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Background: Venomous marine cone snails produce unique neurotoxins called conopeptides or conotoxins,
which are valuable for research and drug discovery. Characterizing Conus venom is important, especially for
poorly studied species, as these tiny and steady molecules have considerable potential as research tools for
detecting new pharmacological applications. In this study, a worm‐hunting cone snail, Conus flavidus inhabiting
the Red Sea coast were collected, dissected and the venom gland extraction was subjected to proteomic analysis
to define the venom composition, and confirm the functional structure of conopeptides.
Results: Analysis of C. flavidus venom identified 117 peptide fragments and assorted them to conotoxin precur-
sors and non‐conotoxin proteins. In this procedure, 65 conotoxin precursors were classified and identified to 16
conotoxin precursors and hormone superfamilies. In the venom of C. flavidus, the four conotoxin superfamilies
T, A, O2, and M were the most abundant peptides, accounting for 75.8% of the total conotoxin diversity.
Additionally, 19 non‐conotoxin proteins were specified in the venom, as well as several potentially biologically
active peptides with putative applications.
Conclusion: Our research displayed that the structure of the C. flavidus‐derived proteome is similar to other
Conus species and includes toxins, ionic channel inhibitors, insulin‐like peptides, and hyaluronidase. This study
provides a foundation for discovering new conopeptides from C. flavidus venom for pharmaceutical use.
1. Background

Cone snails are a group of 1000 species of venomous marine mol-
luscs,1 that are flourish in subtropical and tropical waters,2 commonly
close to coral reefs in the Indo‐Pacific region.3–4 Conidae have notable
taxonomic and ecological diversity. They showed the fastest rate of
diversification among gastropods.5 All cone snails are predators and
have their own unique, complex, and peptide‐rich venom. They use
venom mainly to help predation on small fish, other molluscs and
worms and for defence.6 Venom is the main weapon used by these car-
nivorous molluscs comprising small cysteine‐rich peptides called
conopeptides or conotoxins that show various pharmacological activi-
ties for defence, competition, capture of prey and further biological
purposes.7 These venoms are formed along a specialized venom duct
and injected into the target through a hollow radula tooth.6 Cone snails
are usually categorized into three main groups according to the pre-
ferred prey: piscivore, molluscivore or vermivore.8 Venoms of cone
snails have drawn immeasurable interest as factual pharmacological
resources as a result of their biological activity, astonishing diversity.
Several biological studies initiated a way for biomedicine research.9

For example, conotoxins could act as an anti‐adhesion therapy for
malaria. They also hamper the crucial protein of life‐threatening
viruses such as AIDS and COVID‐19, possibly leading to their treat-
ment.10 Conopeptides can affect ion channels and control the nervous
system of their targets, therefore, turn out to be a good candidate for
developing new drugs.11–13 Although many of the conopeptides are
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in the early phases of development, Ziconotide (promoted as Prialt; a
synthetic form of ω‐conotoxin MVIIA), is the only conotoxin permitted
by the USA FDA for treatment of acute chronic pain through inhibiting
the voltage‐gated N‐type calcium (Cav2.2) channel.14 Cone snail insu-
lins are another conopeptides draw interest as possibly new pharmaco-
logical means or therapeutic leads, which are active at the human
insulin receptor,15–17 and recently discovered somatostatin analogues
in fish‐hunting cone snail venoms.18 Conopeptides are basically diverse
with different cysteine frames and many posttranslational modifica-
tions (PTMs), In addition, they are stable and relatively small pep-
tides.19–20 Conopeptides are produced from mRNA‐encoded
conopeptide precursors that contains hypervariable mature peptide
and a variable region following to the signal peptides.21–22 Conotoxins
are usually classified according to their endoplasmic signal sequence
into different superfamilies. They are also can be classified based on
cysteine framework into several set of conotoxin families acting on tar-
get receptors, channels, or transporters.23 The extensive evolutionary
history and harsh marine environment had encouraged the formation
of many compounds that have distinctive structures to help the contin-
ued existence of these organisms24 Analysis of the venom constituents
of different species of cone snails indicated that each species generates
an exclusive venom reflecting their heritage with somemodifications to
utilize different ecological habitats.25–27

In this work, we studied the venom from C. flavidus, a previously
uninvestigated Conus snail collected from Red Sea. We used a pro-
teomic approach including HPLC (high performance liquid chromatog-
raphy) fractionation combined with LC‐MS (LC/mass spectrometry) to
evaluate the conopeptide content in its crude venom. The worm‐
hunting (mainly sedentary Terebellidae polychaetes) C. flavidus is
generally spread over the Red Sea coast of Egypt, whilst no previous
studies have been done on its venom. This analysis presents an incip-
ient overview of C. flavidus venom components and reports data about
promising bioactive peptides which may have pharmacological
significance.
Fig. 1. (A) Morphology of C. flavidus shell (scale bar = 1 cm), (B) Map
showing the collection sites of C. flavidus from the Red Sea coast in Egypt.
2. Materials and methods

2.1. Venom collection

Ten C. flavidus specimens were collected from different locations on
the Red Sea coast of Egypt (Fig. 1). Venom apparatus were carefully
dissected, and the venom ducts were cut into small fragments and sus-
pended in 2% acetic acid twice. The venom was freeze‐dried and kept
at −80°C until use. Protein quantification was performed using bicin-
choninic acid assay following the manufacturer’s instructions.

2.2. Reduction, alkylation, and trypsin digestion of extracted venoms

Crude venom (30 μg) was incubated at RT for 45 min in a solution;
0.13 M NaHCO3 (pH 8.5) and 2.7 M urea, reduced with 35 mM dithio-
threitol (DTT). For alkylation, the mixture was then incubated with
125 mM iodoacetamide (IAA) for 45 min in dark at RT. For digestion
of the peptides, Sigma proteomic sequencing‐grade trypsin was used as
described previously.28

2.3. LC/MS analysis

NanoLC system consisting of Eksigent nanoLC 400 autosampler and
Ekspert nanlLC425 pump was used. A reversed‐phase C18 HPLC (RP‐
HPLC) column (CHROMXP‐C18‐CL, 120A (150x0.3 mm) was used
for separation. At a flow rate of 10 μl/min for 55 min a 1.0 μg of crude
venom was injected and the column was eluted with 0.1% formic acid
(FA) in water (dissolvent A) and 0.1% FA in CH3CN (dissolvent B).
Mass spectrometry analysis was done using Sciex TripleTOF™ 5600
+ (AB Sciex, Canada). The venom sample was desalted before the
2

measurement by using reversed‐phase C18 columns (GlSciences, Cat.
No. 5010–21701). Using a matrix solution consists of α‐cyano‐4‐
hydroxy‐cinnamic acid (HCCA, 2.5 mg, Bruker Daltonics) that dis-
solved in CH3CN (50%, 0.1% FA, Sigma‐Aldrich) the venom was dis-
solved. 1.0 µl of the matrix solution was speck onto a target plate
(Bruker Daltonics) then kept drying at RT. In positive ion mode the
measurements were conducted, and the MS/MS and MS ranges were
170‐1500 and 400‐1250 m/z, respectively. Mass spectra raw data
(the TripleTOFTM 5600+ files) were changed to Mascot generic format
(mgf) files by use of the script provided by AB Sciex and ProteoWizard.

2.4. Proteomic data analysis

Using X! Tandem in a Peptide‐shaker (v1.16.38) spectra of the MS/
MS were searched against the UniProt Conus organism (Swiss‐Prot and
TrEMBL containing 10,684 proteins) with reversed sequences. With
initial m/z tolerances of 10.0 and 20.0 ppm, fragment masses
and the precursor were established, respectively. Post‐translational
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modifications (PTM) used in the search included the carbamidomethy-
lation of cysteine, the oxidation at methionine, acetylation of the pro-
tein N‐terminus, deamidation of asparagine, and deamidation of
glutamine. Consequently, to decide the gene superfamilies found in
the crude venom of C. flavidus the Entrez PubMed database and the
UniProtKB database29–30 were used.

3. Results

In the venom of C. flavidus, a total of 117 peptide fragments were
detected (Table 1). A protein sequence similarity search in the data-
base revealed 75 fragment peptides attributed to 65 conotoxin proteins
Table 1
Showing peptide sequences revealed by LC/MS analysis of C. flavidus venom.

N Sequence

1 LSLEQQQK
2 LCLPVFIILLLLVSPAATLLVKSK
3 DLPCGNKR
4 YKEYNRPVK
5 TDFASGIK
6 EKLTVLILVATVLLTIQVLAQSDR
7 QLMLRNNLQK
8 NAENKQDHVPDK
9 DFLEGNYLQEQVR
10 AAASLEEEKSNIK
11 TASDIVQWAMEK
12 EKLTILVLVAAVLLSTQVLVQGDGEKPQKK
13 DQESAGALALK
14 NIEKVGSQNGKTSAK
15 VTPGSPGTAQLSGHR
16 SIPNKLGGVIGLAGSVLVLFILPLAHQAK
17 LGILLANFLILVIFPLAGK
18 NLTKGVFEQLK
19 MLFLPVFVILLLLIASAPSVDVRPKAK
20 RCIPVFVILLLLIASAPSVDVRPKAK
21 AATALEEQNLNVKLGKVDATVEDSLAAK
22 MTKRCTPAGK
23 KIEASETDERDKPK
24 KAHHEMKNPEASK
25 EKLTVLILVATVLLAIQVLVQSDREKPLK
26 QDISPNERKR
27 TLQTLSNK
28 RCLPVFIILLLLIPSALSLIAKPK
29 DMALPIQEMLVKQEK
30 SALMRGPR
31 GLPVFVILLLLIASAPSVDARPKTK
32 RCLPVFVILLLLIASPPSVDVRPKAK
33 ELGDYITNL
34 NDVHRAILHDVAK
35 NAAAKASNR
36 MLGILLANFLILVIFPLTGKKWSWYLK
37 LGFGNLDPEGKMIK
38 LSKEEIER
39 EGTFQGYHSIK
40 DRDRLTYHAGCPVLMGNK
41 TKDDMSLASFHENAKR
42 NSKVSRDCQK
43 MLCLPVFIILLLLVSPAATLLVKSK
44 CLPVFVILLLLIASISSVDALLKTK
45 QVASDRATSIAR
46 EDNLSITEDWLQGMCLEKR
47 CLPVFVILLLLTASVPSVDARPMTK
48 IGLSVSPVK
49 KLTVLILVATVLLMIQVLAQSGGDKHLK
50 RCLPIFVILLLLIASAPSVDVRPKAK
51 SSEEEREHAEK
52 ELKEKDEAK
53 NANKQGLKPDER
54 ASDGASAAADLVAR
55 LEKNAVAEK
56 RAADRGMWGK
57 AATTLEEEKLDIK
58 ASDLENVAANRK
59 ETLQEKQE

3

across 16 conopeptide superfamilies: A, B1, B3, I1, J, M, N, O1, O2,
O3, P, S, T, Conkunitzin, Cerm, and 17, as presented in Table 2. Nota-
bly, the T, A, O2, and M superfamilies comprised the highest percent-
ages (33.9%, 14.5%, 14.5%, and 12.9%, respectively) of the identified
superfamilies. Furthermore, rare superfamilies of conotoxins were also
found in the venom of C. flavidus (Fig. 2). Within each of the following
conotoxin superfamilies—B3, I1, J, N, P, Conkunitzin, Cerm, and I7—
only one peptide fragment sequence was detected. Additionally, 42
fragment peptides belonging to 19 non‐conotoxin proteins were iden-
tified, including Insulin, Hyaluronidase conohyal‐P1, protein disulfide
isomerase, arginine kinase, and vitamin K‐dependent gamma carboxy-
lase (Table 3).
N Sequence

60 KRDECLPGGK
61 EFQRILLR
62 KLSVTFLLILMILPSVTGEK
63 RCLPVVVILLLLIASTPNVDARPKTK
64 ILQVIESK
65 EKNNTQRVNK
66 ELKEKDDVK
67 QSEEGGSNATK
68 MEFILHALGQR
69 QTLQILSNKR
70 SGKLLQLL
71 LSGADPNSIWSK
72 KSGMLLFVLLLVLPLAFPKLVPVQR
73 KYQDESIK
74 GGTNDGGKK
75 TLQILSNNR
76 SAIKEFLSQECLGMCGIRTMSNAGDFR
77 QLQCQRLQEHIR
78 ASDGGNAVAKK
79 MSKLGAMFFLLLLFTLASSQEK
80 DDMSLASFQDNAKR
81 RCLPVVIILLLLIPSALSVHAQPKTK
82 GILLANFLILVILPLISKKWSWYLK
83 NSKLSVHFDLQR
84 GEKQATQR
85 MVPARPYWR
86 GGVEKRQEAK
87 QAVDIVNWLK
88 ASDGRNAEAK
89 GQGLTDHYRNLR
90 QASDIVQWLK
91 ADERGQGLTEQYR
92 EELMNYVR
93 GKLNLPPYLTNEAR
94 LPTEDHPLYD
95 DGLGNLFSKTQHEMKNPETSK
96 ANVIQEMNNTQAK
97 LCLPVFIILLLLVSPAATLPVK
98 EVVMEKQAMMEK
99 EEEKPLPQNEFQR
100 EKLTILVLVATVLLAIQVLVQSDGEKPLKR
101 KLAAMQQQQR
102 MKVAVVLLVSLLAVTYALPEKR
103 QTSDIINWLNKK
104 NDVILDSLR
105 DNAKRILQVLESK
106 TLQTLMNK
107 SEPVPENNDQPVK
108 DITKDNRAVQK
109 GGSLSMLKARAK
110 CLEKSGAQPNK
111 EKLTFLILVATVLLTIHVLVQSVGDKHLK
112 LGGVIGLAGSVLVLFILPISHQAK
113 DEGSPLQR
114 ATLQLDAEQR
115 CSTKKCDTLCCQR
116 STNDNGKDTQMK
117 SSLPSCPRHIVR



Table 2
Venom of C. flavidus identified conotoxin proteins and their congruent gene superfamilies.

Protein superfamily Sequence Identified protein Accession numbers Number

A DLPCGNKR Conotoxin [C. praecellens] ATF27581 11
TDFASGIK Conotoxin [C. betulinus] ALM87488
NAENKQDHVPDK Conotoxin, partial [C. betulinus] AMP44769
NSKVSRDCQK Conotoxin [C. praecellens] ATF27696
ASDGGNAVAKK RHO conotoxin A-superfamily protein, partial [C. tulipa] ADN79119
NSKLSVHFDLQR Conotoxin [C. betulinus] AMP44603
ASDGRNAEAK Alpha conotoxin lp1.3 [C. leopardus] AAS93426
GQGLTDHYRNLR Conotoxin [C. andremenezi] ATF27411
NAAAKASNR Alpha-conopeptide precursor Fi1.1 [C. figulinus] AIF30337

Alpha-conopeptide precursor Bt1.5 [C. betulinus] AIF30336
Conotoxin [C. betulinus] AMP44635

B1 STNDNGKDTQMK ConRl-B; Precursor [C. rolani] P0DKZ0 2
Conotoxin precursor B1 [C. judaeus] UMA83357

B3 CLEKSGAQPNK AlphaB-conotoxin VxXXIVA; precursor [C. vexillum] J7JU64 1

I1 KLSVTFLLILMILPSVTGEK Conotoxin Ep11.1; precursor [C. episcopatus] P0C253 1

J VTPGSPGTAQLSGHR J-superfamily conotoxin Vt14.7 precursor [C. planorbis] ADZ74179 1

M ATLQLDAEQR M superfamily MLKM group conopeptide Ec2C03 [C. emaciatus] AEX60186 12
Conotoxin precursor M [C. judaeus] DAZ86453

QSEEGGSNATK M superfamily MLKM group conopeptide Bt3-I04 [C. betulinus] AEX60050
Conotoxin precursor M, partial [C. judaeus] DAZ86728

MEFILHALGQR M superfamily MLKM group conopeptide Ca3-Y01 [C. caracteristicus] AEX60069
LPTEDHPLYD M superfamily MMSK group conopeptide Tx3-WP04 [C. textile] AEX60315
NANKQGLKPDER M superfamily MLKM group conopeptide Bt3-D05 [C. betulinus] AEX60096

Conotoxin Pl168; alpha-conotoxin Vt1.24; precursor [C. planorbis] D9IWN7
QDISPNERKR M superfamily MLKM group conopeptide Vr3-DPP03 [C. varius] AEX60203

Conotoxin precursor M, partial [C. judaeus] DAZ86748
NAENKQDHVPDK M superfamily MLKM group conopeptide Bt3-F02 [C. betulinus] AEX60160
ADERGQGLTEQYR Conotoxin precursor superfamily M, partial [C. ammiralis] UBT01827

N MVPARPYWR Conotoxin Mr15.3; Mr095; precursor [C. marmoreus] P0DM20 1

O1 MTKRCTPAGK Four-loop conotoxin, partial [C. coronatus] ABO31223 4
DGLGNLFSKTQHEMKNPETSK Conotoxin superfamily O1 [C. episcopatus] BAS22531
ASDLENVAANRK Conotoxin precursor superfamily O1, partial [C. ermineus] AXL95517
KAHHEMKNPEASK Omega-conotoxin TxVII; Flags: precursor [C. textile] P56714

O2 EKLTVLILVATVLLTIQVLAQSDR Conotoxin Ml15a; precursor [C. miles] C8CK74 12
Conopeptide Mi037 [C. miles] AKB91375

EKLTILVLVAAVLLSTQVLVQGDGEKPQKK Conotoxin superfamily O2, partial [C. magus] QFQ61085
GGVEKRQEAK Conotoxin VnMEKL-024; precursor [C. ventricosus] Q9BPC5
EKLTILVLVATVLLAIQVLVQSDGEKPLKR XV conotoxin Tx15a precursor [C. textile] AGK23206
KLTVLILVATVLLMIQVLAQSGGDKHLK Conotoxin Lv15a; precursor [C. lividus] C8CK76

Conopeptide Mi037 [C. miles] AKB91375
RAADRGMWGK Conotoxin LeD51; flags: precursor [C. litteratus] Q3YEF7
EKLTFLILVATVLLTIHVLVQSVGDKHLK Conotoxin Vx15a; precursor [C. vexillum] C8CK79

Conopeptide Mi037 [C. miles] AKB91375
EKLTVLILVATVLLAIQVLVQSDREKPLK XV conotoxin Rt15c precursor [C. rattus] AGK23201
SALMRGPR Conotoxin Bt15a; flags: precursor [C. betulinus] B0KZ78

O3 QLMLRNNLQK Conotoxin Eb6.6 [C. eburneus] ADZ99332 2
GEKQATQR Conotoxin ArMSGL-0122; precursor [C. arenatus] Q9BP67

P CSTKKCDTLCCQR Alpha-conotoxin PiXXA; precursor [C. princeps] P0DQX2 1

S EFQRILLR AlphaS-conotoxin RVIIIA; precursor [C. radiatus] P0C1W3 2
MSKLGAMFFLLLLFTLASSQEK Conotoxin superfamily S [C. episcopatus] BAS22718

T LCLPVFIILLLLVSPAATLLVKSK T superfamily conotoxin Bt5.2 precursor [C. betulinus] AGK23247 23
T superfamily conotoxin Lv5.7 precursor [C. lividus] AGK23257

MLFLPVFVILLLLIASAPSVDVRPKAK Conotoxin superfamily T [C. episcopatus] BAS23011
RCIPVFVILLLLIASAPSVDVRPKAK Conotoxin superfamily T [C. episcopatus] BAS23049
TLQTLSNK Conotoxin superfamily T [C. episcopatus] BAS24914
RCLPVFIILLLLIPSALSLIAKPK Conotoxin leo-T1; precursor [C. leopardus] P0C906
NDVHRAILHDVAK T superfamily conotoxin Lv5.4 precursor [C. lividus] AGK23254
TKDDMSLASFHENAKR Conotoxin superfamily T [C. episcopatus] BAS25030
RCLPVVVILLLLIASTPNVDARPKTK Conotoxin superfamily T [C. episcopatus] BAS25357
ILQVIESK Conotoxin superfamily T [C. episcopatus] BAS23613
QTLQILSNKR Conotoxin superfamily T [C. episcopatus] BAS23504
TLQILSNNR Conotoxin Pn-B01121; Flags: precursor [C. pennaceus] Q9BPF3
DDMSLASFQDNAKR Conotoxin pu5.3; flags: precursor [C. pulicarius] P0C638
RCLPVVIILLLLIPSALSVHAQPKTK Conotoxin superfamily T [C. magus] QFQ61110
LCLPVFIILLLLVSPAATLPVK T superfamily conotoxin Bt5.4 precursor [C. betulinus] AGK23249
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Table 2 (continued)

Protein superfamily Sequence Identified protein Accession numbers Number

CLPVFVILLLLIASISSVDALLKTK Conotoxin superfamily T [C. episcopatus] BAS24261
CLPVFVILLLLTASVPSVDARPMTK Conotoxin superfamily T [C. episcopatus] BAS25235
RCLPIFVILLLLIASAPSVDVRPKAK Conotoxin superfamily T [C. episcopatus] BAS23127
GLPVFVILLLLIASAPSVDARPKTK T superfamily conotoxin Eb5.4 precursor [C. ebraeus] AGK23262
NDVILDSLR Conotoxin im5.5 [C. imperialis] ADZ99324
DNAKRILQVLESK Conotoxin superfamily T [C. episcopatus] BAS25452
TLQTLMNK Conotoxin superfamily T [C. episcopatus] BAS24911

Conkunitzin EVVMEKQAMMEK Conotoxin superfamily conkunitzin 10, partial [C. magus] DAC80558 1

Cerm MKVAVVLLVSLLAVTYALPEKR Conotoxin precursor Cerm06 [C. ebraeus] UMA82331 1

17 SSLPSCPRHIVR Conotoxin-like precursor unassigned superfamily 17 [C. ermineus] AXL95660 1

Total 65 76
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3.1. Potential pharmacological applications C. flavidus conopeptides

The potential pharmacological activities of conopeptides from
C. flavidus were investigated, revealing a diverse array of bioactive
peptides within the venom. Notably, seven peptide fragments belong-
ing to protein superfamily A were identified (Table 2). Members of
superfamily A are known to target voltage‐gated ion channels, present-
ing therapeutic potential in the management of various neurological
disorders such as epilepsy, schizophrenia, and neurodegenerative dis-
eases like Alzheimer's and Parkinson's disease. Moreover, two peptides
from protein superfamily B1 exhibited specificity towards the N‐
methyl‐D‐aspartate receptor (NMDA), suggesting potential applica-
tions in pain management and epilepsy treatment. Twelve peptides
from superfamily M, known to interact with K+ channels, Na+ chan-
nels, and nicotinic acetylcholine receptors (nAChR), suggest potential
roles in pain management, stroke treatment, epilepsy, and neurologi-
cal disorders, as well as potential implications in cancer therapeutics.
Within the O1 superfamily, four peptides were identified, recognized
for their interactions with Ca+ channels, K+ channels, Na+ chan-
nels, and nAChR, indicating therapeutic avenues for pain relief, stroke
mitigation, hypertension management, and treatment of various neu-
rological disorders including epilepsy and cancer. Similarly, the twelve
peptides from the O2 superfamily, previously known to modulate neu-
ronal pacemaker and Ca+ channels, show potential for pain, hyper-
tension, arrhythmias, and epilepsy. Proteins from the S superfamily
(two identified) is known to exhibit affinity towards serotonin recep-
tors and nAChR, highlighting their potential in managing neuropathic
pain and related conditions. The identification of 23 peptides from the
T superfamily, known to target the noradrenaline transporter,
somatostatin‐3 receptor, and possibly Ca2+ and Na+ channels, sug-
gests therapeutic implications in pain management, stroke treatment,
hypertension, and epilepsy. Furthermore, a peptide from the I1 super-
family was found to target Na+ channels activator, indicating poten-
tial applications in the treatment of heart failure and pain. Lastly,
Conkunitzin superfamily proteins, which target K+ channels, show
promise in the management of neurological disorders and cancer. In
conclusion, the diverse range of conotoxin peptides derived from C.
flavidus presents a significant opportunity for drug discovery. These
findings underscore the potential of these peptides as promising candi-
dates for the development of novel therapeutics across a spectrum of
medical conditions, ranging from neurological disorders to cancer.
3.2. Potential pharmacological activities of non-conopeptides of C. flavidus

Our analysis of C. flavidus venom revealed a complex bioactive pro-
file. We detected 42 peptide fragments belonging to 19 non‐conotoxin
proteins, including insulin, hyaluronidase conohyal‐P1, protein disul-
fide isomerase, arginine kinase, and vitamin K‐dependent gamma
5

carboxylase (Table 3). Of particular interest, the presence of three
insulin peptide fragments suggests potential hypoglycemic activity of
C. flavidus venom. These peptides could potentially reduce blood glu-
cose levels by activating the human insulin receptor (hIR). This discov-
ery highlights the possibility of cone snail insulin peptides
contributing to the future development of fast‐acting insulin analogs
with improved hIR affinity.
4. Discussion

Marine neglected creatures represent promising sources for drug
discovery. Eight drugs from ignored marine organisms were approved,
most of them are used in treatments of cancer.31 These approved drugs
are from sponge and tunicate.32 Conopeptides from piscivorous and
molluscivorous cone snail venoms have attracted biomedical atten-
tion33 However, the peptide constituents of worm‐hunting species
are still poorly understood, even though they have potential as sources
of pharmacological compounds.34–36 Therefore, vermivore snails could
also be valuable for pharmacology.37–38 Marine cone snails endowed
with venoms rich in bioactive peptides to target different biological
activities for defence and quickly immobilize their prey. Conopeptides
have been well studied especially from mollusc and fish‐hunting cone
snail venoms.33 On the other hand, conopeptides profile of worm‐
hunting species is poorly understood, although they have capacity as
promising sources of pharmacological compounds.35 In view of that
vermivore snails could also be important for pharmacology field.38–39

In our study we used proteomic techniques based on MS which have
become popular for studying conotoxin sequences on a large scale.
For example, different parts of the venom duct of C. textile were ana-
lyzed by proteomics to understand how the venom is processed.40

Conopeptide profile of vermivores cone snails; C. taeniatus was studied
from Red Sea,41 C. flavidus and C. frigidus from Queensland.42 Combin-
ing the data from proteomics and transcriptomics would help to make
sense of the MS results.43–44 In the present study, we detected more
than one hundred different components in the venom of C. flavidus.
This variability may enable C. flavidus to modify the composition of
the injected venom according to the predatory or defensive stimuli.
Variations in number of peptide sequences between C. flavidus and
other Conus peptides was observed. For example, a total of 276 pep-
tides were identified in C. imperialis venom, 298 in C. fulgetrum venom
and 488 different molecular masses in C. crotchii venom and 290 in
C. taeniatus.19,41,45 Substantial differences in peptide numbers in the
proteomic analysis of Conus species may be due to different conditions
used for peptide authentication or difference in methods of venom col-
lection or total number of collected specimens and pooled data.46–47

Conopeptides in the venom of C. flavidus was analyzed the resulted
data revealed that T, O2, A and M were the main groups of conotoxins
in C. flavidus, suggesting important role in the venom. Previous studies



Fig. 2. (A) C. flavidus venom proteome; percentage composition of non-conotoxin proteins and conotoxin superfamilies. (B) C. flavidus venom relative abundance
of conopeptide superfamilies. (The percent relative abundance of total identified conotoxin proteins by LC-MS/MS).
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showed that O1, M, and T conotoxins are common among cones and
may give a fundamental set of conotoxins necessary for the venom
to work well.25,48 It was also found that I 2, O1, O2, M, and T super-
families are dominant among worm hunters.42 The T‐superfamily pep-
tides in Conus venom can affect various types of neurotransmitters or
ion channels.49–50 The T‐superfamily was found to be dominant in
another cone snails; C. taeniatus,37 and C. victoriae venom.51 However,
this group of conotoxins is poorly understood, despite being abundant
in C. flavidus and other Conus species. Conotoxins have various targets
that make them valuable for treating a variety of diseases, such as
6

cancers, depression and pain.52–53 For instance, peptides of M−super-
family, that are common in Conus venom,54 able to block nicotinic
acetylcholine receptors or voltage‐gated potassium and sodium chan-
nels. O‐superfamily conopeptides can block potassium channels and
voltage‐gated calcium.55–56 A member of O1 superfamily; ziconotide,
is commercially available as potent analgesic which relief pain by
specifically blocking the N‐type voltage‐gated Ca++ channel,.57–58

M‐ and O‐superfamilies are the main superfamilies in C. bullatus, C.
marmoreus, and C. pulicarius, C. tribblei,.51 Moreover, conopeptides
of A‐superfamily are the dominant in C. bullatus C. consors and



Table 3
Venom of C. flavidus identified non-conotoxin proteins list and their congruent gene superfamilies.

Protein superfamily Sequence Identified protein Accession
numbers

Number

Arginine kinase NLTKGVFEQLK Arginine kinase, partial [C. araneosus] AQM52449.1 3
LGFGNLDPEGKMIK Arginine kinase, partial [C. frigidus] ARU12142
KLAAMQQQQR Arginine kinase [C. litteratus] ARS01451

Conopeptide class: Cono-NPY EELMNYVRELNL Neuropeptide Y2-like conopeptide; NPY2-like conopeptide
[C. betulinus]

P0CJ23 2

EELMNYVR Neuropeptide Y1-like conopeptide; NPY1-like conopeptide
[C. betulinus]

P0CJ22

Cytochrome b SIPNKLGGVIGLAGSVLVLFILPLAHQAK Cytochrome b [C. isabelarum] ATZ70070 2
LGGVIGLAGSVLVLFILPISHQAK Cytochrome b [C. irotchii] ATZ70161

Cytochrome c oxidase subunit EGTFQGYHSIK Cytochrome c oxidase subunit 3 [C. infinitus] ATZ69735 1

Endoplasmic reticulum oxidoreductin
isoform X2

EDNLSITEDWLQGMCLEKR Endoplasmic reticulum oxidoreductin isoform X2, partial
[C. geographus]

AYU65461

Ferritin DFLEGNYLQEQVR Venom-related protein ferritin [C. judaeus] UMA83642 3
ELGDYITNL Venom-related protein ferritin [C. judaeus] UMA83642
ETLQEKQE Venom-related protein ferritin [C. ebraeus] UMA82671

Glutaredoxin SGKLLQLL Glutaredoxin, partial [C. ebraeus] ATY36129 1

Glucose-regulated protein DITKDNRAVQK 78 kDa glucose-regulated protein, partial [C. amadis] AKZ17802 1

Hyaluronidase conohyal-P1 QLQCQRLQEHIR Conohyaluronidase, partial [C. magus] DAC80621 2
KYQDESIK Hyaluronoglucosaminidase; precursor [C. purpurascens] C0HKM3.1

Hypothetical protein SSLPSCPRHIVR Hypothetical protein, partial [C. magus] QFQ61209 1

Insulin DEGSPLQR Hormone insulin-related peptide [C. judaeus] UMA83320 3
GGSLSMLKARAK Venom gland insulin precursor Mo2 [C. mucronatus] UNO36808
GGTNDGGKK Con-Ins G2b A chain; Precursor [C. geographus] A0A0B5ADT3

NADH dehydrogenase subunit LGILLANFLILVIFPLAGK NADH dehydrogenase subunit 4 [C. venulatus] APH08616 3
MLGILLANFLILVIFPLTGKKWSWYLK NADH dehydrogenase subunit 4 [C. venulatus] ATZ69978
GILLANFLILVILPLISKKWSWYLK NADH dehydrogenase subunit 4 [C. trochulus] ATZ69913

Prolyl 4-hydroxylase DRDRLTYHAGCPVLMGNK Prolyl 4-hydroxylase [C. miles] AXL97329 2
IGLSVSPVK Prolyl 4-hydroxylase, partial [C. amadis] AXL97325

Protein disulfide isomerase (PDI) QTSDIINWLNKK Venom-related protein PDI [C. ebraeus] DAZ85958 12
ELKEKDEAK Protein disulfide isomerase [C. eburneus] ADZ76591
SEPVPENNDQPVK Venom-related protein disulfide isomerase [C. ebraeus] UMA82691
QTSDIINWLNKK Conotoxin-specific protein disulfide isomerase variant 2

[C. textile]
AMM62657

ELKEKDEAK Protein disulfide isomerase [C. eburneus] ADZ76591
QAVDIVNWLK Protein disulfide isomerase [C. tessulatus] AOZ19957
QASDIVQWLK Protein disulfide isomerase [C. virgo] ADZ76590
ELKEKDDVK Venom-related protein PDI [C. judaeus] DAZ87008
AAASLEEEKSNIK Protein disulfide isomerase [C. magus] QFQ61179
TASDIVQWAMEK Venom-related protein disulfide isomerase [C. judaeus] UMA83674
DQESAGALALK Protein disulfide isomerase [C. tessulatus] AOZ19957
AATALEEQNLNVKLGKVDATVEDSLAAK Protein disulfide isomerase [C. textile] AMM62648

Peptidyl prolyl cis–trans isomerase (PPI) NIEKVGSQNGKTSAK Peptidyl prolyl cis–trans isomerase A, partial [C. frigidus] ARU12144 2
KIEASETDERDKPK Peptidyl prolyl cis–trans isomerase B, partial [C. frigidus] ARU12147

Potassium voltage-gated channel Kv1.1-
like protein

EEEKPLPQNEFQR Potassium voltage-gated channel Kv1.1-like protein [C.
betulinus]

ASK12219 1

Rimp-03 KSGMLLFVLLLVLPLAFPKLVPVQR Superfamily Rimp-03, partial [C. magus] QFQ61145 1

Ribosomal protein S6 kinase beta-1
protein

GKLNLPPYLTNEAR Ribosomal protein S6 kinase beta-1 protein, partial [C.
ebraeus]

ASF90537 1

Vitamin K-dependent gamma carboxylase ANVIQEMNNTQAK Vitamin K-dependent gamma carboxylase, partial [C.
imperialis]

AAL78318 2

EKNNTQRVNK Vitamin k-dependent gamma carboxylase, partial [C.
monile]

ANC48003

Total 45 43
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C. geographus,51 and together with the O‐superfamilies, they can affect
nicotinic acetylcholine receptors and potassium channels.45 Therefore,
conopeptides in C. flavidus seems to have potential for drug develop-
ment and biomedical applications as they can target different receptors
7

and ion channels. Venom peptides of C. flavidus have been studied
from different geographical regions; Red Sea (this study), South China
Sea near Hainan, China59 and Queensland, Australia.42 In these stud-
ies, marked variation of peptide profile is observed. Such variation is
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the expected, because cone snail species in different marine habitats
have different biotic interactions leads to a consistent difference in
Conus venoms.

Several non‐conopeptide proteins in addition to conopeptides,
were also detected in C. flavidus venom. Hyaluronidase (Hyals), an
endoglycosidase that breaks down the glycosaminoglycan hyaluronic
acid, several peptide fragments were found in C. flavidus venom. In
fact, many small predators use strong and fast acting venoms for
immobilizing and killing their prey. Hyals have been discovered in
venoms from different animal groups; in invertebrates such as spiders,
honeybees and scorpions and in vertebrates such as stonefish, snakes
and reptiles.60–62 Basically, the venom Hyals is mainly function to
degrade polysaccharides of extracellular matrix in the connective tis-
sue of the prey, thus disrupt the integrity of its structure.63 Therefore,
venom Hyals work as spreading factors to facilitate other venom com-
ponents distribution through different tissues,64 which is essential for
quick immobilisation of prey as well as protection against different
predators.

Different peptide fragments of insulin were also detected, suggest-
ing the possible hypoglycemic activity of C. flavidus venom. Specific
insulin‐like protein can be released by some cone snails in water to
arrest fish and capture their prey. In this regard, C. geographus signifi-
cantly reduces the blood glucose level and triggers hypoglycemic
shock in its fish prey by releasing insulin like peptide (Con‐Ins‐
G1).17 It is reported that Con‐Ins‐G1 as the smallest naturally effective
activator of the human insulin receptor (hIR).16 Other species of cone
snails such as C. tulipa and C. kinoshitai can also release specific insu-
lins for fish hunting.15,17 Thus, cone snail insulin peptide discovery
may potentially contribute to future design of fast‐acting insulin ana-
logues with improved affinity for hIR. The enzyme family protein
disulfide‐isomerase (PDI), which can ensure the proper folding of pro-
teins was detected in the venom of C. flavidus. PDI gives stability to
proteins through linking cysteine residues.65–66 Venom glands of
several classes of insects were found to contain PDI such as Aphidius
ervi67 and Psytallia species,68 and in Pteromalus puparum crude venom
extract,69 Diversinervus elegans70 and Cotesia chilonis.71

Interestingly, venomous peptides and samples from COVID‐19
patients have shown an intriguing correlation. patient samples were
found to contain conotoxin‐like peptides from various snail species
including C. flavidus.72 Furthermore, the SARS‐CoV‐2 genome has been
reported to contain regions encoding oligopeptides identical to animal
venom neurotoxins.73 These findings suggest several potential mecha-
nisms for the presence of these peptides, including direct viral replica-
tion, SARS‐CoV‐2 genome directly read by bacteria after
bacteriophage‐like activity,74 or a kind of bacterial response to the
virus.75–77 The interaction of SARS‐CoV‐2 with nicotinic acetylcholine
receptors (nAChRs) is well‐established, with the virus potentially mim-
icking the actions of neurotoxins (Nadwa 2023). This interaction could
lead to neuroinflammation, cytokine storm, and other COVID‐19 com-
plications.78–80 It is well known that some conotoxins can target nico-
tinic acetylcholine receptors and ion channels. They also can alter
acetylcholine levels and cause dysfunction of the receptors.81–83 This
could explain some of the symptoms related to the nerves that some
COVID 19 patients experience, such as reduced smell, taste, and signs
of the Guillain–Barre syndrome.72 Therefore, specific conotoxin pep-
tides of C. flavidus may be able to inhibit the essential protein of
life‐threatening viruses COVID‐19, potentially leading to their treat-
ment or cure. Therefore, further research is warranted to explore this
potential connection. Key avenues of investigation include determin-
ing if there's a direct sequence homology between conotoxin‐like pep-
tides in COVID‐19 patient samples and those definitively identified in
C. flavidus venom. Additionally, computational modeling could inves-
tigate potential interactions between C. flavidus conopeptides and
nAChRs affected by SARS‐CoV‐2, or with the SARS‐CoV‐2 spike pro-
tein itself. These investigations could offer novel insights into
COVID‐19 pathophysiology and potentially uncover new therapeutic
8

strategies. While the potential applications of C. flavidus conopeptides
in combating COVID‐19 remain speculative, the connection between
these peptides and the virus presents an exciting and much‐needed
area of research.
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