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During metastasis, only a fraction of genetic diversity in a primary
tumor is passed on to metastases. We calculate this fraction of
transferred diversity as a function of the seeding rate between
tumors. At one extreme, if a metastasis is seeded by a single
cell, then it inherits only the somatic mutations present in the
founding cell, so that none of the diversity in the primary tumor
is transmitted to the metastasis. In contrast, if a metastasis is
seeded by multiple cells, then some genetic diversity in the pri-
mary tumor can be transmitted. We study a multitype branching
process of metastasis growth that originates from a single cell but
over time receives additional cells. We derive a surprisingly sim-
ple formula that relates the expected diversity of a metastasis to
the diversity in the pool of seeding cells. We calculate the proba-
bility that a metastasis is polyclonal. We apply our framework to
published datasets for which polyclonality has been previously
reported, analyzing 68 ovarian cancer samples, 31 breast can-
cer samples, and 8 colorectal cancer samples from 15 patients.
For these clonally diverse metastases, under typical metastasis
growth conditions, we find that 10 to 150 cells seeded each metas-
tasis and left surviving lineages between initial formation and
clinical detection.

metastasis | clonal diversity | tumor heterogeneity | branching process |
population genetics

Intratumoral heterogeneity is an inevitable consequence of can-
cer evolution (1, 2). At the time of cancer diagnosis, many

clones (subpopulations of genetically similar cells that share a
common ancestry) coexist in the primary tumor (3, 4). When
some of these clones give rise to metastases, the clonal hetero-
geneity present in the primary tumor is distributed to distant
sites (5–8). Across cancer types, the mutations with the great-
est predicted functional consequences are predominantly shared
across all metastases, suggesting that these mutations first arose
in the primary tumor and were then distributed to each metas-
tasis (9). Since primary tumors are often surgically removed, the
heterogeneity within metastases determines the probability for
treatment efficacy (2, 3, 10).

While it frequently has been assumed that individual metas-
tases are seeded exactly once by a single cell or a small cluster
of similar cells (11, 12), recent studies have identified metas-
tases with multiple subpopulations derived from different clones
in the primary tumor (13–19). This transfer of clonal diversity
suggests at least one of two possible mechanisms: that metas-
tases can be seeded multiple times by different migrating cells
(consecutive seeding) or that metastases can be seeded by a clus-
ter of multiple clonally diverse cells (polyclonal cluster seeding).
Although some empirical and theoretical work has suggested
that circulating tumor cell clusters can be genetically diverse
(20–22), the diversity established by polyclonal cluster seeding
cannot necessarily be maintained during metastasis growth with-
out consecutive seeding, as only a small number of cell lineages
typically survive the stochastic growth process (17). However,
established tumors may be consecutively seeded by an influx

of cells from other tumors (23, 24), which presents a plau-
sible mechanism for the dynamic transfer of clonal diversity
between tumors.

The probability to successfully colonize a distant site depends
on many factors (e.g., cancer type, metastatic potential, distance
to site, and anatomy), described by the classical “seed and soil”
hypothesis put forth more than a century ago (25–27). A conse-
quence of this hypothesis is that if a primary tumor disseminates
highly potent seeds to a perfectly compatible and nearby soil, this
site will receive a constant stream of incoming and proliferat-
ing cancer cells. In contrast, a distant and unfavorable colonized
site might receive one or very few cancer cells that can then
expand. The seeding of metastases is therefore bounded by two
extreme hypothetical scenarios: (i) A site is colonized by a sin-
gle founding cell that expands by cell division to a detectable
metastasis, such that the primary tumor and metastasis share
only the mutations present in that founding cell, and (ii) a site
is colonized by continuous influx of cancer cells and expands
solely by this continuous influx, such that the primary tumor
and metastasis on average contain the same genetic diversity
(Fig. 1).

Many metastases might be established by a process which lies
between these two extreme points, in which a tumor expands due
to a balance of consecutive seeding events and subsequent cell
divisions. However, previous mathematical models of metastasis
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Fig. 1. Seeding influx determines the intratumoral heterogeneity of metastases. A mature primary tumor, pictured at Left with N = 3 clones (colored blue,
green, or red) and a Simpson diversity index D1 = 62%, seeds M = 4 metastases, each with a Simpson diversity index D2. The average fraction of neutral
clonal diversity in the primary tumor that is transferred to each metastasis depends only on the seeding influx k, defined as the mean number of cells that
disseminate from the primary tumor to each metastasis per cell generation time. If k is very small (Top row), each metastasis is seeded only once by the
primary tumor and hence will contain only one clone and no diversity. At the other extreme, if k is very large (Bottom row), each metastasis grows via
continuous seeding from the primary tumor and hence will share the same genetic diversity as the primary tumor. We find that for all intermediate cases
(Middle row), the average fraction of transferred neutral clonal diversity is D̄2/D1 = k/(1 + k).

have focused almost exclusively on extreme i, single-cell seed-
ing (28–32). Although not yet studied in the context of cancer
genetics, some mathematical models of consecutive immigration
have been applied to other biological systems, in particular island
populations (33–36). Yet these models from population genetics
typically assume populations of fixed size (37), whereas the rapid
growth of tumors can lead to dramatically different predictions
(38, 39).

Here we develop a mathematical framework that generalizes
past models to allow for multiple consecutive seeding events
during tumor expansion, enabling us to assess and estimate the
balance between seeding and cell division during the growth of
metastases. This framework establishes a precise, quantitative
mapping between the rates of seeding influx to each metastasis
and the clonal diversity of metastases. This mapping can be used
to predict tumor clonal diversity when information about the rate
of seeding is known, and inversely it can be used to estimate the
seeding rate from clone frequency data measured across multiple
tumors within a patient.

Model Formulation
We developed a mathematical framework using a multitype
continuous-time branching process (4, 9, 40–42) to assess the
dependence of metastatic heterogeneity on the seeding rate,
birth rate, and death rate of cancer cells in a growing lesion
(SI Appendix, Fig. S1). We consider a primary tumor that
seeds M growing metastases and assess the composition of
each metastasis once it has reached a detectable size Y . Each
cell in the metastases derives from one of N clones, where
every clone has a constant size in the primary tumor. Cells
from each clone i = 1, . . . ,N arrive at a metastasis site with
a constant seeding rate λi . This seeding rate of each clone
reflects the product of three factors: the frequency of the clone
in the primary tumor, the total size of the primary tumor, and
the average likelihood of a cell in the clone to disseminate to
the secondary site. This dissemination likelihood may depend
on several additional factors, including the metastatic poten-
tial of a clone and the spatial arrangement of clones in the
primary tumor.

After arriving at the new site, the cells from each clone i
replicate according to an exponential birth–death process with
division rate bi and death rate di , where bi > di (43, 44). Rather
than characterizing each clone by its rates (λi , bi , di), our results
take on a simpler form when expressed in terms of three related
parameters, (ki , ρi , ri). These parameters are the average influx
of clone i cells per generation ki =λi/bi , the probability that a
clone i seeding event establishes a surviving cell lineage ρi = 1−
di/bi , and the average net growth rate ri = bi − di of each clone
i . The total seeding influx across all clone types is denoted as
k =

∑N
i=1 ki . We note that if time is measured in scaled units of

average cell division time such that bi = 1, then simply ρi = ri
and ki =λi . For simplicity, we focus here on the case of neutral
diversity in metastases (45–48). In this regime, all clones i share
the same birth rate bi = b and death rate di = d within a tumor,
although these rates can freely vary between the tumors without
affecting our predictions. For this neutral case, ρi = ρ and ri = r
are the same for all clones i in a tumor, but the seeding influxes
ki can vary widely between clones. Results for the more general
case of driver diversity (SI Appendix, Fig. S2) are reported in SI
Appendix.

We evaluate the heterogeneity of a metastasis at a detec-
tion time T , defined as the first time that the total size of the
metastasis yi(t) reaches the detection size Y . Simulated real-
izations with realistic parameter values (Table 1) highlight the
diversity of possible metastases that can arise from the same
primary tumor due to stochastic effects alone, even if all metas-
tases share the same seeding and growth rates (Fig. 2). The same
choice of parameter values can result in both monoclonal [i.e.,
a single clone is present in the evaluated metastasis (13, 50)]
and polyclonal (i.e., more than one clone is present) metastases,
underscoring the importance of stochastic effects in establishing
clonal diversity.

Results
Our mathematical framework gives rise to several predictions
about the shared genetic diversity, the proportion of polyclonal
metastases, and the distribution of detection times for metas-
tases growing with consecutive seeding. First, a key prediction of
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Table 1. Model parameters and typical values

Parameter Typical values

r Net metastasis growth rate 0.0125/day (39, 46)
ρ Lineage survival probability 5.0% (48)
λ Seeding rate to metastases 0.15–2.9 cells/day (28)
Y Metastasis detection size 107–109 cells (49)
b Cell division rate in metastasis 0.2500/d, r/ρ
d Cell death rate in metastasis 0.2375/d, r(ρ−1− 1)
k Mean cell influx per generation 0.6–11.6 cells, MLE
X Total seeded surviving cells 10–150 cells, MLE

consecutive seeding is that the number of clones shared between
the primary tumor and metastasis can increase over time as the
metastasis grows and is consecutively seeded by cells from the
primary tumor; this is a distinguishing feature from polyclonal
cluster seeding, where the number of clones shared between
the primary tumor and the metastasis decreases over time as
lineages are lost to extinction (SI Appendix, Fig. S9). To inves-
tigate the clonal dynamics of metastasis growth under our model
of consecutive seeding, we calculate the average size ȳi(t) of
each clone at time t by solving the equation ȳ ′i (t) = r ȳi(t) +
λi that describes the expected growth and seeding dynamics,
yielding

ȳi(t) =
ki
ρ

(
ert − 1

)
[1]

which grows exponentially with rate r in the long run.
Because stochasticity in metastasis growth can lead to devia-

tion from this mean behavior, we also computed the full proba-
bility distribution for the clone size yi(t) (SI Appendix). We find
that the stochastic size yi(t) of each clone at time t follows a
negative binomial distribution with two parameters,

yi(t)∼NBin
(
ki , qi(t) =

ki
ȳi(t) + ki

)
[2]

consistent with previous models involving stochastic population
processes (51, 52). Two equivalent interpretations of this result
provide complementary intuitions. First, yi(t) is equivalent to
the number of successes before ki failures, each with failure
probability qi(t), where for neutral diversity qi(t) is the same
function for every clone i . Here “failure” refers to the event that
a cell in the growing metastasis arrives from the primary tumor
rather than being produced via cell division in the metastasis; this
balance between seeding and birth rates is captured by the influx
ratio ki =λi/b. Second, following the lineage structure of clones
in the metastasis, yi(t) can be interpreted as the number of cells

Fig. 2. Stochasticity in metastasis growth leads to variable clonality outcomes. (A–C) Three sample realizations of metastasis growth to a detectable size
Y = 108 cells with growth rate r= 0.0125/d and survival probability ρ= 5%, as seeded by a primary tumor composed of N= 3 clones with seeding influxes
k1= 0.02 (red), k2= 0.03 (green), and k3= 0.05 (blue) cells. Each panel depicts one of three potential outcomes—monoclonality, biclonality, and triclonality.
(D) Our model leads to simple analytical results for (i) the average frequency of each clone in the circulating cells; (ii) the probability that each clone is
extinct in a biclonal metastasis; (iii) the probability that each clone is extant in a monoclonal metastasis; and (iv) the relative likelihood of monoclonality,
biclonality, and triclonality, i.e., the probability that there exist n= 1, 2, or 3 clones with nonzero frequency in a detected metastasis.
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in each surviving lineage at time t , summed over all surviving lin-
eages. We analyze this alternative construction by deriving the
number of distinct cell lineages and their respective sizes in SI
Appendix.

To assess the clonal composition of a detected metastasis, we
define Yi to be the number of cells in a metastasis of size Y
descended from the i th clone in the primary tumor, so that Y =∑N

i=1 Yi . We show that the detected clone sizes jointly follow a
Dirichlet-multinomial distribution,

P(Y1, . . . ,YN ) =

∏N
i=1

(
Yi+ki−1

Yi

)(
Y+k−1

Y

) [3]

which, following the derivation in SI Appendix, emerges from
the Pólya urn scheme of sampling with double replacement. In
this statistical scheme, the clonal membership of each cell in a
metastasis is evaluated in sequence: For the first cell, sampled at
random, its probability to be of a particular clone is simply given
by the prior distribution of clone sizes in the primary tumor;
but once the clonal membership of the first cell is identified, the
probability that the second cell is of the same clone is increased
relative to the prior distribution, and so on for each cell identified
in this manner.

This scheme can be applied to evaluate the number of clones
n present with nonzero size in a metastasis of size Y . We find
that the mean number of clones n present in the metastasis is

n̄ =N −
∑N

i=1

(
Y+k−ki−1

Y

)(
Y+k−1

Y

) [4]

and the probability that a metastasis is polyclonal (composed of
multiple clones with nonzero size) or, equivalently, the expected
fraction of polyclonal metastases in a patient, is

P(n > 1) = 1−
∑N

i=1

(
Y+ki−1

Y

)(
Y+k−1

Y

) . [5]

(Fig. 3A and SI Appendix). This polyclonality probability is great-
est when multiple clones have a high seeding influx. If only one
clone has a high influx, or if all clones have a low influx, then
polyclonality will be rarely detected because one clone dominates
the metastasis (Fig. 3 B and C and SI Appendix, Fig. S3 A and
B). In the particular case that each clone has an equal and small
seeding rate k�N , the probability of polyclonality is very well

approximated by the simpler expression P(n > 1)≈ 1−κ!Y −κ,
where κ= k(1− 1/N ) is the clone-adjusted influx; this probabil-
ity increases with the seeding influx k per generation, the number
of clones N in the primary tumor, and the total size Y of the
metastasis. Here, monoclonality is more likely than polyclonality
if the seeding rate is low, κ< (log2 Y )−1, or if the metastasis size
is small, Y < 21/κ; in contrast, polyclonality is more likely if the
reverse is true.

In practice, clones and their population sizes are not measured
directly and are instead approximated using mutation frequen-
cies in bulk sequencing samples (4, 53). We therefore adapt our
results, denoting the frequency of each clone i in the metastasis
as γi =Yi/Y . The mean clone frequencies are then simply the
fraction of migrants that are of clone type i , such that γ̄i = ki/k .
In SI Appendix, we show that the vector of clone frequencies
(γi , . . . , γN ) follows a Dirichlet distribution,

P(γ1, . . . , γN ) = Γ(k)

N∏
i=1

γki−1
i

Γ(ki)
. [6]

The Dirichlet distribution is the multivariate generalization of
the Balding–Nichols distribution that is widely used in the
forensic analysis of genetic profiles (54). This result provides
a remarkably clean and simple way to predict the complete
distribution of clone frequencies within a metastasis given the
seeding influx parameters of each clone. Moreover, this implies
that for a single clone or mutation of interest with frequency
γ̄i in the primary tumor, the corresponding frequency γi in a
metastasis will marginally follow the Beta distribution, γi ∼Beta
(k γ̄i , k(1− γ̄i)), with a variance γ̄i(1− γ̄i)/(1 + k) that varies
inversely with the total seeding rate k .

This precise mapping between the clonal composition of the
primary tumor and its metastases, mediated by the seeding rates,
can be simplified when considering only the clonal diversity
of the tumors, rather than the full set of clone frequencies.
Clonal diversity, measured on a scale 0 (least diverse) to 1 (most
diverse), is a simple but informative summary metric for clonal
composition; a natural measure of the clonal diversity of a tumor
is the Simpson index, defined here as the probability that two
cells selected at random from the metastasis are heteroclonal
(descendants from different clones) (55). In a large tumor, this
is calculated according to the expression D = 1−

∑N
i=1 γ

2
i . For

example, if n clones were present at equal frequencies, then the
clonal diversity would be D = 1− 1/n . Inversely, given the mean

Fig. 3. Metastasis clonality and clonal diversity vary with seeding influx. Each contour plot visualizes analytical results for a metastasis of size Y = 108 cells
seeded by a primary tumor with two neutral clones N = 2, each with seeding influxes k1 and k2. (A) The probability that a detected metastasis is polyclonal
is greatest when the clones have high but balanced seeding rates. (B) The probability that a detected metastasis is polyclonal is calculated using a minimum
cell fraction threshold of 5% for each clone. If the total seeding influx k = k1 + k2 is high and the ratio of influxes is of order k1/k2∼ 10±2, then the tumor
is likely to have undetected polyclonality. (C) The sensitivity for polyclonality, defined as the mean fraction of polyclonal metastases that are detected as
polyclonal (i.e., the ratio of B to A), is lowest when the clones have very different seeding rates. (D) The expected clonal diversity of a detected metastasis
is calculated as twice the probability that two cells chosen at random from the metastasis are descendants of different clones (Simpson diversity index).
Metastases are most clonally diverse when they are also most likely to be identified as polyclonal. (E) The mean fraction of clonal diversity present in the
primary tumor that is transferred to a metastasis depends only on the total relative seeding rate k = k1 + k2 according to Eq. 7.
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clonal diversity D of a tumor, the fraction 1/(1−D) provides a
rough estimate for the “effective” number of clones in a tumor in
which all clones were equally abundant. When the clonal diver-
sity of the primary tumor is high, the average clonal diversity of
a metastasis will be similarly high if and only if the total seeding
influx k is much greater than unity (Fig. 3D).

Moreover, in our analytic framework, the ratio of the mean
clonal diversity D̄2 of a metastasis to the clonal diversity D1 of the
primary tumor that seeded it is a simple function of the seeding
influx k between the tumors,

D̄2

D1
=

k

1 + k
=

λ

b +λ
[7]

(Fig. 3E and SI Appendix, Fig. S3E). This ratio can be interpreted
as the mean fraction of clonal diversity that is disseminated from
the primary tumor to the metastasis. This analysis can also be
extended to quantify intermetastatic heterogeneity (2, 9): If a pri-
mary tumor seeds M metastases with equal rates, the difference
in clone composition among the metastases is captured by the
fixation index FST . In our framework,

FST = 1− D̄2

D∗2
=

(
1− 1

M

)
1

1 + k
, [8]

where D∗2 denotes the mean clonal diversity over the aggregate
population of cells across all metastases (SI Appendix, Fig. S3F).
This quantity, a standard measure of clonal differentiation in
population genetics (54, 56, 57), can be readily estimated from
genetic data collected from spatially segregated metastases (58,
59). From the above expression, we find that as additional metas-
tases are seeded, the clonal diversity of the aggregate metastatic
population will converge to that of the primary tumor, D∗2 →D1,
and so FST → 1/(1 + k) for large M .

Because the above results make predictions about clonal diver-
sity given the seeding influxes of each clone, we can invert our
model to infer the seeding influxes from measurements of clonal
frequencies across multiple tumors in a patient. In this inference
approach, we observe the clonal frequencies γij of each clone
i in each tumor j , and we estimate the corresponding seeding
influxes kij = γ̄i · kj , where γ̄i denotes the mean clone frequen-
cies in the primary tumor and kj denotes the estimated total
seeding influx to tumor j . Using maximum-likelihood estima-
tion (MLE), we derive that these estimates should be chosen to
jointly satisfy the conditions ΣN

j=1kj ·βij = 0 for all clones i and
ΣN

i=1γ̄i ·βij = 0 for all tumors j , where βij = ln(γij )− [ψ(kij )−
ψ(kj )] is the sample bias in the log-scaled clone frequencies (SI
Appendix). If the clonal composition of the primary tumor γ̄i is
already known for all clones i , then the latter condition alone
allows for the independent estimation of the seeding influxes
kj to all tumors j (SI Appendix, Fig. S4). To first order, the
MLE seeding influx k̂j scales inversely with the Kullback–Leibler
(KL) divergence DKL(γ̄‖γj ) =

∑N
i=1 γ̄i ln(γ̄i/γij ) between the

clonal composition of a metastasis and the primary tumor that
seeded it (SI Appendix, Fig. S5A). Specifically, in SI Appendix we
show that

k̂j ≈
N − 1

αDKL(γ̄‖γj )
, [9]

where α is bounded by the two extremes α= 1 in the regime
of high KL divergence (DKL�N ) and α= 2 in the regime of
low KL divergence (DKL� N

2
mini γ̄i). This scaling law, a fast

approximation for the MLE seeding influx, quantifies the inverse
relationship between the amount of consecutive seeding between
two tumors and the resulting divergence in their clonal compo-
sitions. The uncertainty σ2

j in the estimate ln k̂j scales inversely
with the number of clones, σ2

j =α/(N − 1). Hence a 95% con-
fidence interval for the seeding influx can be constructed by

computing the bounds k̂j e
±1.96σj , giving an upper and lower

estimate for the seeding influx to each tumor.
To demonstrate how this model-based inference approach

can be used, we identified three published studies that reported
sequencing results from multiple tumors collected simulta-
neously from a patient and revealed a pattern of at least two
shared clones between tumors (13–15). Because these patterns
can be explained only by several cells seeding a tumor, rather
than just one, these datasets were appropriate for our inference
approach; any dataset consistent with a single-cell seeding model
would result in a maximum-likelihood estimate of zero consecu-
tive seeding in our framework. In cases where multiple samples
from a patient were collected from the originating organ and the
true primary tumor site was unclear in the literature (16), infer-
ence was conducted across all tumor samples jointly regardless
of anatomical location.

First, using a clone frequency dataset from whole-genome
sequencing of 68 tumor samples across 7 patients with high-grade
serous ovarian cancer with intraperitoneal metastasis (13), we
apply our MLE approach to estimate the seeding influx of each
clone (Fig. 4 and SI Appendix, Fig. S6). Peritoneal metastasis rep-
resents an ideal test case for our inference approach because
cancer cells that enter the peritoneal cavity are thought to mix
easily within this space, facilitating consecutive seeding. We find
that our total seeding influx estimates span the range 0.6< kj <
11.6 cells per generation per tumor for all 68 tumor samples,
with a mean of 2.7 cells across all patients. These estimates sug-
gest that the average metastasis of a patient with ovarian cancer
will be seeded by several cells during its growth and even several
cells per generation of growth. The wide range of these esti-
mates is in part due to heterogeneity between patients; patients
3 and 10 for example had high estimated seeding influxes with
means 5.1 and 3.6 cells, respectively, while patients 2 and 7 had
slightly lower estimated seeding influxes with means 1.7 and 1.4
cells, respectively. The remainder of the variability is then due
to heterogeneity in the seeding influx between the tumors of
each patient. Because our jointly estimated clone seeding fre-
quencies also vary across a broad range, 4%< γ̄i < 40% (mean =
16%), the estimated per-clone seeding influxes span a wider
range 0.06< kij < 4.0 cells than the total seeding influxes kj , with
a mean of 0.41 cells per generation per tumor per clone. This
wide range of inferred influxes, spanning nearly two orders of
magnitude, suggests that some clones may have had a substan-
tial seeding advantage over other clones, due in part to unequal
clone sizes in the primary tumor.

We analyzed a second dataset of 31 tumor samples from
4 patients with metastatic breast cancer (14), and surprisingly
we find qualitatively similar results (Fig. 4 and SI Appendix,
Fig. S7), although in these cases metastasis must have occurred
through lymphatic or hematogenous routes. The total seeding
influx estimates vary in the range 0.7< kj < 8.6 cells, with a mean
of 4.0 cells across all patients. This mean estimate is greater
than the analogous mean estimate of 2.7 cells for the patients
with ovarian cancer, reflecting the considerable clonal diversity
of the 4 patients with breast cancer included in this dataset.
In particular, patient ER1 had the highest estimated seeding
influxes with a mean of 6.0 cells, while patient ER2 had the
lowest mean of 1.8 cells. Across all breast cancer clones, the
estimated per-clone seeding influxes again span a wide range,
0.04< kij < 4.2 cells, with a mean of 0.71 cells, pointing to sub-
stantial clonal variation in seeding potential. We note that these
were autopsy samples with very advanced disease, in contrast to
the patients with ovarian cancer, and that larger metastases are
more likely to be clonally diverse under a model of consecutive
seeding.

We also studied 4 pairs of primary tumors and metastases from
patients with colorectal cancer (15) and again estimated simi-
lar seeding influx values. Patients A01, A02, and A04 had MLE
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Fig. 4. Inference of seeding influx from clonal frequency data collected from patients with ovarian cancer, breast cancer, and colorectal cancer (CRC).
(A–C) In each panel, the heatmap shows the clonal composition of several sequenced tumor samples in a patient (colorkey at Top Right), as reported by
McPherson et al. (13) and Savas et al. (14). As estimated by MLE over the distribution given by Eq. 6, the seeding frequencies γ̄i of each clone i are depicted
as wide colored bars in the Top Left bar chart and the seeding influxes kj for each tumor j (the mean number of arriving cells per generation time) as
wide gray bars in the Bottom Right bar chart, with black SE bars. In addition, the narrow blue bars depict the mean clone frequencies across all metastases
(Top Left bar chart) and the fraction of diversity transferred from the circulating cells to each metastasis (Bottom Right bar chart). The tree in each panel
(Top Right) depicts the inferred phylogenetic relationship of the detected clones in the patient. (D) Each solid circle, colored by cancer type, represents the
estimated seeding influx kj for a single tumor sample. For nearly all samples included in this analysis, this estimate is consistently in the range 1 to 10 cells
per generation.

seeding influxes of 1.4, 7.1, and 5.8 cells, respectively. However,
patient A03 had a primary tumor and metastasis with very similar
clonal compositions, leading to an unusually high MLE seeding
estimate of 114.5 cells. We note that patient A03 had the small-
est number of clones (n = 3) of every patient we examined and
only a single metastasis, providing the least usable information
for our inference approach.

For every sample in our analysis, our 95% confidence inter-
val for kj spans less than half an order of magnitude (∼3.1-fold)
on either side of our estimate, with an average SE of 1.64-
fold in the ovarian cohort, 1.68-fold in the breast cohort, and

1.71-fold in the colorectal cohort. We conclude that the true
seeding influx is no more than half an order of magnitude
separated from the inferred values we obtained by maximum-
likelihood estimation. In addition, because the clone frequency
data γij may be subject to measurement error, we tested the
robustness of our inference approach (Materials and Methods).
We find that even when we introduce substantial measurement
error of more than 50%, our maximum-likelihood estimates are
robust, changing by less than 6.3% (SI Appendix, Fig. S5B), indi-
cating that our framework is robust even to large amounts of
uncorrelated noise in the data.
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Using the estimated k values from our inference results, we
can infer the total number of cells X that migrated to each tumor
before detection and gave rise to a surviving lineage according to
the expression for its expected value,

X̄ = ρλT̄ = k [ln(ρY )−ψ(k)], [10]

where T̄ is the average time until the metastasis reaches detec-
tion size Y (SI Appendix, Fig. S3 C and D). In the patients with
ovarian cancer, for a typical survival probability of ρ= 5.0% and
a metastasis detection size of Y = 108 cells (Table 1), in conjunc-
tion with our MLE values of k , we estimate that X = 38.4 (±30.6
SD) cells arrived at each tumor and gave rise to a surviving
lineage during its growth. For comparison, using a maximum-
parsimony approach for the same cohort of patients with ovarian
cancer, El-Kebir et al. (16) find that a minimum of 6 to 10
consecutive seeding events (or “comigrations”) per patient are
necessary to explain the observed clone patterns across samples.
Because our MLE value is chosen to correspond to the most
likely number of cells, rather than the smallest possible (most
parsimonious) number, our estimates consistently exceed this
minimum, as expected.

In the patients with breast cancer, we estimate X = 56.8
(±26.4) cells, and in the patients with colorectal cancer excluding
patient A03, we estimate X = 65.9 (±39.1) cells. These esti-
mates were calculated using the same typical parameter values,
although they do not depend on the net growth rate r , so we
do not necessarily assume that all cancer types grow at the same
rate. Across all samples, the minimum and maximum estimates
were 10.6 and 151 cells. Estimates for each patient and clone are
provided in SI Appendix, Table S1 and visualized in Fig. 4 and
SI Appendix, Figs. S6 and S7. These estimates are more accurate
when measurements of ρ and Y are known, as X̄ increases log-
arithmically with the product of these parameters (SI Appendix,
Fig. S3). In particular, for larger metastases with Y = 109 cells,
we obtain estimates between a minimum of 11.6 cells and a max-
imum of 178 cells, while for smaller metastases with Y = 107

cells, we obtain a slightly lower range of 8.8 to 124 cells that seed
surviving lineages.

Discussion
The presented mathematical framework quantitatively captures
the stochasticity of metastatic seeding, cell division, and cell
death, as well as clonal competition during the colonization of
distant sites. We have derived from this stochastic framework a
set of baseline predictions for clonal diversity that can be read-
ily compared with observations as a means of evaluating to what
extent these simple principles can explain the observed range of
clonal complexity. We demonstrate that continuous seeding, as a
mechanism for the transfer of clonal diversity between tumors
(13, 50), can act as a filter of intratumoral heterogeneity and
thereby influence the probability of resistance and treatment
success (3, 46, 60). Given measurements of only 3 independent
parameters, the model predicts the number of clones that are
transferred to each metastasis before its detection (Eq. 4), the
fraction of polyclonal metastases (Eq. 5), the distribution of
clone frequencies in each metastasis (Eq. 6), the expected frac-
tion of clonal diversity transferred to a metastasis (Eq. 7), and
several other quantities of interest.

These model predictions can be inverted to provide a means
of estimating the seeding influxes and mean clone frequencies
in the primary tumor. Our analysis of 68 tumor samples from
patients with ovarian cancer, 31 tumor samples from patients
with breast cancer, and 4 pairs of primary tumor and metasta-
sis samples from patients with colorectal cancer yielded seed-
ing influx estimates consistently in the range 0.6 to 11.6 cells
per generation time. These datasets were chosen because they
include explicitly reported clone frequencies. Our high seeding

influx estimates reflect the high degree of shared clonal diver-
sity observed in the patients included in these datasets, as it is
likely that these patients have higher seeding influxes than most
patients with cancer. We note that, in contrast to the suggestion
of McPherson et al. (13), our model demonstrates that invok-
ing a nonuniform fitness landscape is not required to explain
the high proportion of polyclonal metastases observed in some
patients with cancer. Rather, the stochastic features of metasta-
sis growth, coupled with a seeding influx that falls in the range 0.6
to 11.6 cells per generation time, are sufficient to explain these
observations.

The simple, analytical form of our results reveals how various
quantities precisely depend on the model parameters and pro-
vides a means of calculating these quantities without the need
for computationally expensive numerical simulation. As such,
these results may be readily integrated in computational meth-
ods that seek to infer the clonal composition of tumors and their
metastatic seeding patterns (4, 16, 50). We note several sim-
plifying assumptions made to ensure tractability of the model.
First, we assume that metastasis occurs after the primary tumor
has reached a steady size and stable clonal composition. Con-
sequently, the model may underestimate the variance in some
predictions by neglecting possible fluctuations in the primary
tumor size and clonal frequencies. In cases of early metastasis,
these fluctuations have been modeled according to an upstream
branching process in the primary tumor (9, 40). Very high seed-
ing influxes k or survival probabilities ρ would increase the
probability that surviving lineages are seeded early during pri-
mary tumor growth. Second, we model only the clonal diversity
established in the primary tumor and not new clones that may
arise in a growing metastasis. These new clones may be rare
due to low mutation rates and relatively unlikely to outcom-
pete established clones (9, 61, 62). Third, it is possible that
the dissemination rate λi and survival probability ρi of newly
seeded clones may not be constant as our model assumes, but
instead vary with the size or clonal composition of the tumor,
as could be the case if epistatic interactions between clones
were significant. Finally, our seeding influx estimates are inferred
from clone frequency data that may be subject to measurement
noise and uncertainty (59), although we note that our esti-
mates are quite robust if this noise is uncorrelated among clones
(SI Appendix, Fig. S5B).

Our results describe properties of unidirectional consecutive
seeding from a primary tumor to metastases and do not explic-
itly account for seeding between metastases (SI Appendix, Fig.
S8). Nonetheless, our model can provide a useful approxima-
tion even in more complicated seeding scenarios. If a metastasis
Z is seeded by another metastasis Y (with equal parameters
governing the growth of both) rather than by the primary
tumor X, the first seeding event on average occurs when metas-
tasis Y is already a fraction 56%/k of its mature size (SI
Appendix). Since at this size the clonal fractions in the tumor
are stable, our inference framework for the seeding influx is
not significantly affected. This result applies equally well to
reseeding or self-seeding, in which cells that have left the pri-
mary tumor later return (23, 24), because metastasis Z can
represent the population of the primary tumor X that has
ancestry in metastasis Y. Then only k surviving cells return
to the primary tumor during metastasis growth, again result-
ing in a negligible effect on neutral clone frequencies in either
tumor (SI Appendix). Even when the reseeding outflux is as
high as twice the seeding influx k , neglecting reseeding alto-
gether has minimal effect on our seeding estimates (SI Appendix,
Fig. S5C).

Intratumoral heterogeneity, a facilitator of treatment resis-
tance and tumor relapse, is directly mediated by the seeding
dynamics of cancer cells. Cancers characterized by a high rate of
cell dissemination and mixing are especially likely to give rise to
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highly heterogeneous metastases as the cancer progresses. Our
model of the transfer of clonal diversity between tumors, along
with the corresponding analytical results and inference approach
developed in this work, provides the tools to predict the genetic
diversity and differentiation index of metastases, as well as to
estimate the seeding influxes that gave rise to that diversity.
Metastasis is a stochastic process that can generate consider-
able intratumoral heterogeneity, and understanding its role in
determining this heterogeneity will be an important step toward
providing more effective treatment.

Materials and Methods
Model. We model the growth and evolution of a metastatic lesion as a
continuous-time multitype branching process (40, 43, 44). Each lesion origi-
nates from a single cell but is consecutively seeded by additional cells over
time. For more details, see Model Formulation.

Analysis. Using the mathematical properties of a Poisson process to describe
consecutive seeding events, we derive several statistical quantities of inter-
est in a stochastic setting. Full details and derivations of our results are
provided in SI Appendix.

Simulations. We simulate the multitype branching process using the
Gillespie algorithm (63) until a total tumor size of Y cells is achieved. For
statistics, we conduct 100,000 independent realizations of our simulation
for each set of model parameters (Table 1).

Robustness. For each of M = 1,000 simulated tumor samples, we drew a true
seeding influx k from a lognormal distribution and clone frequencies γij

from Eq. 6. After multiplying each frequency by an independent multiplica-
tive error factor and renormalizing, we computed the MLE influx k̂ξ . See SI
Appendix for further details.

Patient Data. All patient data analyzed in this study was previously pub-
lished across 3 separate studies (13–15). In each study, tumor samples
were collected with ethical approval by the institutional review board, and
patients gave informed consent.
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