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Abstract: The process of spermatogenesis is complex and systemic, requiring the cooperation of many
regulators. However, little is known about how micro RNAs (miRNAs) regulate spermatogenesis
in poultry. In this study, we investigated key miRNAs and their target genes that are involved in
spermatogenesis in chickens. Next-generation sequencing was conducted to determine miRNA
expression profiles in five cell types: primordial germ cells (PGCs), spermatogonial stem cells (SSCs),
spermatogonia (Spa), and chicken sperm. Next, we analyzed and identified several key miRNAs that
regulate spermatogenesis in the four germline cell miRNA profiles. Among the enriched miRNAs,
miRNA-301a-5p was the key miRNA in PGCs, SSCs, and Spa. Through reverse transcription
quantitative PCR (RT-qPCR), dual-luciferase, and miRNA salience, we confirmed that miR-301a-5p
binds to transforming growth factor-beta 2 (TGFβ2) and is involved in the transforming growth
factor-beta (TGF-β) signaling pathway and germ cell development. To the best of our knowledge,
this is the first demonstration of miR-301a-5p involvement in spermatogenesis by direct binding
to TGFβ2, a key gene in the TGF-β signaling pathway. This finding contributes to the insights
into the molecular mechanism through which miRNAs regulate germline cell differentiation and
spermatogenesis in chickens.
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1. Introduction

Spermatogenesis is a complex and asynchronous germ cell formation process that in-
cludes primordial germ cells that develop through several immature stages by undergoing
mitosis, meiosis, and differentiation into haploid spermatozoa and mature sperm [1–3]. The
process of spermatogenesis undergoes a well-defined order of mitotic expansion, meiotic
reduction division, and Spermiogenesis [2,4] (Griswold 2016; La and Hobbs 2019). During
spermatogenesis, many cell types are involved, including Sertoli cells, primordial germ
cells (PGCs), spermatogonial stem cells (SSCs), spermatogonial cells (Spas), primary sper-
matocytes (PSCs), secondary spermatocytes (SSACs), spermatids, and spermatozoa [5,6].
PGCs, SSCs, and Spas are the key cell types in the early stages of spermatogenesis.

Recently, many studies have shown that several regulator types which include methy-
lation, ubiquitination, acetylation, transcription factor and et.al., play major roles in
germline cell development and spermatogenesis [7–12]. Small RNAs, which are a class of
short non-coding RNAs, play a vital role during the entire spermatogenesis process [13–15].
MicroRNAs are a kind of single-stranded, non-coding small RNA that function by guiding
a crucial co-factor, an AGO protein of the Argonaute family, to target genes [16]. Recent
studies on spermatogenesis have demonstrated that miRNA dysregulation has been im-
plicated in male fertility, leading to sperm abnormality and spermatogenesis disruption,
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suggesting that miRNAs are functionally important in the spermatogenesis process in
mammalian and poultry [13–15,17,18]. Our previous studies also showed that miR-202-5p
expressed and regulated LIMK2 during the early spermatogonial stage in chickens [15].
Meanwhile, many miRNAs have been found in spermatozoa and have been shown to be
expressed differently in high and poor fertility bulls [19–22]. Besides, a previous study
showed that miRNA also regulates spermatogenesis in humans, mice, etc. In humans,
MiR-133b and miR-202 are implicated in the pathophysiology of azoospermia [14].

In addition, several genes and pathways are crucial for spermatogenesis [23–27],
including the transforming growth factor-β/Smad (TGFβ/Smad) [28], AMP-activated
protein kinase (AMPK) [26,29], and mitogen-activated protein kinase (MAPK) signaling
pathways [30,31]. During embryonic development, embryogenesis, and adulthood, the
TGF signaling pathway regulates a variety of biological activities, including cell prolifera-
tion, differentiation, and apoptosis [32]. TGF-β2 (TGFβ2), one of the three TGF-β isoforms,
has been suggested to be involved in the regulation of spermatogenesis. However, few
studies have reported the regulation of the TGF-β pathway in spermatogenesis by miRNAs.
In the present study, we sequenced the small RNA of four cell types PGCs, SSCs, Spas, and
sperm in the chicken and filtered the specific miRNAs of each cell type. Next, we want to
investigate many critical miRNAs and their target genes that have been related to germ
cell growth and spermatogenesis. We also want to propose an epigenetic explanation for
this process.

2. Materials and Methods
2.1. Ethical Approval

All chicken and egg studies were carried out in line with the Rules for the Admin-
istration of Experimental Animals published by the Ministry of Science and Technology
(Beijing, China) in 1988 (last modified in 2001). Yangzhou University’s Animal Care and
Use Committee authorized the experimental protocols (YZUDWSY2017-11-07). Every
attempt was made to reduce animal discomfort and suffering.

2.2. Flow Cytometry

PGC colonies were identified using a mouse anti-chicken c-KIT antibody (1:50) as a
primary antibody and goat-anti-mouse FITC-conjugated IgM (1:50) as a secondary antibody
(both from Santa Cruz Biotechnology, Santa Cruz, CA, USA). The identified PGCs were
subjected to periodic acid Schiff (PAS) staining, as previously described [33]. Briefly, PGCs
were fixed in 4% paraformaldehyde for 5 min, rinsed twice with 1× PBS (Hyclone, South
Logan, UT, USA), immersed in the periodic acid solution for 5 min, washed with 1× PBS,
immersed in Schiff’s solution for 15 min, washed twice in 1× PBS, and observed under
an inverted microscope. Cells were stained for alkaline phosphatase using the 5-bromo-
4-chloro-3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) alkaline phosphatase
substrate kit (Wuhan, Booster, Wuhan, China) [34]. The c-KIT and ITGA6 antibodies
were used to label PGCs and SSCs, respectively, for FACS analysis performed using a
FACSAria flow cytometer (BD Biosciences, San Jose, CA, USA). SaCs were sorted as
previously described.

2.3. Data Processing

The miRNA expression data used in the present study were obtained from our pre-
vious study [11,15]. The data were analyzed for differences in miRNA expression levels
during spermatogenesis. The cells for small RNA sequencing were PGCs, SSCs, Spa, and
sperm. The PGCs were isolated from the gonads of chicks hatched for 5.5 days (Stage
28). The SSCs were obtained from the testes of chicks hatched for 18 days. Flow cytome-
try was used to extract and prepare spermatogonia single-cell suspensions from chicken
testicular tissues. Chicken sperm were obtained using artificial harvesting. The Illumina
HiSeq 2500 system (Illumina, San Diego, CA, USA) was used for small RNA sequencing.
The clean reads of each cell type were not less than 30 M—the clean reads are shown in
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Table 1. The Q20 value of the base mass was greater than 90%. The raw reads used were
preprocessed using FASTX. The effective reads results are shown in Table 1.

Table 1. Information on small RNA sequencing data.

Samples Clean Reads Effective Reads Effective Ratio

PGCs 31,361,989 30,851,348 98.37%
Spa 32,522,297 31,688,775 97.44%

Sperm 32,219,701 31,970,934 99.23%
SSC 31,757,666 31,461,002 99.07%

2.4. Key miRNA Determination and miRNA Target Gene Prediction

To identify the critical miRNAs for each stage of spermatogenesis, we first used
FastQC’s FASTX-toolkit to exclude low-quality reads with Q-values of 20 and short read
tags less than 18 bp. We then aligned the clean reads to the miRBase, ncRNA, and Rfam
databases using the CLC Genomics Workbench. Furthermore, Venn analysis was used to
evaluate the miRNA annotation in each library to identify specific miRNA expressions in
each spermatogenesis-stage cell.

To predict the target genes for each key miRNA, miRDB [35], TargetScan [36], and
DIANA Tools [37] were used. In addition, Venn analysis was used to filter the target genes
of each miRNA.

2.5. miRNA Inhibition Studies and RNA Interference

The miRNA zipper, which may be utilized to cause miRNA loss-of-function, was
developed to detect miRNA function during spermatogenesis (Meng et al. 2017), was used
to silence miRNA and detect the effect on target miRNA genes. The LNA miRNA zippers
were designed following the LNA Oligo Tools and Design Guideline (Exiqon A/S, Vedbaek,
Denmark) and synthesized by GenScript (Nanjing) Co., Ltd. (Nanjing, China). The oligo
sequences were (from 5′ to 3′): miR-17 zipper 5′-A+AGCACTTTGGCTACCTGCACT+GT-
3′; miR-17 zipper mutation 5′-A+AGCACTATGGCTACCTGGACT+GT-3′; miR-301a-
5p zipper 5′-A+TGTTGCACTACTTCTGA+CA-3′; miR-301a-5p zipper mutation 5′-
A+TGTTGCGACTACTTCTGA+CA, and the negative control was a commercially available
LNA product from Exiqon.

The siRNAs were designed and synthesized by Shanghai GenePharma Co., Ltd. (Shang-
hai, China). The siRNA 1 sequence for TGFβ2 was sense 5′-CCCUCGACAUGGAUCAGUUTT-
3′ and antisense 5′-AACUGAUCCAUGUCGAGGGTT-3′. The siRNA2 sequence
for TGFβ2 was sense 5′-CCAAGCUAUUACAGCCUUUTT-3′ and antisense 5′-AAA
GGCUGUAAUAGCUUGGTT-3′. The siRNA3 sequences for TGFβ2 were sense 5′-
GCUGUACCAGGUUCUGAAATT-3′ and antisense 5′-UUUCAGAACCUGGUACAGCTT-3′.
The sequences for the negative control siRNA were sense 5′-UUCUCCGAACGUGUCACGUTT-
3′ and antisense 5′-ACGUGACACGUUCGGAGAATT-3′. The cells were transfected with
50 nM siRNA using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) according to the
manufacturer’s instructions. The transfection mixture was replaced with DMEM/10% FBS
medium 6 h later, and the cells were cultured until analysis.

2.6. Expression Analysis of miRNA and Genes

TRIzol reagent was used to extract total RNA (Invitrogen). The TaqManTM MicroRNA
Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to
produce first-strand complementary DNA of miRNAs according to the manufacturer’s
instructions. The primer sequences for real-time PCR (RT-qPCR) of the miRNAs are shown
in Table 2. All primer oligonucleotides were synthesized and purified by GenScript. The
miRNA Universal SYBR qPCR Master Mix was produced by Vazyme Biotech Co., Ltd.
(Nanjing, China). U6 was used for normalization. The QuantStudio 5 Real-Time PCR
System (Applied Biosystems, Waltham, MA, USA) was used for quantitative RT-PCR.
The HiScript® II One-Step RT-PCR Kit (Dye Plus; Vazyme Biotech Co., Ltd.) was used



Genes 2021, 12, 1695 4 of 11

for reverse transcribing RNA and quantitative. The gene primer sequences are shown in
Table 2. GAPDH was amplified as an endogenous control.

Table 2. The primer of all genes which in present study.

No. Gene Name Primer

1 GAPDH
Forward: GCAGATGCAGGTGCTGAGTA
Reverse: GACACCCATCACAAACATGG

2 TGFβ2 Forward: AAATGCCATCCCACCA
Reverse: GCTCTATCCGCTGCTCC

2 TGFβR1 Forward: TGCGGACAACAAAGAC
Reverse: GCCTAACTGCCAACCC

3 TGFβR2 Forward: GCCTACCGCACTCACA
Reverse: TTCAATGGGCAGCAAT

4 SMAD2
Forward: GCCATTACCACTCAGAAC

Reverse: TTTACGATGCGACACCT

5 SMAD3
Forward: GGCACATCGGAAGAGGA

Reverse: GGTTTACAGACTGAGCCAAGA

6 SMAD5
Forward: TCGCCAAACAGTCCC

Reverse: GCAACAGGCTGAACATC

2.7. KEGG Pathway and GO Enrichment Analysis

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses on the target genes of each miRNA to identify the main functions
of the genes and to reveal the miRNA-gene regulatory network, respectively. The p-
value (p < 0.05) was used to determine the significance of GO term enrichment and path-
way analysis. The Bonferroni method, which is a method of R/stats package, was used to
adjust the p-value in GO enrichment and KEGG pathway analysis.

2.8. Construction of Recombinant Expression Vectors and the Dual-Luciferase Reporter Assay

In a pGL3 basic vector, the 3′-UTR of the TGFB2 gene containing two gga-miR-301a-
5p binding sites (1929 and 3281 bp) was subcloned downstream of the firefly luciferase
reporter gene (Promega, Madison, WI, USA). Table 2 lists the primer sequences utilized in
the current research. DF1 cells cultured in 24-well plates were transiently co-transfected
with 400 ng luciferase vector pGL3–TGF2-3′UTR or pGL3–TGF2-3′-mUTR and either
miR-301a-5p mimic or miRNA negative control for reporter experiments (miRNA-NC).
As a control, 20 ng of pRL-SV40 (Promega) was co-transfected to evaluate transfection
effectiveness. The Dual-Luciferase Assay System was used to conduct reporter assays 36 h
after transfection (Promega).

2.9. Cell Culture

DF1 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) at 37 ◦C in a 5% CO2 condition with saturated
humidity. DF1 cells (104 cells/well) were transplanted onto 24-well plates for 1 day to
confirm that the DF1 cell density reached 80%. The cells were then cultured in an incubator
at 37 ◦C with 5% atmospheric CO2 and 60–70% relative humidity.

2.10. Statistical Analysis

All data in this research are presented as the mean standard deviation of three separate
experiments. The Student’s t-test in the R/stats package was used to evaluate statistical
significance. The statistical significance threshold was set at p < 0.05.
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3. Results
3.1. Identification of Co-High-Expression miRNAs of Each Spermatogenesis Stage

Spermatogenesis is a dynamic and complicated cellular differentiation critical mech-
anism for male reproduction. miRNAs are critical gene expression regulators involved
with spermatogenesis. To identify the key miRNAs in each spermatogenesis stage, we
compared the miRNAs in PCGs, SSCs, and Spa with miRNA in sperm and filtered the
miRNAs at log2 (fold change) ≥2 and miRNA count ≥100. In the comparison group of
PGCs and sperm, we identified 156 miRNAs, 155 miRNAs in SSCs compared with sperm,
and 146 miRNAs in Spa compared with sperm. Meanwhile, we identified 128 differentially
expressed miRNAs in the three comparison groups (Figure 1 and Table S1). Thereafter, we
predicted the target genes of all 128 miRNAs using miRDB, DIANA Tools, and TargetScan,
obtaining 1358 target genes. Furthermore, the results of GO analysis showed that almost all
target genes were associated with GO entries related to cell growth, development, and cell
differentiation (Figure S1). KEGG annotation results showed that almost all target genes
were related to the Wnt signaling pathway, RNA degradation, and the GnRH signaling
pathway (Figure S2).
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3.2. miR-301a-5p May Affect TGFB2 Expression in Chicken

Previous studies have reported that miR-301a-5p functions as a proliferation gene
in cancer and cell development. Furthermore, TGFB2 may regulate the duration of germ
cell quiescence and is required for adult spermatogenesis. Based on the predicted miRNA
target genes, we found that TGFB2 was among the target genes of miR-301a-5p. In addition,
we observed that TGFB2 and miR-301a-5p expression was negatively correlated (Figure 2a).
Thus, we hypothesized that miR-301a-5p could affect TGFB2 expression during spermato-
genesis. To further confirm the effect of miR-301a-5p on TGFB2 expression in chickens, we
designed a pair comprising a miR-301a-5p zipper and miR-301a-5p zipper mutation, which
have been shown to silence miRNA expression. To determine miRNA zipper function, we
designed a pair comprising a miR-17 zipper and miR-17 zipper mutation and transfected
it into DF1 (Figure 2b). The results showed that the silencing efficiency of the miR-17
zipper reached 72%, and that of the miR-17 zipper mutation reached 47%. Therefore, we
transfected the miR-301a-5p zipper and miR-301a-5p zipper mutation into DF1 and PGCs
and tested the expression of miR-301a-5p and TGFB2 in the two cell types (Figure 2c–e).
We revealed that with a decline in miR-301a-5p expression, TGFB2 expression increased.
Thus, we suggest that miR-301a-5p may affect TGFB2 expression.
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3.3. miR-301a-5p Binds to TGFB2 Genes in Chicken

We created a miR-301a-5p mimic and inhibitor and transfected them into DF1 and
PGCs, respectively, to confirm the connection between miR-301a-5p and TGFB2. First, we
used DF1 to evaluate the efficacy of the miR-301a-5p mimic and inhibitor. The results of
miR-301a-5p expression after miR-301a-5p mimic and inhibitor transfect showed that the
mimic and inhibitor were available, and 65 nM for the mimic and 200 nM for the inhibitor
were applicable densities for DF1 (Figure 3a,b). The same experiment was then carried
out using transfected PGCs. The findings revealed a substantial difference between the
PGCs-mimic, PGCs-inhibitor, and PGCs-control groups. On the one hand, the PGCs-mimic
group showed 321.3 times the expression of the other two groups in miR-301a-5p, while
the expression of TGFB2 was the lowest of the three groups. The PGCs-inhibitor group,
on the other hand, was 0.4 times larger than the other two groups; however, TGFB2 had
the greatest expression in all three groups (Figure 3c,d). This result suggested that the
sequencing results were credible and that there was a relationship between miR-301a-5p
and TGFB2. The dual-luciferase experiment was also used to determine the relationship
between miR-301a-5p and TGFB2. The experimental group had lower fluorescence ac-
tivity than the control group, suggesting that miR-301a-5p may inhibit TGFB2 transcript
regulation (Figure 3e).
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of miR-301a-5p and TGFB2 in PGCs after transfection with a miR-301a-5p mimic and miR-301a-
5p inhibitor; (e) binding site of miR-301a-5p in TGFB2; (f) results of the luciferase reporter assay
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3.4. miR-301a-5p Regulates the TGFB Pathway by Directly Binding to TGFB2

The above results show that miR-301a-5p may affect TGFB2 expression by directly
binding to TGFB2. To determine the effect of miR-301a-5p on the TGFB pathway, we
first designed three siRNAs and transfected them into DF. The TGFB2 expression results
showed that siRNAs might silence TGFB2 to 35.5 and 32%, respectively (Figure 4a). We also
tested the expression of SAMD2, SAMD3, SAMD5, TGFBR2, and TGFBR1 after siRNA-2
transfection into PGCs (Figure 4b) and observed a change in expression. Furthermore,
we transfected the miR-301a-5p mimic, miR-301a-5p inhibitor, miR-301a-5p zipper, and
miR-301a-5p zipper mutations into DF1 and PGCs. The aforementioned genes showed
significant expression changes in the two cell types (Figure 4b,c). Thus, we propose that
miR-301a-5p may regulate the TGFB pathway during spermatogenesis by directly binding
to TGFB2 (Figure 4d).
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4. Discussion

Spermatogenesis is a complex and highly regulated process that supports the produc-
tion of millions of sperm in chickens [2,3]. During spermatogenesis, PGCs are specified
as germ cells and begin a process of rapid proliferation, reprogramming, and meiosis,
ultimately becoming sperm [4]. More than a thousand protein-coding genes involved in
spermatogenesis have been identified [25]. However, the mechanisms that mediate the
expression of these spermatogenesis-related genes have not been fully elucidated. Mi-
croRNAs (miRNAs, miR), small (~22 nucleotides) single-stranded non-coding RNAs that
are critical regulators of gene post-transcriptional levels, are linked to cell proliferation,
differentiation, and apoptosis [38–40]. Furthermore, miRNAs are involved in multiple
developmental processes in many organisms, including spermatogenesis [41], and are
differentially expressed in a cell-specific and step-specific manner. Several studies have
shown that the miR-34 family [42–44], the miR-17-92 cluster [45], and other miRNAs are
regulate spermatogenesis. MiR-301a-5p is an important miRNA that regulates several
processes [46]. In the present study, we found that miR-301a-5p was highly expressed at
each stage of spermatogenesis. This suggests that miR-301a-5p may participate in sper-
matogenesis. During the determination of miR-301a-5p, we observed that its expression
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levels gradually decreased in PGCs, SSCs, Spa, and sperm. Furthermore, using target
gene prediction in three databases, we found that TGFB2 was among the target genes of
miR-301a-5p. Previous studies on the TGFb signaling system in mice have shown the TGFb
negative regulator of germ cell proliferation in fetal and newborn animals and to reduce
gonocyte proliferation in vitro [47,48]. TGFb, on the other hand, controls the proliferation
of germ line stem cells and spermatogonia in Drosophila testis [49]. Previous research
has shown that TGF-beta receptor isoforms and isoforms control testis development and
influence steroidogenesis, cord formation, and gonocyte behavior [50–53].

In the present study, TGFB2 expression levels gradually increased in PGCs, SSCs, Spa,
and sperm. It has been suggested that miR-301a-5p negatively regulates TGFB2 expression.
Furthermore, we found that TGFB2 expression was downregulated in the miR-301a-5p
zipper and miR-301a-5p mutation zipper groups. Meanwhile, the dual-luciferase assay
also showed that miR-301a-5p negatively regulated TGFB2 through direct binding. The
TGFβ signaling pathway is one of the key pathways involved in cell regulation. TGFB2
initiates signal transduction by binding to the TGFBR2 receptor serine/threonine kinase
and transmits a signal to the Smad protein. Thus, we surmised that miR-301a-5p is
involved in the TGFB signaling pathway by directly binding to TGFB2 and participates
in spermatogenesis.

5. Conclusions

In summary, we identified 128 miRNAs with high co-expression at each stage during
spermatogenesis. Furthermore, among all high co-expression genes, we determined that
miR-301a-5p may play an essential role in spermatogenesis by directly binding to TGFB2.
In addition, miR-301a-5p may also be involved in the TGFB signaling pathway. These
results provide a strong foundation for the study of azoospermia in chickens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12111695/s1. Figure S1: GO terms enrichment analysis of all miRNA target genes.
Figure S2: KEGG pathways enrichment analysis of all miRNA target genes. Table S1: Differentially
expressed miRNAs in the three comparisons.
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