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Introduction
PKD is a family of serine/threonine-specifi c protein kinases 

comprising three structurally related members: PKD1/PKCμ, 

PKD2, and PKD3/PKCν. PKD contains two zinc fi nger–like 

cysteine-rich motifs that bind DAG, a pleckstrin homology (PH), 

and a kinase domain. PKD localizes to the cytosol, nucleus, 

Golgi complex, and plasma membrane, where it regulates 

diverse cellular processes, including vesicle traffi cking (Rykx 

et al., 2003; Wang, 2006). Thus far, only a few physiological 

PKD substrates are known (e.g., the neuronal protein Kidins220, 

the Ras effector RIN1, HDAC5, and PI4KIIIβ; Iglesias et al., 

2000; Wang et al., 2002; Vega et al., 2004; Hausser et al., 2005). 

At the TGN, PKD is critically involved in the fi ssion of trans-

port carriers en route to the cell surface (Liljedahl et al., 2001; 

Yeaman et al., 2004). PKD is recruited to the TGN by its cysteine-

rich regions (Maeda et al., 2001; Baron and Malhotra, 2002; 

Hausser et al., 2002), where it is activated by PKCη-mediated 

phosphorylation (Diaz Anel and Malhotra, 2005). PKD-mediated 

phosphorylation of PI4KIIIβ stimulates its lipid kinase activity, 

resulting in enhanced phosphatidylinositol 4-phosphate (PI(4)P) 

production and cargo transport to the plasma membrane (Hausser 

et al., 2005).

In this study, we demonstrate that PKD also phosphor-

ylates and regulates the activity of the Golgi-localized ceramide 

transfer protein (CERT; also known as Goodpasture antigen-

binding protein), a cytosolic protein essential for the nonvesicular 

delivery of ceramide from its site of production at the ER to 

Golgi membranes, where conversion to sphingomyelin (SM) 

takes place (Hanada et al., 2003). Two CERT isoforms exist: 

the more abundantly expressed, alternatively spliced form missing 

a 26–amino acid serine-rich region and the full-length 624–amino 

acid protein, which is designated CERTL (Raya et al., 2000). 

Both CERT isoforms possess a steroidogenic acute regulatory 

lipid transfer (START) domain that is necessary and suffi cient for 

ceramide binding and transport (Hanada et al., 2003). START 

domains are �210 amino acids in length and form a hydrophobic 

tunnel that accommodates a monomeric lipid (Soccio and 

Breslow, 2003; Alpy and Tomasetto, 2005). They are found in 

15 mammalian proteins, with CERT being most closely related 

to Pctp, which binds and shuttles phosphatidylcholine (PC) be-

tween membranes, and StarD10, a lipid transfer protein specifi c 

for PC and phosphatidylethanolamine (Soccio and Breslow, 

2003; Olayioye et al., 2005; Wirtz, 2006). CERT proteins further 

contain an N-terminal PH domain with specifi city for PI(4)P 
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that contributes to Golgi localization (Levine and Munro, 2002; 

Hanada et al., 2003) and an FFAT motif (two phenylalanines 

in an acidic tract) that targets the protein to the ER via inter-

action with the ER resident transmembrane proteins VAP-A 

and VAP-B (vesicle-associated membrane protein–associated 

protein; Loewen et al., 2003; Kawano et al., 2006).  Nonvesicular 

lipid transfer is thought to occur at membrane contact sites, at 

which the ER comes into close apposition with other organelles 

(Levine and Loewen, 2006). CERT may thus shuttle a very 

short distance between ER and Golgi membranes or perhaps 

contact both compartments simultaneously. When overexpressed, 

the START domain of CERT is suffi cient for ceramide transfer 

to the Golgi complex (Kawano et al., 2006). However, under 

physiological conditions, both Golgi and ER targeting motifs 

are essential for CERT function. In the CHO cell line LY-A, 

CERT was identifi ed to contain a mutation within its PH do-

main (G67E), rendering the protein defective in PI(4)P binding, 

which resulted in reduced cellular SM levels (Hanada et al., 

2003). The PI(4)P requirement for CERT function is further 

supported by a recent study showing that PI4KIIIβ activity is 

necessary for effi cient ceramide traffi cking to the Golgi (Toth 

et al., 2006). We now provide evidence that PKD phosphor-

ylates CERT on serine 132 adjacent to the PH domain, whereby 

PI(4)P binding, Golgi targeting, and ceramide transfer activity 

are negatively regulated. Furthermore, by transferring ceramide 

that is required for DAG production to Golgi membranes, CERT 

stimulates PKD activity and ensures the maintenance of consti-

tutive secretory transport.

Results and discussion

PKD is a key regulator at the Golgi complex, with PI4KIIIβ 

being the only local substrate identifi ed thus far (Hausser et al., 

2005). To test whether the Golgi complex–localized CERT pro-

tein may serve as a substrate for PKD, we made use of a phospho-

specifi c substrate antibody, termed pMOTIF, that was raised 

against consensus motifs phosphorylated by PKD (Doppler 

et al., 2005). HEK293T cells were transfected with expression 

vectors encoding Flag-tagged CERT and CERTL. Immuno-

precipitated CERT isoforms were analyzed by Western blotting 

with the pMOTIF antibody (Fig. 1 A). A pMOTIF signal corre-

sponding to the molecular weight of CERT and, more weakly, 

to that of CERTL was detected (Fig. 1 A). The weaker detection 

of the CERTL isoform by �25% compared with CERT may be 

related to its known behavior to form aggregates, which may 

impact phosphosite accessibility to kinases (Raya et al., 2000). 

To investigate whether recognition of CERT by the pMOTIF 

antibody was dependent on PKD, we expressed CERT together 

with a kinase-dead (KD) dominant-negative PKD1 variant 

(PKD1-KD) in HEK293T cells. Coexpression of inactive PKD1 

abolished CERT detection by the pMOTIF antibody, suggesting 

that the signal was indeed the result of PKD-mediated CERT 

phosphorylation (Fig. 1 B). To address the question of which 

PKD isoform was responsible for CERT phosphory lation, we 

used an RNAi approach to down-regulate PKD. Silencing of 

only one isoform did not infl uence the level of CERT phosphor-

ylation as judged by immunoblotting with the pMOTIF antibody 

Figure 1. CERT is detected by a PKD substrate 
antibody. (A) HEK293T cells were transfected 
with expression plasmids encoding Flag-tagged 
CERTL and CERT. Cells were lysed, and CERT 
isoforms were immunoprecipitated with anti-Flag 
antibody. Immunoprecipitated proteins were 
subjected to SDS-PAGE followed by immunob-
lotting with PKD substrate antibody (pMOTIF; 
top) and, after stripping, with anti-Flag anti-
body (bottom). (B) HEK293T cells were trans-
fected with Flag-CERT expression plasmid along 
with GFP-PKD1-KD or empty vector. CERT was 
analyzed by Western blotting as described in A. 
The expression of PKD1-KD was verifi ed by 
immunoblotting with a PKD1-specifi c antibody 
(bottom). (C) HEK293T cells were either mock 
transfected or transfected with PKD1- and PKD2-
specifi c siRNAs followed by transfection with 
Flag-CERT expression plasmid 48 h later. After 
24 h, CERT phosphorylation was analyzed as 
described in A (top). Silencing of PKD1 and 
PKD2 was verifi ed by immunoblotting of ly-
sates with specifi c antibodies  (bottom). The 
band marked with an asterisk is the result of non-
specifi c binding. PKD1 is marked with an arrow. 
(D) HEK293T cells were transfected with Flag-
CERT expression plasmid. Cells were left un-
treated (con) or were serum starved overnight 
followed by stimulation with either 10% serum 
for 2 and 6 h or 2.5 μg/ml 25-hydroxycho-
lesterol for 1 h. CERT phosphorylation was an-
alyzed as described in A. (E) COS7 cells 
expressing Flag-CERT and PKD1-GFP (top) or 
GFP-CERT (bottom) were fi xed and stained 
with Flag- and TGN46-specifi c antibodies (red), 
respectively. Bars, 10 μm.
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(unpublished data). However, simultaneous knockdown of PKD1 

and PKD2 greatly reduced CERT phosphorylation (Fig. 1 C), 

suggesting that these two isoforms were primarily responsible 

for phosphorylating CERT, whereas PKD3 appeared to play a 

minor role. This is in accordance with previously reported 

overlapping substrate specifi cities of PKD1 and PKD2, which 

both phosphorylate PI4KIIIβ, whereas PKD3 fails to do so 

(Hausser et al., 2005).

The phosphorylation status of CERT was strongly reduced 

in serum-deprived cells and could be restored by the  readdition 

of serum (Fig. 1 D), indicating that CERT phosphorylation is 

dependent on extracellular stimuli. It was recently  reported 

that OSBP (oxysterol-binding protein) promotes CERT trans-

location to the Golgi complex in response to stimulation with 

its ligand, 25-hydroxycholesterol, thereby integrating  sterol 

signaling and SM synthesis (Perry and Ridgway, 2006). In 

line with these studies, 25-hydroxycholesterol treatment was 

found to augment CERT phosphorylation (Fig. 1 D), possibly 

by bringing CERT to the Golgi in the vicinity of PKD. CERT 

has been demonstrated to colocalize with the cis/medial-Golgi 

marker GS28 (Hanada et al., 2003). Immuno fl uorescence analysis 

of GFP-tagged CERT expressed in COS7 cells showed that the 

protein localized to GS28-positive Golgi regions (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200612017/DC1). 

However, lipid transfer proteins are thought to act at mem-

brane contact sites, which are formed between the ER and TGN 

(Levine and Loewen, 2006), where PKD is localized. Immuno-

fl uorescence staining of Flag-tagged CERT coexpressed with 

GFP-tagged PKD in COS7 cells revealed that the two proteins 

colocalize at the Golgi complex. Furthermore, staining of the 

TGN-specifi c marker protein TGN46 verifi ed that CERT partially 

localizes to this compartment (Fig. 1 E).

To identify pMOTIF recognition sites in CERT, we 

searched for potential PKD consensus motifs characterized by 

a leucine, isoleucine, or valine residue in the −5 position and 

 arginine in the −3 position relative to a serine or threonine. Two 

serines at positions 132 and 272 matching the PKD consensus 

motif (Fig. 2 A) were exchanged for alanines by site- directed 

mutagenesis. Mutants were expressed in HEK293T cells and 

tested for recognition by the pMOTIF antibody. Interestingly, 

mutation of serine 132 to alanine abrogated the detection of 

CERT with the pMOTIF antibody and caused an increase in elec-

trophoretic mobility, which is indicative of the loss of phos-

phorylation, whereas the S272A mutation did not affect the 

pMOTIF signal (Fig. 2 B). On low percentage gels, the wild-

type (WT) protein migrated as two distinct bands, indicating the 

presence of a phosphorylated and a nonphosphorylated CERT 

pool (unpublished data). To confi rm that PKD was capable 

of directly phosphorylating serine 132, we performed in vitro 

kinase assays with purifi ed PKD1 and recombinant CERT GST 

fusion proteins comprising the fi rst 138 amino acids of the 

protein. WT CERT was effi ciently phosphorylated by PKD1, 

whereas the CERT-S132A protein showed a strongly reduced 

incorporation of radioactivity in this assay (Fig. 2 C). Further-

more, in vitro PKD phosphorylation of WT but not CERT-

S132A generated a recognition site for the pMOTIF antibody 

(Fig. 2 D). Collectively, these results prove that CERT is a 

genuine PKD substrate in vitro and in vivo and identify serine 

132 as a specifi c PKD phosphorylation site in CERT that can be 

monitored with the pMOTIF antibody.

Serine 132 is in close proximity to the CERT PH domain 

(aa 23–117), making it possible that phosphorylation on this 

site affects PI(4)P binding by increasing the local negative 

charge. Therefore, we quantifi ed PI(4)P binding of CERT-WT 

and -S132A by performing protein–lipid overlay assays. Cytosol 

from cells transiently expressing the CERT variants was incu-

bated with membranes spotted with a concentration gradient of 

the different phosphoinositides, and bound CERT proteins were 

Figure 2. PKD phosphorylates CERT on serine 132. (A) Align-
ment of the peptide sequences used to raise the pMOTIF anti-
body and two potential PKD motifs in CERT. (B) HEK293T cells 
transiently expressing Flag-tagged CERT-WT, -S132A, and 
-S272A were lysed, and CERT phosphorylation was analyzed 
as described in Fig. 1 A. (C and D) Recombinant GST-Flag-
CERT-WT and -S132A proteins were incubated in kinase buf-
fer containing γ-[32P]ATP (C) or cold ATP (D) in the absence 
(−) and presence (+) of purifi ed PKD1. Proteins were sepa-
rated by SDS-PAGE and transferred to membrane. (C) In-
corporation of radioactive phosphate was analyzed using a 
phosphorimager (top) followed by immunoblotting with Flag-
specifi c antibody to verify equal loading of the CERT proteins. 
(D) Immunoblotting was performed with the pMOTIF antibody 
and, after stripping, with Flag-specifi c antibody to verify equal 
loading of the CERT proteins. PKD1 and CERT proteins are 
marked with arrows; the bands with asterisks are the results of 
nonspecifi c binding.
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detected via their GFP tag. As reported previously, the WT 

 protein demonstrated weak binding to several phospholipid 

species but displayed strong interaction with PI(4)P (Levine 

and Munro, 2002; Hanada et al., 2003). CERT-S132A binding 

to PI(4)P was detectable at two- to fourfold lower concentra-

tions as compared with that of the WT protein (Fig. 3 A). 

To corroborate these results, the association of CERT with 

multilamellar vesicles (MLVs) consisting of PC alone or PC 

plus 5% PI(4)P was measured. Although the addition of PI(4)P 

to PC vesicles increased the membrane binding of CERT-WT 

1.5-fold, the binding of CERT-S132A was enhanced 1.9-fold, 

suggesting an increased affi nity of the CERT-S132A mutant 

to PI(4)P (Fig. 3 B). To investigate whether this affected the 

association with Golgi membranes in intact cells, we per-

formed fractionation studies with cells expressing CERT-WT 

and -S132A. To estimate the level of ER binding, we included 

a CERT mutant (G67E) defective in PI(4)P binding. Only a 

small proportion of the WT and G67E protein were recovered 

in the pellet fraction, suggesting that under the experimental 

conditions used, ER binding was negligible, and Golgi associ-

ation of the WT protein was not maintained (Fig. 3 C). The 

CERT-S132A mutant protein was highly enriched in the pellet 

fraction, confi rming that the enhanced affi nity for PI(4)P stabi-

lizes membrane association in vivo. Together, these data imply 

that CERT, once bound to the Golgi complex, is phosphor-

ylated by PKD. This then decreases the affi nity of CERT to 

PI(4)P and, thereby, regulates the interaction of CERT with the 

Golgi complex. Because PI(4)P is also present at the plasma 

membrane, additional factors must specify CERT targeting to 

the Golgi complex. One candidate is Arf1, which has been shown 

to interact with the structurally related proteins OSBP and 

FAPP1 (Levine and Munro, 2002). Whether CERT phosphor-

ylation infl uences binding to such additional factors remains to 

be tested in the future.

The CERT protein has been shown to function as a lipid 

transfer protein (Hanada et al., 2003). Thus, we investigated 

whether CERT phosphorylation on serine 132 infl uenced its 

ability to bind and transfer ceramide between membranes. To 

this end, GFP-tagged versions of CERT-WT and -S132A were 

transiently expressed in HEK239T cells, and the cytosol frac-

tion was analyzed for ceramide-specifi c lipid transfer activity 

using a fl uorescence resonance energy transfer–based assay. In 

this assay, vesicles containing pyrene-labeled ceramide as a fl uor-

escent donor and quenching amounts of 2,4,6-trinitrophenyl-

phosphatidylethanolamine (TNP-PE) were used (Somerharju, 

2002; Olayioye et al., 2005). The lipid preparation used was 

 total extract from porcine brain, which is likely to contain PI(4)P. 

Upon the addition of cytosol-containing CERT-WT, a steady 

increase in fl uorescence was noted, which was not observed 

when control cytosol of vector-transfected cells was used (Fig. 3 D). 

Compared with the WT protein, CERT-S132A displayed a 

higher rate of lipid transfer, which was evident from a more 

rapid increase in pyrene fl uorescence (Fig. 3 D). Similar results 

were obtained when 0.5% PI(4)P was added to donor liposomes 

(unpublished data). This suggests that CERT phosphorylation 

on serine 132 down-regulates ceramide transfer activity, most 

likely by decreasing association of the protein with membranes. 

Previous data have already shown that PKD regulates the level 

Figure 3. CERT phosphorylation on serine 
132 modulates PI(4)P binding and ceramide 
transfer activity. HEK293T cells transiently ex-
pressing the indicated GFP-tagged CERT variants 
were harvested by hypotonic lysis, and the 
cytosol fraction was recovered after 100,000 g 
centrifugation. Samples containing equal amounts 
of GFP fl uorescence were used for protein–lipid 
overlay (A), fl otation (B), and in vitro ceramide 
transfer assays (D). (A) Phosphatidylinositol 
phosphate arrays were incubated with cytosol 
from cells transiently expressing GFP-tagged 
CERT-WT and -S132A, and bound proteins 
were detected with GFP-specific primary 
followed by HRP-labeled secondary antibody. 
(B) MLVs consisting of PC or PC + 5% PI(4)P 
were incubated with cytosol and separated 
by centrifugation. The amount of CERT protein 
in the top (MLV) and bottom fractions was 
quantifi ed by measuring GFP fl uorescence and 
set as 100%. Results are plotted as percent-
ages of protein recovered in the MLV fraction. 
(C) Cytosol (C) and the 100,000 g pellet (P) 
containing cellular membranes were analyzed 
by immunoblotting with GFP-specifi c antibody. 
The purity of the individual fractions was con-
fi rmed by detection of the transferrin receptor 
in the membrane and tubulin in the cytosolic 
fraction. (D) Donor liposomes containing TNP-PE 
and pyrene-ceramide were mixed with un-
labeled acceptor liposomes. After 60 s, cyto-
sol from cells transiently expressing GFP-tagged 
CERT-WT, -S132A, or GFP alone (con) was 
added, and pyrene fl uorescence at 395 nm 
was recorded.
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of PI(4)P at the Golgi complex by the phosphorylation-mediated 

activation of PI4KIIIβ (Hausser et al., 2005). Interestingly, 

PI4KIIIβ is critical for the transport of ceramide between the 

ER and the Golgi complex (Toth et al., 2006). Accordingly, to-

gether with the data presented in this study, a dual role for PKD 

in maintaining lipid homeostasis of Golgi membranes becomes 

apparent by controlling the on rate (via PI(4)P levels) and off 

rate (via direct phosphorylation) of CERT.

The transfer of ceramide from the ER to the TGN is es-

sential for SM synthesis at this compartment (Hanada et al., 

2003). Golgi-localized SM synthase 1 utilizes ceramide and PC 

to generate SM and DAG (Perry and Ridgway, 2005), the latter 

being a prerequisite for PKD recruitment and activation. Com-

pounds that block DAG production at the TGN inhibit the bind-

ing of PKD to TGN membranes and interfere with secretory 

transport (Baron and Malhotra, 2002). Therefore, increased ce-

ramide transfer from the ER to the TGN by the overexpression 

of CERT should result in an elevated local DAG pool and may 

consequently stimulate PKD activity and secretory transport. To 

test this hypothesis, we transiently expressed CERT-WT and 

-S132A in HEK293T cells and analyzed the autophosphor-

ylation of endogenous PKD. Compared with the control, the ex-

pression of both CERT-WT and -S132A increased PKD activity, 

as revealed by analyses with a phosphospecifi c PKD antibody 

(Fig. 4 A). CERT has been reported to possess kinase activity 

(Raya et al., 2000), making it possible that it activates PKD 

by direct phosphorylation. However, kinase assays clearly 

 demonstrated that PKD is not phosphorylated by CERT. More-

over, a kinase activity was associated with the CERT protein 

only under mild detergent conditions (Fig. S1). Thus, our re-

sults show that PKD activation is regulated by CERT proteins, 

most likely as a result of increased ceramide delivery and en-

forced SM/DAG synthesis. A similar function has recently been 

described for the lipid transfer protein Nir2 in the maintenance 

of DAG levels at the Golgi apparatus via regulation of the 

cytidine-5′-diphosphate–choline pathway (Litvak et al., 2005). 

RNAi-mediated knockdown of Nir2 decreased DAG and PKD 

levels at the Golgi complex and blocked secretory transport. 

Interestingly, this effect could be rescued by the addition of ex-

ogenous C6-ceramide (Litvak et al., 2005), indicating a critical 

role for ceramide in DAG synthesis and PKD recruitment to the 

Golgi complex.

To address the question of whether CERT-mediated PKD 

activation indeed translated into enhanced secretory transport, 

we made use of a plasmid encoding HRP fused to a signal se-

quence (ss). The fusion protein ssHRP can be used as a reporter 

for constitutive protein secretion (Bard et al., 2006). In control 

cells, secretion of ssHRP could be detected within 1 h and in-

creased over time (Fig. 4 B). Coexpression of PKD1-KD, which 

inhibits the secretory transport of cargo protein (Liljedahl et al., 

2001; Hausser et al., 2005), almost entirely abrogated ssHRP 

secretion. This confi rmed that HRP was secreted in a PKD-

 dependent manner in our assay. Coexpression of CERT-WT 

and -S132A strongly augmented the amount of secreted HRP 

(Fig. 4 B). Conversely, knockdown of CERT by RNAi in COS7 

cells inhibited the secretion of HRP (Fig. 4, C and D), confi rming 

the essential role for CERT in the constitutive exocytosis of cargo 

proteins. We could only detect a slight increase in secretion with 

the S132A mutant compared with the one observed with the WT 

protein. This is in accordance with the comparable activation of 

PKD by CERT-WT and -S132A (Fig. 4 A) but was unexpected in 

light of the substantially enhanced in vitro lipid transfer activity 

of the CERT mutant (Fig. 3 C). However, increased levels of 

ceramide may not necessarily translate into equivalent increases 

in DAG because DAG synthesis might be limited by the avail-

ability of PC and the activity of SM synthase.

Figure 4. CERT regulates PKD activation and secretory 
transport. (A) HEK293T cells transiently expressing CERT-WT 
and -S132A were lysed, and PKD activation was analyzed 
by  immunoblotting with pS910 PKD antibody (top). Equal 
loading was verifi ed by reprobing with PKD1-specifi c anti-
body (middle). The expression of CERT proteins was veri-
fi ed by immunoblotting with GFP-specifi c antibody (bottom). 
(B and D) HEK293T cells were transfected with the indicated 
expression plasmids (B), and COS7 cells were transfected 
with the indicated siRNAs (D) together with ssHRP-Flag plas-
mid as described in Materials and methods. The medium was 
analyzed for HRP activity after 0, 1, 3, and 6 h by chemilumi-
nescence. Values correspond to the mean of triplicate sam-
ples, and error bars represent SEM. RLU, relative light units. 
(C) COS7 cells were transfected with the siRNAs indicated, 
and CERT expression was analyzed after 72 h by immuno-
precipitation and Western blotting using a CERT-specifi c anti-
body (top). Tubulin levels were not affected (bottom). CERT is 
marked with an arrow.
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The accumulation of ceramide is known to affect Golgi 

membrane stability and induces vesicle fi ssion (Weigert et al., 

1999; Fukunaga et al., 2000). Therefore, we investigated whether 

overexpression of the CERT-S132A mutant affected its local-

ization and/or caused morphological changes of the Golgi 

 apparatus. In addition to concentrating in GS28-positive regions 

of the Golgi complex, the CERT-S132A mutant displayed a 

dispersed punctate staining (Fig. 5 A). However, the distribu-

tion of GS28 itself and that of TGN46 was not affected by the 

expression of CERT-S132A, nor were these proteins present in 

the vesicular structures observed with the mutant CERT protein 

(Fig. 5 A). This rules out fragmentation of the Golgi apparatus 

as a consequence of CERT-S132A overexpression. Some of 

the vesicular structures were found to contain the cargo pro-

tein ssHRP, providing evidence that these structures represent 

Golgi-derived transport carriers (Fig. 5 A). It thus appears that 

the increased membrane affi nity of CERT-S132A prevents its 

dissociation from budding vesicles. Interestingly, when co-

expressed with CERT-S132A, the PH domain of OSBP also 

 localized to these vesicles, indicating that these structures 

are PI(4)P positive (Fig. 5 B). The CERT-S132A mutant may 

therefore inhibit PI(4)P turnover, thus stabilizing the lipid on 

transport carriers. Of note, a CERT-S132E protein was indistin-

guishable from the alanine mutant in terms of cellular localiza-

tion and, thus, could not be used to mimic the phosphorylated 

state (unpublished data).

Collectively, our data support the following working 

model: PKD is recruited to the TGN by a local DAG pool that 

can be generated via different metabolic pathways. PKD then 

activates PI4KIIIβ, increasing PI(4)P levels at the TGN. This, 

in turn, recruits the CERT protein to the Golgi complex, where 

it contributes to PKD activation and vesicular transport pro-

cesses by providing ceramide as a precursor for further DAG 

production. The system is tightly regulated by a negative 

feedback loop: active PKD phosphorylates CERT at serine 

132, thus decreasing the affi nity of CERT toward its lipid 

target PI(4)P to ensure continuous rounds of lipid transfer 

from the ER to the Golgi compartment. In conclusion, we have 

Figure 5. CERT-S132A localizes to PI(4)P-positive secretory 
vesicles. (A and B) COS7 cells were transiently transfected with 
the indicated expression plasmids. Cells were fi xed and stained 
with GS28- (red; A, top), TGN46- (red; A, middle), and Flag-
specifi c antibodies (red; A, bottom; and B). The boxed areas 
are shown in the enlargement. Double-positive vesicles are 
marked with arrows. Bars, 20 μm; (enlargement) 5 μm.
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identifi ed CERT as a PKD substrate and provide evidence for 

a novel relationship between membrane lipid biogenesis and 

protein secretion.

Materials and methods
Immunofl uorescence microscopy
Cells were fi xed in 4% PFA for 10 min, washed, and incubated with PBS 
containing 0.1 M glycine for 15 min. Cells were permeabilized with PBS 
containing 0.1% Triton X-100 for 5 min and blocked with 5% goat serum 
in PBS containing 0.1% Tween 20 for 30 min. Cells were then incubated 
with primary antibody diluted in blocking buffer for 2 h followed by incu-
bation with secondary antibodies diluted in blocking buffer for 1 h. Cover-
slips were mounted in Fluoromount G (Southern Biotechnology Associates, 
Inc.) and analyzed on a confocal laser-scanning microscope (TCS SL; 
Leica) using 488- and 543-nm excitation and a 40.0/1.25 HCX PL APO 
objective lens. Images were processed with Photoshop (Adobe). All images 
shown are stacks of several confocal sections.

Protein extraction, immunoprecipitation, and Western blotting
Whole cell extracts were obtained by solubilizing cells in NP-40 extraction 
buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% NP-40, 1 mM sodium 
 orthovanadate, 10 mM sodium fl uoride, and 20 mM β-glycerophosphate 
plus Complete protease inhibitors [Roche]). Lysates were clarifi ed by cen-
trifugation at 16,000 g for 10 min. For immunoprecipitations, equal 
amounts of protein were incubated with specifi c antibodies for 2 h on ice. 
Immune complexes were collected with protein G–Sepharose beads (GE 
Healthcare) and washed three times with NP-40 extraction buffer. Whole 
cell extracts or immunoprecipitated proteins were subjected to SDS-PAGE, 
and proteins were blotted onto polyvinylidene difl uoride membranes (Roth). 
After blocking with 0.5% blocking reagent (Roche) in PBS containing 0.1% 
Tween 20, fi lters were probed with specifi c antibodies. Proteins were visu-
alized with HRP-coupled secondary antibody using the ECL system (Pierce 
Chemical Co.). Stripping of membranes was performed in 62.5 mM Tris, 
pH 6.8, 2% SDS, and 100 mM β-mercaptoethanol for 30 min at 60°C. 
Membranes were then reprobed with the indicated antibodies.

Recombinant protein purifi cation and in vitro kinase assays
BL21 bacteria were transformed with pGEX6P-Flag-CERT-WT(1–138) and 
-S132A(1–138) vectors. Expression was induced with 0.5 mM IPTG for 4 h 
at 30°C. Bacteria were harvested and resuspended in PBS containing 
50 μg/ml lysozyme, Complete protease inhibitors (Roche), 10 mM sodium 
fl uoride, and 20 mM β-glycerophosphate. Triton X-100 was added to a fi nal 
concentration of 1% before sonication. GST-CERT fusions were purifi ed from 
clarifi ed lysate with glutathione resin (GE Healthcare). Recombinant proteins 
were incubated with purifi ed PKD1 from insect cells in kinase buffer (50 mM 
Tris, pH 7.5, 10 mM MgCl2, and 1 mM DTT) in the presence of either 2 μCi 
γ-[32P]ATP or 75 μM of cold ATP for 30 min. Samples were resolved by 
SDS-PAGE, blotted onto membrane, analyzed on a phosphorimager (Storm 
860; Molecular Dynamics), and detected with the indicated antibodies.

Cellular fractionation
Cells were harvested in hypotonic buffer (50 mM Tris, pH 7.4, containing 
Complete protease inhibitors, 1 mM PMSF, 5 mM β-glycerophosphate, 
and 5 mM sodium fl uoride) and sheared by passage through a 25-G/16-mm 
needle. Nuclei were removed by centrifugation at 500 g, and cytosol and 
membrane fractions were obtained by centrifugation at 100,000 g.

Phosphatidylinositol phosphate arrays, fl otation, and ceramide 
transfer assays
The amount of expressed CERT protein in the cytosolic fraction was quanti-
fi ed by GFP peak emission at 480–550 nm (excitation of 466 nm). Phos-
phatidylinositol phosphate arrays (Echelon) were blocked in TBS-T (10 mM 
Tris, pH 8, 150 mM NaCl, and 0.1% Tween 20) containing 3% fatty 
acid–free BSA (Roth) followed by incubation with 500 μg cytosol contain-
ing equal amounts of GFP proteins in 5 ml of blocking buffer for 1 h. Bound 
proteins were detected with anti-GFP antibody followed by HRP-conjugated 
secondary antibody. Flotation assays were performed by incubating 50 μl 
cytosol containing equal amounts of GFP-tagged CERT proteins with 100 μl 
MLVs in 50 mM Tris, pH 7.5, and 50 mM NaCl buffer for 10 min at RT. 
The suspension was adjusted to 30% sucrose by the addition of 100 μl of 
75% sucrose and overlayed with 200 μl of 25% sucrose in buffer and 50 μl 
sucrose-free buffer. Samples were centrifuged at 240,000 g for 1 h. The 
bottom (250 μl) and top (100 μl) fractions were collected and analyzed by 

fl uorescence spectrometry. Protein-mediated transfer of ceramide between 
small unilamellar vesicles was measured as described previously (Olayioye 
et al., 2005). The transfer assay mixture contained donor vesicles (2 nmol 
of lipid/ml) composed of brain lipids, pyrene-labeled C16-ceramide, TNP-PE 
(provided by P. Somerharju, University of Helsinki, Helsinki, Finland; 
88.6:0.4:11 mol percent), and a 10-fold excess of acceptor vesicles com-
posed of brain lipids. Fluorescence intensity was recorded at 395 nm (exci-
tation of 345 nm and slit widths of 4 nm) before and after the addition of 
75 μg cytosol from HEK293T cells transiently expressing GFP-tagged CERT-
WT and -S132A. Fluorescence intensities were normalized to the maximum 
intensity obtained after the addition of 0.5% Triton X-100 and the maxi-
mum GFP fl uorescence to account for different protein expression levels.

Secretion assay
HEK293T cells were cotransfected with ssHRP-Flag plasmid together with 
empty vector, pEGFPN1-PKD1-KD, pcDNA3-Flag-CERT-WT, and -S132A at 
a ratio of 1:6.5, respectively. For CERT RNAi, COS7 cells were transfected 
with ssHRP-Flag plasmid, harvested after 8 h, replated, and transfected with 
siRNAs. HEK293T and COS7 cells were washed with serum-free medium 
24 and 48 h after transfection, respectively, and HRP secretion was quanti-
fi ed by incubation of clarifi ed cell supernatant with ECL reagent. Measure-
ments were performed with a luminometer (Lucy2; Anthos) at 450 nm.

Online supplemental material
Fig. S1 shows that CERT does not phosphorylate PKD directly. Fig. S2 shows 
the colocalization of CERT-WT and GS28. Supplemental materials and 
methods provides information about the antibodies and reagents used, DNA 
constructs, and cell culture and transfection. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200612017/DC1.
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