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Genomic Characterization and
Probiotic Potency of Bacillus sp.
DU-106, a Highly Effective Producer
of L-Lactic Acid Isolated From
Fermented Yogurt
Pan Li, Wenni Tian, Zhuo Jiang, Zuanhao Liang, Xueyin Wu and Bing Du*

College of Food Science, South China Agricultural University, Guangzhou, China

Bacillus sp. DU-106, a newly isolated member of Bacillus cereus group, exhibits the
predominant ability to produce L-lactic acid. The probiotic potency of test strain revealed
its survivability at acidic pH, bile salts and viability in simulated gastric juice in vitro.
The acute oral toxicity test indicated its no toxicity to laboratory mice in vivo. We
further determined the complete genome of strain DU-106 to understand genetic basis
as a potential probiotic. It has a circular chromosome and three plasmids for a total
genome 5,758,208 bp in size with a G + C content of 35.10%. Genes associated
with lactate synthesis were found in the DU-106 genome. We also annotated various
stress-related, bile salt resistance, and adhesion-related domains in this strain, which
likely provide support in exerting probiotic action by enabling adhesion to host epithelial
cells and survival under gastrointestinal tract. Moreover, strain DU-106 genome lacks
the virulence genes encodes cereulide synthetase, enterotoxin FM, and cytotoxin K.
These phenotypic and genomic probiotic potencies facilitate its potential candidate as
probiotic starter in food industry.
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INTRODUCTION

Lactic acid has been widely used as a valuable chemical in food industries. Nowadays, lactic
acid bacteria including Lactobacillus rhamnosus and Lactococcus lactis are frequently used in
industrial production of lactic acid (Okano et al., 2010). Recently, some thermo-tolerant Bacillus
members, including Bacillus coagulans (Zhang, 2014), Bacillus licheniformis (Wang et al., 2011),
and other Bacillus strains (Wang et al., 2010; Poudel et al., 2015), were considered as new lactic
acid producers. Compared to the lactic acid fermentation under mesophilic conditions, lactic acid
producers of thermophilic Bacillus species have been shown to be promising in industrial-scale
fermentations with a low energy and a low risk for contamination (Poudel et al., 2015).

Probiotics are live microorganisms that confer beneficial effects on the host (Hill et al., 2014).
Most commonly used probiotic bacteria are autochthonous mainly including the lactic acid
bacteria belonging to the genera of Lactobacillus and Bifidobacterium. Meanwhile, Hong et al.
(2009) reported that Bacillus subtilis and probably other species are human gut commensals.
Bacillus probiotics are currently of keen interest to the probiotic industry as they can be marketed
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in the spore form, which was easier to survive through the
gastrointestinal tract and has indefinite shelf life (Hong et al.,
2010). Recently, probiotic Bacillus species available in the market
include Bacillus subtilis, Bacillus cereus, Bacillus licheniformis,
Bacillus pumilus, Bacillus clausii, and Bacillus coagulans (Hong
et al., 2010; Indu et al., 2016).

Bacillus coagulans is unique in that it shows characteristics
of both Bacillaceae and Lactobacillaceae. It shares certain
characteristics including the outstanding ability of lactic acid
production (Juturu and Wu, 2017). It has been demonstrated
to show a positive effect in the treatment of irritable bowel
syndrome (Majeed et al., 2015), bacterial vaginosis (Ratna et al.,
2012), and gingivitis (Alkaya et al., 2016) by several clinical
trials. In this communication, we reported a Bacillus isolates with
predominant ability to produce L-lactic acid and also evaluated
its properties to use as a potential probiotic.

MATERIALS AND METHODS

Isolation of DU-106 and Evaluation of Its
L-Lactic Acid Production Capacity
Bacillus sp. DU-106 was isolated from traditional fermented
yogurt with the De Man, Rogosa and Sharpe (MRS) broth (Difco,
Paris, France) at 37◦C. The strain was firstly activated at 37◦C
with MRS agar and was introduced to 5 mL MRS broth. Then it
was incubated at 37◦C for 24 h on a shaking incubator (Yuejin
THZ-82A, Shanghai, China) at 150 rpm, which was used as
the seed culture. The lactic acid fermentation was carried out
in 500 mL conical flasks containing 200 mL MRS at 38◦C and
150 rpm broth with an inoculation rate of 1% (v/v). The samples
were taken every 12 h for further analysis.

The pH was measured by a digital pH Meter (Inesa pHs-
3C, China). The L-lactic acid concentration was determined by
High performance liquid chromatography (HPLC) (Shimadzu,
LC-20AT, Japan) with a WondaSil C18-WR (4.6 × 250 mm,
5 µm) column at 35◦C using 0.2% metaphosphoric acid solution
as the elution at a flow rate of 0.8 mL/min, and quantified with a
UV-VIS detector at 210 nm.

Identification of DU-106 by 16S rRNA
Sequencing
The genomic DNA of strain DU-106 was extracted using the
Qiagen DNA extraction kit. The 16S rRNA genes was PCR-
amplified according to previously reports (Garcia et al., 2016),
and then sequenced by Invitrogen (Shanghai, China). The
neighbor-joining phylogenetic tree was constructed with MEGA
6.0 software with a bootstrap value of 1,000 (Houfani et al., 2017).
Gram staining was performed by using a Gram-stain reagent kit
(HuanKai, Guangzhou, China).

Potential Probiotic Characterization
in vitro
For acid tolerance test, 6 × 107 cfu/mL of strain DU-106
were dissolved in 0.1 M sodium citrate-hydrochloric acid buffer
solution (pH 1.55, 2.42, 4.94). For bile tolerance, 6 × 107

cfu/mL of strain DU-106 were inoculated in 0.01 M PBS buffer
(pH 7.0) containing 0.3% bile salt. For simulated gastric and
intestinal fluid tolerance, 6 × 107 cfu/mL of strain DU-106 were
inoculated in the artificial gastric juice (CZ0211, LEAGENE,
Beijing, China) and artificial intestinal juice (CZ0201, LEAGENE,
Beijing, China). The survival rates was calculated by measuring
the survival cell counts after incubation at 37◦C for 2 h using plate
counting in MRS agar and expressed as percentage of the original
cell counts.

Toxicological Evaluation in vivo With
Laboratory Mice
The in vivo toxicological evaluation of DU-106 was carried out
in Guangdong Medical Laboratory Animal Center (Guangzhou,
China) using the BALB/c and KM mice with certificate of
conformity No. SCXK 2013-0002. Both of twenty BALB/c and
KM healthy mice were randomly divided into two groups, each
group consisted of five males and five females. The BALB/c mice
were administered with the bacterial doses of 3 × 108 cfu per
mouse per day by continuous oral gavage for 7 days using a sterile
pipette (Benjakul et al., 2018). For the acute oral toxicity test, the
KM mice were orally administered with the initial bacterial doses
of 1× 1012 cfu Kg−1 body weight and then were observed for 14
days. The mice of the control group were administered using the
same amount of physiological saline.

The body weight of each BALB/c and KM mouse was recorded
on days 0 and 7, or recorded on days 0, 1, 3, 7, and 14. At the end
of the experiment, all the surviving BALB/c mice were sacrificed
by euthanasia, the D-lactic acid level of blood was determined by
the D-lactic acid ELISA kit. Full gross pathological examination
of the organs was conducted. The median lethal dose (LD50) was
calculated according to previously (Yang et al., 2016). All animal
experiments were performed in compliance with the principles of
the Animal and Ethics Review Committee of Guangdong Medical
Laboratory Animal Center, and Ethics Review Committee of
South China Agricultural University approved the protocols used
in this study.

Complete Genome Sequencing and
Annotation
Complete genome sequencing of strain DU-106 was carried out
by a combined strategy of PacBio RSII sequencing and Illumina
HiSeq 4000 sequencing technology. SOAPnuke and SMRT
analysis 2.3.0 software were performed to filter the raw data
(Chin et al., 2013). RS_HGAP Assembly3 in SMRT analysis v2.3.0
was employed to assemble the clean Pacbio subreads (Evivie
et al., 2017). Then, the assembled fragments were further aligned
and corrected with HiSeq clean data using SOAPaligner 2.21,
and were further scaffolded and checked to produce a circular
chromosome using SSPACE-LongRead (Khaleque et al., 2017).
The protein coding sequences were predicted with Glimmer 3.02
(Delcher et al., 2007), and annotations of gene functions were
performed according to NCBI Prokaryotic Genome Annotation
Pipeline. The ncRNA was annotated with Rfam database, and was
predicted with cmsearch program under default parameters by
Rfam. The micro- and mini-satellite DNA were searched using
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FIGURE 1 | Colonial morphology (a), Gram stain image (b), and phylogenetic analysis (c) of strain DU-106. Strain DU-106 is grew on MRS plate after 48 h
cultivation at 37◦C. Neighbor-joining phylogenetic tree is based on the 16S rRNA gene sequences of strain DU-106 and representative strains from GenBank.
Significance of each branch is indicated by a bootstrap value calculated for 1000 replicates. Numbers at branching points are bootstrap values >50%. GenBank
accession numbers are given in parentheses. Bar, 0.005 substitutions per nucleotide position.

FIGURE 2 | High performance liquid chromatography (HPLC) chromatograms of fermentation culture (A) of strain DU-106 after 48 h fermentation at 37◦C in 200 mL
MRS broth. Time course of lactic acid production and pH (B) during the fermentation by DU-106 in MRS medium at 37◦C. The pH was declined from initial 5.58 to
3.35 after 72 h fermentation at 37◦C.

the RepeatMasker v3-3-0 and Tandem Repeats Finder (TRF)
software v4.04 (Saha et al., 2008).

Comparative Genome Analysis
Six genomes of Bacillus strains, including Bacillus cereus
ATCC 14579, Bacillus thuringiensis ATCC 10792, Bacillus
toyonensis BCT-7112, Bacillus mycoides ATCC 6462, Bacillus
pseudomycoides DSM 12442, and Bacillus coagulans ATCC 7050,
were chosen for comparative genomics analysis with Bacillus sp.
DU-106. The gene families were extracted by Hcluster-sg 0.5.1
with default parameters (Lopes et al., 2017). Orthologous genes
between all organisms were detected with Proteinortho (Lechner

et al., 2011) including protein blast with a similarity cut-off
of (50%) and an E-value of 1e−10 (Hollensteiner et al., 2017).
Multiple sequence alignment was performed using PRANK
v140110 (Loytynoja and Goldman, 2005). Genomic synteny
was analyzed on the basis of the results of the alignment,
which was conducted using MUMmer v3.23 and LASTZ
v1.03.54 tools between DU-1061 and referenced genome under
default parameters (Tang et al., 2011; Chen et al., 2018). The
potential positions of single nucleotide polymorphisms (SNPs)
were primary generated by MUMmer v3.23, and were further
identified by BLAT 35 (Kent, 2002). Finally, the SNPs from
potential paralogous regions were excluded and confirmed with
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FIGURE 3 | The potential probiotic properties of Bacillus sp. DU-106 in vitro. Survival rates of Bacillus sp. DU-106 in different pH (A) and the simulated gastric fluid,
0.3% bile salt, and simulated intestinal fluid (B) after 2 h treatment.

FIGURE 4 | Toxicological evaluation of Bacillus sp. DU-106 in vivo with laboratory mice. Mean body weights (A) and D-lactic acid levels of blood (B) of BALB/c mice
after continuous gavage for 7 days (3.0 × 108 cfu d-1). Mean body weights of male and female KM mice during acute oral toxicity (C).

RepeatMasker and TRF (Saha et al., 2008). The maximum
likelihood phylogenetic tree was constructed with PhyML 3.0
based on SNP differences across the whole genome (Guindon
et al., 2010).

Nucleotide Sequence Accession Number
The complete genome sequence of Bacillus sp. DU-106 was
deposited in the Genomes database under the accession number
CP026607 (BioProject: PRJNA432450). The raw data of Bacillus
sp. DU-106 genome sequencing data have been uploaded to the

NCBI Sequence Read Archive as accession number SRP157864
(BioProject: PRJNA485855).

RESULTS AND DISCUSSION

Identification and L-Lactic Acid
Production Capacity of DU-106
Bacillus sp. DU-106 was gram-stain-positive rod (Figure 1b). It
was placed in the genus Bacillus by morphological observation
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FIGURE 5 | Circular representation (A) and features of the genome of Bacillus sp. DU-106 (B). From the outer to inner circle: (1) predicted protein-coding sequences
(CDSs); (2) predicted CDSs related to COG categories; (3) predicted CDSs related to KEGG categories; (4) predicted CDSs related to GO categories; (5) tRNA, rRNA
and ncRNA distribution; (6) GC content; and (7) GC skew.

FIGURE 6 | Comparative genome analyses of Bacillus sp. DU-106 and other Bacillus strains. Venn diagram of the genome comparison of Bacillus sp. DU-106 with
other B. cereus strains (A) Venn diagram displays the orthologous genes between B. cereus ATCC 14579, B. thuringiensis ATCC 10792, B. toyonensis BCT-7112,
and B. mycoides ATCC 6462. The maximum likelihood phylogenetic tree was constructed with PhyML based on SNP differences across the whole genome
(B) Bootstrap support values were calculated from 100 replicates.

and 16S rRNA gene sequencing (Figure 1). The phylogenetic tree
indicated that the strain DU-106 formed a clade with the Bacillus
cereus group (Figure 1c) with 16S rRNA gene sequence similarity
levels of 97.05%-99.92%, whereas their similarity to other Bacillus
species was below 95.7%. It is well known that these species of
B. cereus group are genetically very close (Guinebretière et al.,
2013).

As shown in Figure 2, the strain DU-106 could ferment
glucose to L-lactic acid (Figure 2A), and the production of
L-lactic acid was reached 13.04 g L−1 in MRS medium (Difco
Laboratories, Detroit, MI, United States) after 48 h fermentation
at 37◦C (Figure 2B). Accordingly, the pH value was declined
from initial 5.58 to 3.35 after 72 h fermentation at 37◦C. The
strain DU-106, to the best of our knowledge, is the first effective
L-lactic acid producer of B. cereus group.

In vitro Determination of Probiotic
Characteristics
Generally, probiotics must have the ability to survive passage
through the stomach and small intestine (Tyagi and Prasad,
2015). Therefore, resistance to the low pH of the gastric juice in
the stomach and the bile salt in the small intestine is a prerequisite
for probiotic (Shehata et al., 2016). In this study, the survival
rates of Bacillus sp. DU-106 in pH 1.55, 2.42, and 4.94 were 7.14,
72.09 and 96.77% (Figure 3A), respectively. The survival rates of
Bacillus sp. DU-106 in simulated gastric fluid, 0.3% bile salt, and
simulated intestinal fluid after 2 h treatment were 74.29, 59.67,
and 150.52% (Figure 3B), respectively. These results indicated
that strain DU-106 might possess excellent potential probiotic
properties.
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In vivo Toxicological Evaluation of
DU-106 With Laboratory Mice
No significant differences (p > 0.05) in body weights and
D-lactic acid levels of blood were detected in BALB/c mice in
comparison to the control groups after continuous gavage for 7
days (Figures 4A,B). There was no clinical abnormality found
in any BALB/c animal during this study. All male and female
KM mice survived, gained normal body weight, and appeared
active and healthy during acute oral toxicity (Figure 4C). No
gross abnormalities or pathological alterations were noted for
any of the KM mice when necropsied at the end of the 14-day
observation period. The acute oral LD50 of Bacillus sp. DU-
106 was found to be greater than 1.0 × 1012 cfu kg−1 body
weight. The results of acute oral toxicity test indicated that dose of
1.0× 1012 cfu kg−1 body weight did not give rise to acute toxicity
in KM mice, hence this dose was considered to be safe for humans
(Yang et al., 2016).

Genome Features of DU-106
After filtering, approximately 1038 Mb Pacbio subreads and
1354 Mb HiSeq clean data were generated. The genome of
strain DU-106 contained one 5,415,320 bp circular chromosome
(Figure 5A) and three circular plasmids. The G + C contents
of the chromosome and plasmids were 35.29, 31.82, 33.65,
and 29.38%, respectively. A total of 5848 protein-coding genes
(CDSs), 42 rRNA and 106 tRNA genes were predicted in
chromosome sequence (Figure 5B). Among these CDSs, 3327
genes were classified into 20 clusters of orthologous groups
(COG) functional categories (Supplementary Table S1). More
than 35% genes were involved in these functions of amino
acid transport and metabolism, transcription, carbohydrate
transport and metabolism, energy production and conversion,
and Inorganic ion transport and metabolism (Supplementary
Table S1). According to the annotation, Bacillus sp. DU-106

was predicted to possess complete metabolic pathways, including
glycolysis, the tricarboxylic acid cycle, and the pentose phosphate
pathway.

Comparative Genome Analyses
Chromosomes of the Bacillus cereus group exhibit a high level
of synteny and protein similarity, with limited differences in
gene content (Rasko et al., 2005). The strain DU-106 showed a
high synteny of 92.39% with B. cereus ATCC 14579, 78.12% with
B. thuringiensis ATCC 10792, 88.14% with B. toyonensis BCT-
7112, 80.19% with B. mycoides ATCC 6462, and 64.59% with
B. pseudomycoides DSM 12442, but displayed a low synteny of
4.82% with B. coagulans ATCC 7050 (Supplementary Figure S1).
The over all core genome of these species is comprised of 1,383
orthologs with exception of B. pseudomycoides DSM 12442 and
B. coagulans ATCC 7050 (Figure 6A). The genomes of strain
DU-106 and B. cereus ATCC 14579 appear to be most similar
by sharing 1,525 orthologs, whereas 1,489 orthologs were found
between strain DU-106 and B. toyonensis BCT-7112. A total of
93 unique coding sequences in the genome of strain DU-106
were identified in the comparison (Figure 6A). In addition, a
maximum likelihood phylogenetic tree based on SNP differences
across the whole genome revealed that Bacillus sp. DU-106 shown
the highest similarity with B. cereus ATCC 14579 (Figure 6B).

Genomic Characterization of Probiotic
Potency
Furthermore, we performed genomic data integrating with
phenotypic assays to have a comprehensive view of relevant
probiotic potency and safety aspects for the strain DU-106.
Bacillus sp. DU-106 carried genes known to be involved in
lactate synthesis including L-lactate dehydrogenase, D-lactate
dehydrogenase, lactaldehyde dehydrogenase, and malate/lactate

TABLE 1 | Predicted genes involved in probiotic potency in Bacillus sp. DU-106.

Predicted function Predicted genes

Bacillus sp. DU-106 B. cereus 14579 B. coagulans 7050

Lactate synthesis lldh, dldh, ldh, m/ldh lldh lldh

Virulence gene hlyIII, hlyBL hlyIII, hlyBL, cytK, nheA hlyIII

Adhesion protein cbp, fbpIII cbp, fbp fbpA

Acid resistance-related

Protection or repair of
macromolecules

dnaK, dnaJ, clpB, groES, groEL, recA, uvrABC dnaK, dnaJ, clpB, groES, recA, uvrC dnaK, dnaJ, clpB, groEL, recA, uvrABC

Fatty acid synthesis fabF, fadD, fabH, fabI, accC – fabF, fadD, fabH, fabI, accC

Alkali production arcA, arcC arcA, arcC –

Transcriptional regulators sigB, ctsR, hrcA, crp family sigB, ctsR, hrcA, crp family sigB, ctsR, hrcA, crp family

Acid shock response aspS – aspS

Metabolic rearrangements alsD, csa alsD alsD

Glycine betaine ABC
transport system

opuAB – opuCC

Bile salt resistance bass, cgh bass, cgh bass

cbp, gene for a potential collagen-binding protein; fbpIII, gene for fibronectin-binding protein type III domain; bass, gene for bile acid sodium symporter; cgh, gene for
choloylglycine hydrolase; and –, not found.
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dehydrogenase. The genes coding for L-lactate dehydrogenase
were also found in B. cereus ATCC 14579 and B. coagulans
ATCC 7050 (Mols and Abee, 2011; Johnson et al., 2015).
Moreover, genes encoding chaperone proteins DnaK, DnaJ
and ClpB, ectoine biosynthesis, fatty acid synthesis, and ABC
transporters for glycine betaine uptake were also identified
in the genome sequence (Table 1). These proteins provide
resistance to heat shock, acid and oxidative stress across all
the probiotic genomes (Dopson et al., 2016). Interestingly, for
examples, the gene involved in acid resistance of glycine betaine
ABC transport system and fatty acid synthesis were found in
B. coagulans but not B. cereus (Mols and Abee, 2011; Johnson
et al., 2015). Betaine could enhance lactic acid production
of B. coagulans by protecting L-lactate dehydrogenase activity
and cell growth under osmotic inhibition (Xu and Xu, 2014).
Changes in membrane fatty acid composition and content
affected membrane fluidity, which also involved in the adaptation
of acid stress (Wang et al., 2005). Previous work indicated
that controlling the intracellular concentrations of fatty acids
by acting on environmental conditions was an interesting way
to improve the cryotolerance of Lactobacillus bulgaricus CFL1
(Streit et al., 2008). The genes involved in fatty acid synthesis were
detected in the Bacillus sp. DU-106 (Table 1), as well as in the
B. coagulans, but not found in B. cereus (Mols and Abee, 2011;
Johnson et al., 2015).

We also identified one gene coding for bile acid sodium
symporter and two genes coding for choloylglycine hydrolase
that provides the organism resistance to bile salt (Indu et al.,
2016). Moreover, we annotated genes coding for adhesion
proteins including collagen-binding protein and fibronectin-
binding protein type III domain, those potentially aiding in
bind to the digestive tract and reduce pathogenic adherence in
probiotics (Granato et al., 2004). These findings at the genomic
level further agreed that Bacillus sp. DU-106 possessed potential
probiotic properties (Figure 3).

Generally, many pathogenic and virulence associated genes
were predicted in the genome of B. cereus group food-poisoning
strains (Arnesen et al., 2008; Rossi et al., 2018). For examples,
virulence gene of cytK coding for cytotoxin K was commonly
spread in B. cereus and B. thuringiensis. In this study, strain
DU-106 genome lacks the genes encodes cereulide synthetase,
enterotoxin FM, and cytotoxin K. These findings at the genomic

level are in agreement with the proven safety of acute oral
toxicity test (Figure 4). However, several hemolysin family
genes were found in the genome of strain DU-106 (Table 1).
We speculated that the hemolysin was inactive protein, since
some of their toxin components show important amino acid
changes in presence of the Sec type signal peptide (Fagerlund
et al., 2010; Jiménez et al., 2013). This result was consist with
previously reports, which reported that B. toyonensis BCT-7112T ,
a member of B. cereus group, contained the virulence gene of
non-hemolytic enterotoxin an hemolysin BL, but had been used
as a probiotic in animal feed in Japan over 40 years (Jiménez
et al., 2013). Similarly, the probiotic B. coagulans ATCC 7050 also
contained the gene for hemolysin (Johnson et al., 2015). Overall,
these results indicated that Bacillus sp. DU-106 is prospective
and potential probiotic candidates for industrial applications
subject to further detailed investigations on their suitability for
consumption as probiotic.
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Bacillus toyonensis BCT-7112, Bacillus mycoides ATCC 6462, Bacillus
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