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ABSTRACT

	

To explore the relationships between transcription, messenger RNA (mRNA) proc-
essing, and nuclear structure, ribonucleoprotein particles containing heterogeneous nuclear
RNA (hnRNP) have been purified from globin-producing mouse Friend erythroleukemia cells .
These nuclear hnRNP particles sediment at 50S-2005 and contain, in addition to high molecular
weight hnRNA, a specific set of nuclear proteins predominated by a major component of
38,000 mol wt . The hnRNP particles are free of histones and ribosomal structural proteins,

indicating their purification from the two other major nucleoprotein components of the
nucleus: chromatin and nucleolar ribosomal precursor RNP particles. The authenticity of the
Friend cell hnRNP particles is demonstrated by the results of reconstruction experiments with
deproteinized hnRNA, and by the resistance of the particles to dissociation during isopycnic
banding in C52SO4 gradients without prior aldehyde fixation . Hybridization analysis with
cloned mouse 8-globin DNA demonstrates that hnRNP particles from induced Friend cells
contain newly synthesized transcripts of the a-globin gene . Agarose gel electrophoresis of
hnRNP particle-derived RNA denatured in glyoxal followed by "Northern" transfer to diazo-
benzyloxymethyl paper and hybridization with 32 P-labeled cloned mouse fl-globin DNA reveals
the presence in hnRNP of two size classes of /3-globin gene transcripts, the larger of which
corresponds to the pre-spliced 15S 8-globin mRNA precursor previously identified in whole
nuclear RNA, and the smaller of which corresponds to completely processed 9S a-globin
mRNA. These results establish, for the first time, that the nuclear transcripts of a specific, well-
defined eukaryotic structural gene can be isolated in an RNP particle form, and that their RNP
structure persists throughout mRNA splicing .

The transcription of structural genes in the eukaryotic cell
nucleus takes place at a nucleoprotein level of organization .
This is true of both the templates for transcription, chromatin
(reviewed in reference 36), and the products of transcription,
heterogeneous nuclear RNA, which is rapidly assembled into
ribonucleoprotein particles known as hnRNP (33, 34). How-
ever, the functional significance of these nucleoprotein envi-
ronments for transcription and hnRNA metabolism is not
understood . As a step toward defining the relationships be-
tween messenger RNA (mRNA) processing and nuclear struc-
ture, hnRNPparticles have been purified from globin-produc-
ing mouse Friend erythroleukemia cells and characterized with
particular reference to transcripts of the 8-globin gene. The
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major conclusion is that both pre-spliced and spliced mRNA
sequences have a ribonucleoprotein structure in the nucleus.

MATERIALS AND METHODS

Cell Culture, Radioisotopic Labeling, and
Cell Fractionation

Clone 745 mouse Friend erythroleukemia cells were maintained in monolayer
culture usingJoklik-modified Eagle's minimum essential medium containing20%
fetal calf serum . For large-scale experiments, the desired numbers of cells were
grown up in suspension culture using the same medium, induced with 2% (vol/
vol) dimethyl sulfoxide (DMSO) and harvested 72-84 h later, when 70-85% of
thecells were benzidine-positive. In some cases, cells were grown in the presence
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of 1"C]thymidine (0.025 juCi/ml) for 24 h before harvest. To label hnRNA, cells
were concentrated to 2-3 x 10' cells/ml in fresh, prewarmed medium, incubated
at 37'C for 10 min with 0.081~g actinomycin/ml to selectively inhibit ribosomal
RNA synthesis (39, 40) and then for 20 min with ['H]uridine at 20pCi/ml . The
cells were then poured into 5-10 vol of ice-cold balanced salt solution (14) and
harvested by low-speed centrifugation . This and all subsequent steps were
performed at 2°-4°C . After an additional wash, the cells were resuspended in 10
Vol of "reticulocyte standard buffer" (RSB, 0.01 MNaCI, 1.5 mM MgCl, 0.01 M
Tris-HCI, pH 7.0). After 3-5 min, the osmotically swollen cells were disrupted by
two to five strokes of a glass Dounce homogenizer (Kontes Co ., Vineland, N. J.)
(clearance = -38 pin). Cell disruption was monitored by phase-contrast micros-
copy and was always>95% . (Induced Friend cells areexceptionally easy to break
open under these hypotonic conditions, and there is often asmall fraction of cells
that lyses spontaneously.) The homogenate was centrifuged at 2,000 g for 5 min,
the red (hemoglobin-containing) cytoplasm was aspirated off, and thewhite pellet
of nuclei was then washed several times in 10 vol of RSB until the supernatant
wash was water-clear .

The washed nuclei were resuspended in RSB at 4 x 10' nuclei/ml and
disrupted by mild sonication (one 8-s pulse at 40 W, Bronson model W185,
standard microtip, Heat Systems Ultrasonics, Inc., Plainview, N. Y.). If nuclear
breakage was observed to be incomplete, a second 8-s pulse was administered .
The sonicated nuclei were then layered in 5- to 8-ml portions on 25 ml of 30%
sucrose in RSB and centrifuged for 20 min at 5,000 rpm (4,500 g) in a Beckman
SW27 rotor (Beckman Instruments, Spinco Div., Palo Alto, Calif) to pellet
nucleoli (28, 33) and also most of the chromatin (see Results and Table 1) . The
opalescent band at the 0:30% sucrose interface, containing the hnRNPparticles,
was removed and 6-ml portions were layered on 15-45% linear sucrose gradients
(28 ml) over a 4-m160% sucrose cushion. All sucrose solutions were made up in
RSB and autoclaved before use. The gradients were centrifuged under a variety
of conditions to empirically determine the maximal separation of hnRNP from
the remaining chromatin . The conditions subsequently adopted for routine
hnRNP isolation throughout this study were 12,000 rpm for 17 h in the SW27
rotor (see Fig . 1).

Gel Electrophoresis of Nuclear Proteins
hnRNP particles were recovered from pooled sucrose gradient fractions by

centrifugation at 35,000 rpm for 14-16 h in a Spinco 60Ti rotor. The pellets of
hnRNP were dissolved in 10 mM sodium phosphate buffer, pH 7.0, containing
1% SDS and 1% mercaptoethanol, dialyzed, and electrophoresed in the gelsystem
which we have previously described in detail (7, 23). To analyze chromatin, the
pellets from the hnRNP sucrose gradients (Fig. 1) were dissolved in the same
buffer and processed similarly. Molecular weights were determined from the
mobility of standards electrophoresed in parallel gels: bovine serum albumin
(68,000), rabbit skeletal muscle actin (45,000), pancreatic DNase (31,000), and
pancreatic RNase (13,700) .

RNA Extraction, Denaturation, and Gradient
Analysis

RNA was purified from hnRNP by digestion of the particles with Proteinase
K(200 jig/ml, 60 min, 20°C) in the presence of SDS (0.5%) . The digest was then
extracted once with I vol ofphenol :chloroform:isoamyl alcohol (50:49.5:0 .5 vol/
Vol), and the aqueous phase was then re-extracted with 1 vol of chloroform :
isoamyl alcohol (99:1 vol/vol). After addition of sodium acetate to 0.2 M, the
RNA was precipitated by the addition of 2.5 vol of ethanol (16 h or longer,
-20°C). The RNA was collected by centrifugation and dissolved in 80% (vol/
Vol) DMSO, denatured at 65'C for 2 min, quick-cooled to 0°C, diluted to 16%
DMSO, and analyzed on 15-30% sucrose-SDS gradients as detailed in Fig. 5.

In some experiments, poly(A)' nuclear or cytoplasmic RNA was extracted
and used for purposes of comparison . Nuclei in RSB were incubated with 50 ,ug
pancreatic DNase/ml for 30 min at 4°C, followed by digestion with Proteinase
K and phenol:chloroform extraction as detailed above. Cytoplasmic RNA was
obtained by making the cytoplasmic fraction 0.1 M in NaCl, 0.5% in SDS, and
10 mM in EDTA, followed by phenol:chloroform extraction . After ethanol
precipitation, the nuclear and cytoplasmic RNAs were chromatographed on
oligo(dT)-cellulose as detailed previously (22) . TheRNAwhich was eluted from
the column by low ionic strength buffer (10 mM Tris-HCI, pH 7.5) wasmade0.2
Min sodium acetate, reprecipitated with ethanol, andused as "poly(A)"' nuclear
or cytoplasmic RNA (see Fig. 8).

Hybridization of hnRNP Particle-derived RNA
with Cloned R-Globin DNA

The bacteriophageXgtWES recombinantmouse DNAclone MPG-2 (47) was
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FIGURE 1 Sucrose gradient separation of hnRNP particles from
chromatin . hnRNP particles were isolated from Friend cells that had
been labeled for 24 h with [14C]thymidine and then pulse labeled
for 20 min with [3H]uridine . The hnRNP particles were centrifuged
in a 28-ml 15-45% sucrose gradient over a 4-ml 60% sucrose cushion
in a Beckman SW27 rotor for 17 h at 12,000 rpm (4°C) ; the direction
of sedimentation is from right to left . The gradient was collected in
1-ml fractions and the amount of TCA-insoluble '"C and 3H radio-
activity in each fraction was determined by liquid scintillation
counting . " , [ 3 H]uridine; O, ['"C]thymidine .

grown in E. coli DP50 supF under P2 containment. Phage was recovered from
cleared lysates by polyethylene glycol extraction, followed by CsCl gradient
sedimentation ofthe aqueous phase and then CsCl isopycnic banding. Pronase
was added to the purified phage (1 mg/ml) and the mixture was dialyzed 1-2 h
at 37°C . The DNA was extracted with phenol, followed by a second extraction
with phenol :chloroform (1 :1) followed by a final extraction with chloroform
alone. TheDNAwas ethanol-precipitated from the last aqueous phase, digested
with Hind 111 (2 U/Itg DNA, 37°C, 2 h) and electrophoresed on 1.0% agarose
slab gels . The desired 1 .05 kilobase (kb) fragment (see Fig. 6) was then recovered
from the gel (46) . TheDNAwas heat-denatured and aliquots containing 0.5 lug
were trapped on nitrocellulose filters. The filters were annealed with 'H-labeled
RNA from lmRNP particles (see Fig. 7) at RNAconcentrations ofbetween 80
and 320 !+g/ml . The hybridization reactions contained, in 1.0 ml, 0.6 M NaCl,
0.06Msodium citrate, 40% (vol/vol) deionized formamide, and 0.02% each (wt/
Vol) of polyvinylpyrotidone, Ficoll, and bovine serum albumin. Reactions were
carved out at 42'C for 44 h. In addition to a filter containing cloned fl-globin
DNA, each hybridization reaction contained a duplicate blank nitrocellulose
filter as a monitor for nonspecific binding, and a third filter containing 0.5,ug of
total (uncloned) mouse DNA, prepared from cultured L cells. At the end ofthe
hybridization, the setof three filterswas removed from each reaction and washed
for 5 min at 20'C in two 100-ml changes of 6 x SSC (1 x SSC=0.15 MNaCI,
0.015 M sodium citrate), followed by three 100-ml washes (5 min each) in 2 x
SSC. Each set of filters was then digested with 50 ug/ml of pancreatic RNase in
2 x SSC (total volume = 50 ml) for 90 min at 37°C with gentle agitation . The
RNase-digested filterswerewashed threetimeswith 250 ml of 2 x SSC containing
0.5% SDS, four times with 250 ml of 70% ethanol, air-dried at 37°C, and counted
in a toluene-based scintillation cocktail. Allsamples were counted for a period of
time so that the 2a counting error was ±5% or less. Hybrids were scored as
RNase-resistant radioactivity corrected for counts on blank filters .

Northern Blot Hybridization
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Ethanol-precipitated RNA was dissolved in 1 M deionized glyoxal, 50%
DMSO, 10 mM sodium phosphate buffer, pH 7.0, at a concentration of 750 jig/
ml and denatured at 50'C for 1 h. Samples containing 5-30 tag of RNA were
electrophoresed in a 1% agarose slab gel containing 10 mM sodium phosphate
buffer, pH 7.0 . Electrophoresis was at 40 V for 4 h (20'-23°C). The gel was
stained with ethidium bromide to visualize RNA size markers, washed, and the
RNAwas then transferred from the gel onto diazobenzyloxymethyl (DBM) paper
following the procedure described by Alwine et al. (1) as latermodified (2). After
pre-hybridization with salmon sperm DNA, the transfer was hybridized as
described (2) with the 1.05 kb Hind III 8-globin DNA fragment (Fig. 6) which
had been labeled by nick translation with [a32 P]dCTP (41). The probe sp act
was 1-2 x 10' cpm/lag . After hybridization, the paper was washed as described



(2) and autoradiographed with x-ray film using a Dupont "Lightning Plus"
intensification screen (DuPont Instruments, Wilmington, Del.) .

RESULTS
Isolation of hnRNP Particles from Friend
Cell Nuclei
We have previously developed methods for purifying

hnRNP particles from a number of different eukaryotic cells
(15, 23, 33, 34) . These methods are based upon the gentle
disruption of nuclei by controlled, brief sonication to release
hnRNP, which is normally anchored to elements ofthe nuclear
structure (33) . The released hnRNP particles are then separated
from nucleoli and chromatin by successive sucrose gradient
fractionations (6, 7, 33, 34). In the present investigation, these
methods have been employed for the purification of hnRNP
particles from globin-synthesizing mouse erythroleukemia
cells . Induced cells were labeled for 24 h with ['4C]thymidine
and hnRNA was then selectively pulse labeled with [3H]uridine
in the presence of a low dose of actinomycin (40) . Table I
shows the distribution of hnRNA ([ 3H]uridine) and DNA
([ I4C]thymidine) during cell and nuclear fractionation . It can
be seen that 100% of the initial hnRNA and DNA is recovered
in the first nuclear pellet, while the subsequent washed nuclear
fraction is found to contain 86% ofthe initial hnRNA and 82%
of the initial DNA ("2nd nuclear pellet," Table I) . After the
mild sonication step (see Materials and Methods), all of the
nuclear hnRNA and DNA is recovered . Sedimentation of the
nuclear sonicate on 30% sucrose at 4,500 g produces a tightly
packed, opalescent band at the 0:30% sucrose interface ; this
band contains 70% of the initial hnRNA, but only 12% of the
DNA (Table I) .

In the initial isolation method developed for HeLa cell
hnRNP particles (33), the 4,500 g sedimentation step was
designed to selectively pellet nucleoli through the 30clo sucrose,
as initially shown by Maggio et al . (28) . With HeLa cells, this
nucleolar pellet contains only ^-5% of the chromatin, vJith 84%
remaining at the 0:30% sucrose interface along with the hnRNP
particles and other small nuclear elements (see Table I in
reference 7) . The same general distribution ofchromatin during
the 4,500 g 30% sucrose step is observed with rat liver nuclei
(34) and nuclei from the slime mold Dictyostelium (35) ; in both
cases the great majority ofthe chromatin remains at the 0:30%
sucrose interface . However, as can be seen in Table 1, the result
for induced Friend cell nuclei is different. In this case, only
12% ofthe chromatin remains in the 0:30% sucrose band, rather

TABLE I

Distribution of hnRNA and DNA during Cell Fractionation

Friend cells were grown for 24 h in the presence of [' 4CIthymidine (0 .025 ACi/
ml) and then hnRNA was selectively pulse labeled with [ 3Hluridine as detailed
in Materials and Methods. Cells were washed and homogenized as described
in Materials and Methods, aliquots of the homogenate were withdrawn, and
the amounts of 10% TCA-precipitable 3H and `4C radioactivity were deter-
mined. These data were taken as "100%" initial values for comparison with
comparable data from subsequent fractions (see Table) . The data shown are
the averages of duplicate determinations in two separate experiments.

than the usual values of 85-90% obtained with the aforemen-
tioned cell systems . This may be because of the highly con-
densed state of chromatin in the fully induced Friend eryth-
roleukemia cell nucleus . Thus, the 4,500 g 30% sucrose sedi-
mentation step, originally designed to deplete the nuclear
sonicate of specifically nucleoli, also serves in the case of the
induced Friend cell to remove the majority of the chromatin as
well (Table I),
To further purify the hnRNP particles from the small

amount ofremaining chromatin, the 0:30% sucrose band (Table
I) was removed and sedimented on 15-30% linear sucrose
gradients as previously described for HeLa cell hnRNP parti-
cles (33) . This resulted in a partial separation of hnRNP from
the remaining chromatin, as monitored by the gradient distri-
bution of [ t4C]DNA and [3H]hnRNA radioactivity and by gel
electrophoresis of proteins from across the gradients, which
revealed some overlap of hnRNP particles with histories (data
not shown) . Through empirical trials of several different su-
crose gradient sedimentation conditions, it was found that
maximal separation of hnRNP particles from the chromatin
was obtained by centrifugation of 6,m1 aliquots of the 0:30%
sucrose band (Table I) on a 28-ml linear 15-45% sucrose
gradient over a 4-ml 60% sucrose cushion in a Spinco SW27
rotor for 17 h at 12,000 rpm. Fig . 1 shows the results of this
gradient fractionation . As is the case for other eukaryotic
systems (15, 23, 33, 34), Friend cell hnRNP particles display a
heterodisperse sedimentation profile between -50S and 200S.
The sedimentation behavior of Friend cell hnRNP (Fig . 1) is
dependent upon the integrity of the RNA, as shown by the
marked reduction in S values observed ifparticles are subjected
to mild pancreatic RNase digestion (0 .1 ,ug/ml, 15 min, 4°C)
before gradient analysis (data not shown) . It can also be seen
in Fig . 1 that, in contrast to the heterodisperse hnRNP which
is mainly confined to the 50S-200S region of the gradient, the
chromatin (as [ t4C]DNA) is present only as a flat background
across the gradient. As shown in Table II, 77% ofthe chromatin
present in the 0:30% sucrose band (12% of the total chromatin,
Table 1) fractionates in the gradient pellet and 60% sucrose
cushion, while 83% of the hnRNP particles remains in the
gradient .

hnRNP Proteins
Fractions 6-30 from gradients such as that illustrated in Fig.

1 were pooled and the particles pelleted by ultracentrifugation .
The pellets from the preparative hnRNP gradients were also
recovered for analysis of chromatin proteins. Analysis of these
two nuclear fractions by SDS-polyacrylamide gel electropho-

Cells were labeled and fractionated as in Table I . The 0:30% sucrose band was
layered on 15-45% sucrose gradients as detailed in Materials and Methods
and centrifuged as in Fig . 1 . The amounts of 10% TCA-precipitable 3H and ,4C
radioactivity throughout the gradient, cushion, and pellet were determined .
The pellet material was first solubilized in 2% SDS before withdrawing aliquots
for radioactivity determinations . The values shown in the table are expressed
as percentages of recovered radioactivity, which was consistently between 80
and 90% of the initial aH and '4C loaded on the gradients .
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[3H]hnRNA
% of initial

[' 4C]DNA
cpm

TABLE

Sucrose Gradient Fractionation
II
of hnRNP and Chromatin

1st Nuclear pellet 100 100 [3H]hnRNP [14CIchromatin
Cytoplasm 21 3 % of initial cpm
2nd Nuclear pellet 86 82 15-45% Gradient 83 23
Sonicated nuclei 87 81 60% Sucrose cushion 6 16
0:30% Sucrose band 70 12 Pellet 11 61



resis revealed major differences in their protein constituents .
Histories dominate the chromatin fraction as expected (Fig . 2
B), but are present in only very low concentrations in the
hnRNP particles (Fig . 2 A) . The Friend cell hnRNP proteins
are complex but, as in all the other eukaryotic cells previously
investigated (5, 15, 18, 33, 34), there is a major component of
38,000 mol wt ("p38") . The hnRNP contains very little

protein of <38,000 mol wt, indicating the absence of nucleolar
ribosomal precursor particles (37), which contain proteins of
mainly 15,000-55,000 daltons (25) . The proteins characteristic
of the hnRNP particles (Fig . 2 A) are present at low levels in
the chromatin (Fig. 2 B) . This could represent incomplete
separation of free hnRNP particles from chromatin by gradient
sedimentation (Fig . 1 and Table II). However, it is also known
that hnRNP particle assembly occurs as a very early post-
transcriptional event on nascent hnRNA transcripts (E. Wieben
and T. Pederson, unpublished results), which could explain the
presence of a small amount of hnRNP proteins in the chro-
matin fraction.
The possibility arises that only some of the proteins observed

in the gradient-purified ImRNP particles (Fig. 2 A) are bound
to the hnRNA, with others being derived from cosedimenting,
nonribonucleoprotein nuclear structures. This is ruled out by
the fact that prior treatment of the pooled gradient fractions
with pancreatic RNase (5001Lg/ml, 30 min, 37°C) followed by
collection of any RNase-resistant structures by high speed
sedimentation results in a total elimination of all the protein
components normally observed (not shown) . This is not caused
by proteolysis during the RNase digestion, because hnRNP
mock-digested at 37°C without RNase retains its usual protein
complement.

FIGURE 2

	

Distinct proteins of hnRNP and chromatin . hnRNP was
recovered by high-speed centrifugation from fractions 6-30 of gra-
dients such as shown in Fig . 1, and chromatin was obtained as the
gradient pellet . Samples were dissolved in SDS, electrophoresed,
and stained with Coomassie Blue as detailed previously (7, 23) . (A)
hnRNP proteins . (B) Chromatin proteins. The molecular weight of
the protein labeled "p38" in gel A was determined on three separate
hnRNP samples as detailed in Materials and Methods, and the
average value was 37,866 daltons (standard deviation = ±986 dal-
tons) .
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Authenticity and Stability of hnRNP

To investigate the possibility that hnRNP particles are
formed as the result of nonspecific RNA:protein interactions
during nuclear fractionation, which had been ruled out in
earlier studies on hnRNP isolated from other cells (15, 33, 49),
reconstruction experiments were performed in which depro-
teinized, 3H-labeled Friend cell hnRNA was added to nuclei
before their disruption . After isolation of the 0:30% sucrose
band (Table 1), which contained 88% of the added [3H]hnRNA,
this fraction was subjected to controlled pancreatic RNase
digestion under conditions in which previous studies had de-
fined a significant differential in the digestion kinetics ofnaked
hnRNA vs . hnRNP. As shown in Fig. 3, the added [3H]hnRNA
was digested much more rapidly than endogenous hnRNP (see
legend for details), indicating that the addition of a naked
hnRNA probe to nuclei does not result in the formation of
material that is as nuclease-protected as the endogenous
hnRNP particles. Similar results are obtained if the naked
hnRNA probe is added to nuclei after sonication, and in both
cases the digestion of the probe is very similar to that of naked
RNA assayed in buffer alone . In an occasional experiment, the
added probe was observed to digest with slightly slower kinetics
than naked hnRNA assayed in buffer alone, but still much
faster than the endogenous hnRNP (as in Fig . 3), indicating its
possible interaction with a small amount of nuclear protein .
The conclusion being drawn therefore is not that hnRNA-
protein associations never occur during nuclear fractionation,
but rather that they cannot be a major factor in the formation
of the observed hnRNP particles . These nuclease protection

endogenous
hnRNP _~

1
10 20 30 40 50 60 70

Minutes

FIGURE 3 Reconstruction experiment . 3 H-labeled deproteinized
hnRNA was added to 108 isolated Friend cell nuclei in a final volume
of 2 .5 ml of RSB . The endogenous (unlabeled) hnRNA concentration
was 11 jig/ml and the endogenous hnRNA:exogenous 3H-hnRNA
probe mass ratio was 100 :1 . After nuclear fractionation, the hnRNP
fraction was digested with 0 .1 Wg pancreatic RNase/ml at 4°C, and
aliquots were removed at the indicated times and the digestion
quenched by the immediate addition of mercaptoethanol (final
concentration = 0.75 mM, which is a 100,000-fold molar excess over
the pancreatic RNase) . The amounts of [3H]hnRNA probe remaining
TCA-insoluble were measured (") . In parallel, a separate 3H-labeled
endogenous hnRNP preparation (O) was digested under identical
conditions, including the same enzyme:endogenous hnRNA ratio as
in the reconstruction experiment .



studies confirm the results of earlier reconstruction experiments
in which nonspecific hnRNA:protein interactions were ruled
out using a velocity sedimentation analysis (15, 33).
As shown in Fig. 4, the gradient-purified hnRNP particles

(Fig . 1) are resistant to dissociation when banded in a pre-
formed CS2S04 density gradient, even without prior fixation.
This rather remarkable stability ofhnRNP, which was initially
reported by Wilt et al . (49) in a study of sea urchin embryo
hnRNP, has emerged as a characteristic attribute of these
nuclear particles (e.g. for HeLa cell hnRNP see reference 11),
and also serves as a useful diagnostic property for hnRNP,
because ribosomal particles are stripped almost completely free
ofprotein in these gradients . However, the resistance ofhnRNP
to dissociation in Cs2SO4 as shown in Fig. 4 is relative, not
absolute, for if particles are mixed with CS2SO4 ofdensity 1.50
g/cm3 and then banded in a self-generated gradient, the [3H]-
uridine radioactivity is observed as a single homogenous peak
at 1 .66 g/cm3, which is the density of naked RNA in these
gradients (data not shown). In the case of preformed CS2SO4
gradients (Fig. 4), the hnRNP apparently bands at its isopycnic
density of 1 .33 g/cm3 before it reaches a gradient position
where the Cs2SO4 ion activity is high enough to promote its
dissociation. The observed buoyant density of 1.33 g/cm3 is
very similar to that previously reported for HeLa cell and sea
urchin embryo hnRNP (11, 49), and is estimated to reflect a
protein:RNA mass ratio of -4:1 (80% protein).

Detection of Specific rnRNA Sequences in
hnRNP Particles
The fact that the isolated particles contain rapidly labeled

RNA that is refractory to the selective inhibition of ribosomal
RNA synthesis by a low concentration actinomycin (Fig. 1)
identifies these particles as containing hnRNA. This is con-
firmed by sucrose gradient analysis of the hnRNP-derived
RNA after thermal denaturation in DMSO (Fig. 5), which
demonstrates this RNA to have the sedimentation behavior

FIGURE 4

	

Stability of hnRNP particles in Cs2S04 . 0.50 ml of hnRNP
was taken from fraction 20 of a preparative gradient such as shown
in Fig. 1 and layered on a preformed 4.5 ml Cs2SO4 gradient having
an initial density range of 1.25-1 .75 g/cm 3 (38) . The gradient was
centrifuged in a Beckman SW50.1 rotor at 35,000 rpm for 65 .5 h
(19°C) . ", TCA-insoluble 3H radioactivity; x, density .

FIGURE 5

	

Size of hnRNP particle-derived RNA after denaturation
in DMSO. RNA was extracted from [3H]uridine-labeled hnRNP and
thermally denatured in DMSO as detailed in Materials and Methods.
A 0.50-ml sample was layered on a 17 ml 15-30% sucrose-SDS
gradient and centrifuged in an SW27.1 rotor at 23,500 rpm for 14 .25
h (20°C) . The gradients contained 0.1 M NaCl, 10 mM EDTA, 10
mM Tris-HCI, pH 7.0, and 0.5% SIDS . 0, TCA-precipitable 3H radio-
activity . Arrows denote the positions of 18S and 28S ribosomal RNA
markers run in a parallel gradient .

characteristic of mammalian hnRNA after disruption of inter-
molecular aggregates. Although it is never possible to know
how much endonucleolytic degradation has occurred in such
hnRNA preparations relative to their native size in vivo (be-
cause the size of gene-specific RNA sequences is not visual-
ized), the sedimentation profile in Fig. 5 does establish that
Friend cell hnRNP particles can be isolated without gross
degradation of the hnRNA. (Evidence for the presence of
covalently intact globin gene transcripts in these particles will
be presented in the following section.)
To examine the presence of specific gene transcripts in the

particles, [3Hjuridine pulse-labeled hnRNP was isolated and
displayed on sucrose gradients as in Fig. 1 . Pooled gradient
fractions of hnRNP were deproteinized and the labeled
hnRNA was hybridized with amouse /3-globin gene probe. As
shown in Fig. 6, restriction endonuclease Hind III digestion of
the bacteriophage Jt-cloned mouse DNAfragment M/8G-2 (47)
produces a 1.05 kb fragment carrying the 5' halfofthe,Q-globin
gene (see legend to Fig. 6 for details) . Fig. 7 shows the results
of hybridizing pulse-labeled hnRNA retrieved from pooled
hnRNP gradient fractions with this /3-globin gene-specific
probe. The heterodisperse sedimentation behavior of the ,8-
globin sequences indicates that they are present in a range of
high molecular weight hnRNP particles. However, the distri-
bution of/3-globin sequences is different from that of the bulk
hnRNP, with globin sequences being somewhat more concen-
trated in fractions 18-30 (-60S-120S), which contain 52% of
the ,i8-globin sequences but only -25% of the total hnRNP.
Hybridization of parallel gradient fractions with total mouse
DNArevealed a pattern that closely followed the total hnRNP
profile (not shown), indicating that, in contrast to /3-globin
sequences, repetitive DNA sequence transcripts are present at
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.- mouse

FIGURE 6 Isolation of 8-globin DNA probe. The recombinant
phage AgtWES.MfG-2 carries a 7 kb insert of mouse DNA contain-
ing the f-globin me;or gene (47) . Hind III digestion of agtWES " M,8G-
2 yields a 1 .05 kg fragment containing the 5' half of the ,f3-globin
gene, including a 52 nucleotide 5' noncoding leader sequence (NC),
the two most 5'-ward coding regions of the gene (EX, and EX2,
respectively), the entire smaller intervening sequence (IVS,) and
approximately one-third of the larger intervening sequence (IVS 2) .
The arrow labeled "repeated sequence" indicates the approximate
location of a transcribed repetitive DNA sequence that hybridizes
extensively with Friend cell hnRNA unless first removed by Hind III
digestion (N . G. Davis and T. Pederson, unpublished results) . The
1 .05 kb Hind III fragment was used as a hybridization probe for ,B-
globin gene transcripts in hnRNP (Figs . 7 and 8) .

a rather uniform level throughout the different hnRNP size
classes .
These data show that newly synthesized transcripts of the

f3-globin gene are present in high molecular weight hnRNP
particles. The covalent integrity ofthese globin RNAsequences
in hnRNP is now considered.

Identification of Covalently Intact ,(3-Globin
mRNA Precursors in hnRNP

Unlabeled hnRNP was isolated from induced cells as usual
and the RNA was deproteinized and subjected to agarose gel
electrophoresis after thermal denaturation in the presence of
glyoxal. The RNA was then transferred covalently onto dia-
zobenzyloxymethyl paper (1, 2) and hybridized with the 1.05
kb Hind III 8-globin DNA fragment which had been 3'P-
labeled by nick translation. To calibrate the gel positions of
the known mouse globin RNA species, total Friend cell
poly(A)+ cytoplasmic and nuclear RNA were electrophoresed
and analyzed in parallel . Lanes A and B of Fig. 8 show the
typical results obtained with the standards of poly(A)+ cyto-
plasmic RNA (lane A) and poly(A)+ nuclear RNA (lane B) .
The cytoplasmic RNA contains a single component reacting
with the 8-globin probe. Based upon the electrophoretic mi-
gration of RNA standards of known molecular weight, the
cytoplasmic species reacting with globin DNA in Fig. 8 A is
estimated to have a mol wt of 280,000. For convenience, this
cytoplasmic globin RNA will be hereafter referred to as "9S."
As shown in lane B, the poly(A)+ nuclear RNA contains two
,8-globin sequence components, one of which reproducibly
comigrates with the cytoplasmic 9S globin mRNA and a
second, larger species which has a measured mot wt of600,000,
corresponding to the "15S" mouse,8-globin mRNA precursor
previously described (42) . The 9S component in the nuclear
RNA (Fig . 8, lane B) does not appear to be caused by polyri-
bosomal contamination, because washing the nuclei in 10 mM
EDTA before RNA extraction does not alter the ratio of 15S
to 9S globin RNA in the Northern blots (data not shown) . It
therefore appears that there is a true nuclear stage of 9S globin
sequences, which corroborates an earlier conclusion based on
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Detection of newly synthesized f-globin gene transcripts
in Friend cell hnRNP particles . [3H]uridine pulse-labeled hnRNP
was isolated as detailed in Materials and Methods and centrifuged
in 15-45% sucrose gradients as in Fig. 1 . RNA was extracted from
pooled gradient fractions as shown and hybridized to nitrocellulose
filters containing cloned mouse 8-globin DNA (see Fig . 6) . Details
of the reaction conditions and assay of hybrid formation are given
in Materials and Methods. ", TCA-precipitable 3H radioactivity in
total hnRNP, monitored in small aliquots of each gradient fraction .
The histogram shows the total amount of ,Q-globin RNA sequence
present in each pool of gradient fractions . The amount of RNase-
resistant 3H radioactivity observed on blank filters was 0-3 cpm.

labeling kinetics (4) .
As can be seen in lane Cof Fig. 8, the RNA recovered from

the purified hnRNP particles contains both the 15S and 9S
globin sequences, and in approximately the same relative pro-
portions as in the total nuclear RNA (lane B) . These results
therefore demonstrate that 15S pre-spliced 8-globin mRNA
precursors (19, 44, 48) have an RNP structure in the Friend
cell nucleus, and that these mRNA precursors can be isolated
as covalently intact RNA molecules in RNP particles.

It is now firmly established that hnRNA exists in an RNPform
in the eukaryotic cell nucleus. This fact was first suggested by
light microscope studies of nascent RNA on the lateral loops
of amphibian oocyte lampbrush chromosomes (9, 16), and has
been more dramatically demonstrated by the electron micro-
scope identification of hnRNA:RNP particles in situ (29, 32,
45) and on unfolded chromatin fibers spread from nuclei or
cells by detergent lysis (8, 26, 27, 31). Initial attempts to extract
these hnRNP particles from nuclei resulted in the isolation of
degraded, 40S RNP complexes (43), because of the action of
endogenous nucleases. While these early degraded RNP prep-
arations were of value for some purposes, such as enumerating
the minimal set of proteins present in these so-called "core"
particles (5, 18, 30), the fact remains that the 40S RNPs contain
highly degraded hnRNA fragments and therefore cannot be
regarded as native structures .
We have developed an alternative approach for purifying

hnRNP which leads to the isolation of larger particles that
contain high molecular weight hnRNA (7, 23, 33). In addition,
it has been possible to demonstrate that these latter hnRNP
preparations contain specific proteins bound to defined nucleo-
tide sequences, such as poly(A) (15, 20, 22), and that they



FIGURE 8

	

Northern blot hybridization of 8-globin gene transcripts
in hnRNP . RNA was recovered from nuclei, cytoplasm, or purified
hnRNP particles by Proteinase K-phenol deproteinization and elec-
trophoresed in agarose gels after denaturation in glyoxal (see Ma-
terials and Methods) . After transfer to DBM paper, the RNA was
hybridized with nick-translated [ 3z p]/3-globin DNA (see Fig . 6) . Lane
A : total poly(A)' cytoplasmic RNA; lane 8 : total poly(A)' nuclear
RNA ; lane C: RNA from purified hnRNP particles . See text for
description of molecular weight calibrations of the 15S and 9S /8-
globin RNA components .

contain different domains of nucleoprotein structure in which
some RNA regions are less complexed with protein than others
(e .g ., double-stranded regions [10, 11, 13]) . In some cases, these
same domains can also be demonstrated in hnRNP in vivo
(12) . All of these facts suggest, but ofcourse do not prove, that
the isolated hnRNP particles represent native structures . How-
ever, it has not been possible in our previous studies (10-13,
15, 20-22, 24, 33, 34) to examine these particles in terms of
specific, intact mRNA precursor sequences, because ofthe lack
of gene-specific probes in the particular cellular systems being
used, e.g ., HeLa cells. In the present investigation, we have
embarked upon the isolation of high molecular weight hnRNP
particles from DMSO-induced mouse erythroleukemia cells
that are synthesizing substantial quantities of globin mRNA,
as a step toward the analysis of defined gene transcripts in
hnRNP. The results of this study demonstrate that Friend cell
hnRNP particles can be isolated in good purity by slight
modifications of our original methods. The physical and bio-
chemical properties ofthe Friend cell particles-sedimentation
behavior, buoyant density, protein content, and nuclease sen-
sitivity (Figs. 1-4)-all recapitulate those described previously
for HeLa cell hnRNP (11, 23, 33). More importantly, the
present results establish that the purified Friend cell particles
contain high molecular weight, rapidly labeled hnRNA (Fig .
5), including covalently intact nuclear precursors of Q-globin
mRNA (Figs. 7 and 8).

In any isolation procedure for nucleoprotein, it is essential
to show that the isolated material does not arise through
nonspecific nucleic acid: protein interactions during cell frac-
tionation . Indeed, the original studies ofeukaryotic cytoplasmic
mRNP particles were compromised by just such artifacts,
which were subsequently brought to light through specific
reconstruction studies and more critical experimental work (3,
17). These later studies revealed that cytoplasmic extracts of
mammalian cells contain a large concentration of RNA-bind-
ing proteins that rapidly associate nonspecifically with added
exogenous RNAs (3, 17) . The existence of these RNA-binding
proteins does not of course eliminate the possibility that there
is really such a thing as cytoplasmic mRNP (nor does it prove
that there is), but it does argue for caution in its isolation and
characterization. In contrast to the results for cytoplasmic
fractions, reconstruction experiments involving the addition of
naked RNA to nuclei or nuclear extracts have consistently
failed to generate nonspecific RNPcomplexes (15, 33, 49, and
the present study) . In these experiments the amounts of added
probe RNA are very low relative to the endogenous nuclear
protein mass (15, and see legend to Fig. 3), a situation that
should be optimal for detecting nonspecific interactions of
proteins with the probe. Thus, the consistent negative outcome
of these nuclear reconstruction experiments argues against the
existence of a soluble pool of the major hnRNA-binding
proteins in the cell nucleus. Apparently the hnRNP proteins
are delivered from the cytoplasm to the nuclear interior at the
correct stoichiometry to support the ongoing tempo of tran-
scription and hnRNP assembly . This situation constitutes an
intriguing case of intracellular coordination that is richly de-
serving of further study.
The present identification ofpulse-labeled transcripts of the

,Q-globin gene in Friend cell hnRNP constitutes the first dem-
onstration of a specific, well-defined mRNA sequence in high
molecular weight ImRNPparticles. The more important point,
however, is that covalently intact, 15S a-globin mRNA pre-
cursor can be isolated as hnRNP, which immediately opens the
door to the use of these hnRNP particles to address mRNA
processing, especially splicing. This represents a small, but
finite step in the continuing exploration of nuclear RNP par-
ticles as both a conceptual framework and a technical vehicle
for investigating mRNA processing at the subcellular level of
biological organization .
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