CI: 0.89, 1.17)],
including across a number of subgroups such as by sex and
age, and did not affect the risk of heart failure [hazard ratio
0.90 (95% CI: 0.74, 1.08)] (31). Furthermore, the progression
of albuminuria occurred less frequently in the linagliptin group
[hazard ratio 0.86 (95% CI: 0.78, 0.95)] (32), but despite MACE
safety, no significant protection for stroke [fatal/non-fatal stroke
hazard ratio 0.91 (95%CI: 0.67, 1.23)] was observed. Nonetheless,
their broad tolerability and the safety profile are today well-
documented and a good choice for the pharmacology treatment
of T2D. Importantly, it remains to be determined if these class of
drugs can improve stroke outcome in the recovery phase (78) as
it has been shown in several experimental studies. Interestingly,
outcome trials with linagliptin (32, 79) will be exploring this
question by determining the post-stroke functional outcome in a
subgroup of patients hospitalized with stroke with T2D by using
the modified rankin scale 3–6 months after stroke.

LINAGLIPTIN AND CLINICAL EFFECTS ON
COGNITIVE OUTCOMES

Cognitive impairment, including mild cognitive impairment
(MCI) and dementia, is increasingly recognized as an important
T2D complication (80). High HbA1C concentration and glucose
variability are negatively associated with subtle cognitive changes
but the association is weak and more randomized controlled
trials are needed (81). The underlying processes of cognitive
dysfunction in T2D are largely unknown and till date, no
pharmacological intervention has proven efficacious (82). Given
that incretin therapies have emerged as a potential therapeutic
lead for vascular brain injury, studying effects of these on
cognitive outcomes are of interest. This is further supported by
findings, in an observational study in elderly patients with T2D,
that increased plasma DPP-4 activity is associated with elevated
risk of MCI (83) and some small, and hypothesis generating,
and underpowered, clinical observational studies, reporting some
benefits of DPP-4i on clinical cognitive outcomes (84–86).

Both in CARMELINA, and in CAROLINA (a recently
completed head-to-head study of linagliptin vs. the sulfonylurea
glimepiride) cognitive studies with linagliptin have been
completed, but none yet published. The CARMELINA-cognition
and the CAROLINA-cognition sub-studies were integral parts of
CARMELINA (32) and CAROLINA trials (87), respectively. Both
cognition sub-studies aimed to test whether linagliptin prevents
accelerated cognitive decline by applying the mini-mental state
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FIGURE 2 | Summary of the reported effects and mechanisms mediated by DPP-4i in stroke prevention, acute neuroprotection, and post-stroke recovery.

examination, as a measure of global cognitive function. In
addition, more domain-sensitive composite measure of attention
& executive functioning, using two additional tests: the Trail
Making Test and the verbal fluency test, have been applied. The
results of these sub-studies will be informative for refining the
research area within this emerging and highly developing field.

FUTURE DIRECTIONS

Preclinical studies showing favorable effects of DPP-4i
in several CNS disorders and stroke, encourage further

research aiming to clinically reposition these diabetic
drugs as active CNS-centric drugs. Clinical studies mainly
investigating the safety of DPP4i have shown that these drugs
are safe albeit no effect to decrease stroke incidence has
been shown.

The clinical efficacy of acute neuroprotection after stroke is
largely dependent on timely intervention within a very short
therapeutic window (few hours from stroke onset), which is
difficult to achieve. However, if the neuroprotective substance is
systemically present at stroke time, the chances of minimizing
stroke-induced tissue loss are significantly greater. The success of
this strategy could be achieved in T2D patients (at high stroke
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risk) who routinely take DPP-4i for the daily management of
T2D. These patients could benefit from this treatment when
suffering from stroke.

Another potential strategy to exploit the advantages of a
DPP4i-based stroke therapy could be the promotion of stroke
recovery and rehabilitation in the post-acute/chronic phase
that could be theoretically applicable to all stroke patients.
However, the potential of this approach has not yet been
thoroughly investigated in animal studies and research in this
field is highly needed, also in the clinical setting (78), including
exploring whether there are differences in effects according
to patient-characteristics; a field of emerging importance in
the personalized medicine area. Indeed recent animal studies
have shown pro-neurogenic (46), anti-inflammatory (54) and
neuroplasticity (49) effects mediated by DPP-4i that could result
beneficial in the post-stroke recovery phase and long-term
clinical outcome.

Finally, studies are needed to understand the molecular
mechanisms of DPP-4i in the brain, since the passage of DPP-4i
through the bbb seems not to occur under normal conditions and
after stroke is undetermined. Therefore, to study the mechanism
of action of DPP4i in the brain substances with bbb permeability
need to be synthesized in the future. Moreover, the systemic
peripheral doses of GIP and GLP-1 after DPP-4i administration
are low in comparison to GLP-1 agonists, e.g., in the pg range,
and neuroprotection by linagliptin treatment has been shown
to occur independently from GLP-1R (59). This suggest that
alternative mechanisms are likely involved. Since the DPP-4 is an
enzyme with over 40 known, biologically active substrates, many
of which with proven CNS effects, the deeper understanding of
how exactly DPP-4i regulate these substrates could lead to the
identifications of new therapeutic targets in the CNS.

CONCLUSIONS

The demonstrated beneficial CNS effects in preclinical studies
and the proven clinical safety of DPP-4i make them good

candidates for their potential repositioning against stroke. While
the data so far suggest that DPP-4i cannot reduce stroke risk,
studies are needed to determine if T2D people who use them
for daily T2D management could gain advantages in terms of
reduced brain damage in the event of stroke. Both T2D and
non-diabetic stroke patients could also benefit from the use of
DPP-4i as post-stroke curative agents promoting recovery and
rehabilitation in post-acute phase. However, more pre-clinical
and clinical research is highly needed in this research field (See
Figure 2 for the summary of DPP-4i-mediated effects in stroke
and potential mechanisms of action).
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