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Abstract: Antibiotics (ABs) are common medications used for treating infections. In cancer patients
treated with immune checkpoint inhibitors (ICIs), concomitant exposure to ABs may impair the
efficacy of ICIs and lead to a poorer outcome compared to AB non-users. We report here the results of
a meta-analysis evaluating the effects of ABs on the outcome of patients with solid tumours treated
with ICIs. PubMed, the Cochrane Library and Embase were searched from inception until September
2019 for observational or prospective studies reporting the prognoses of adult patients with cancer
treated with ICIs and with or without ABs. Overall survival (OS) was the primary endpoint, and
progression-free survival (PFS) was the secondary endpoint. The effect size was reported as hazard
ratios (HRs) with a 95% confidence interval (CI) and an HR > 1 associated with a worse outcome in
ABs users compared to AB non-users. Fifteen publications were retrieved for a total of 2363 patients.
In the main analysis (n = 15 studies reporting data), OS was reduced in patients exposed to ABs before
or during treatment with ICIs (HR = 2.07, 95%CI 1.51–2.84; p < 0.01). Similarly, PFS was inferior in AB
users in n = 13 studies with data available (HR = 1.53, 95%CI 1.22–1.93; p < 0.01). In cancer patients
treated with ICIs, AB use significantly reduced OS and PFS. Short duration/course of ABs may be
considered in clinical situations in which they are strictly needed.
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1. Introduction

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has demonstrated efficacy
among several tumour types [1]. However, a non-negligible percentage of patients do not derive any
benefit from ICIs, and the research for predictive factors may help to refine patients’ selection and
improve treatment efficacy.
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Preclinical studies on murine models have demonstrated that gut microbiota may act as a key
modulator of efficacy and toxicity of ICIs [2,3]. Thus, it has been supposed that response to ICIs
in humans could be affected by conditions that alter the composition of gut microbiota, including
dysbiosis, due to the administration of antibiotics (ABs). In fact, retrospective studies reported worse
outcomes for patients treated with ICIs that received ABs as compared with those which did not receive
ABs [4–6].

The present meta-analysis evaluated the association between AB use and outcomes in patients
with solid tumours treated with ICIs.

2. Experimental Section

2.1. Search Strategy and Inclusion Criteria

This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [7]. A systematic search was performed using Embase,
PubMed, SCOPUS and Cochrane Library databases. The search was performed until September 2019
using the terms antibiotics AND (PD-1 or PD-L1 or “immune checkpoint inhibitors” or CTLA-4) AND
survival. All identified articles were then independently assessed for inclusion and exclusion criteria
by two investigators (Alessandro Inno and Fausto Petrelli).

The inclusion criteria used for articles selection were the following: (1) adult patients with
solid tumours and treated with ICIs, (2) evaluation of survival (OS and/or PFS) according to intake
of ABs (yes versus no), (3) a hazard ratio (HR) statistic accompanied by a 95% confidence interval
(CI) from univariate or adjusted Cox multivariate analysis and (4) inclusion of adult patients. The
exclusion criteria were the following: (1) phase I studies and (2) patients treated with ICIs and other
(non-immunotherapy) drugs. When different papers published series involving overlapping patients
or more extended follow-up, the most updated reports were included for quantitative assessment.
Only studies involving human subjects and published in English were included.

2.2. Data Extraction

Two investigators (Alessandro Inno and Fausto Petrelli) independently extracted data (author
and year of publication, number of patients, type of study, treatment received, timing of AB therapy,
median follow-up and type of analysis). The quality of the included studies was determined with the
Newcastle–Ottawa Scale (NOS) [8].

2.3. Statistical Analysis

The primary aim of this meta-analysis was the effect of AB intake on outcome, reported as HR
and its respective 95% CI. Overall survival was the primary endpoint, and PFS was the secondary
endpoint. The HRs of any included study were pooled together to provide the overall effect size.
I2 statistic was used to provide an estimation of the percentage of total variation across studies, owing to
heterogeneity. Values greater than 50% meant that substantial heterogeneity existed. A random-effect
model was used in cases of high heterogeneity; otherwise, in the case of I2 < 50%, a fixed-effect model
was appropriated [9]. Publication bias was assessed through the generation of funnel plots for OS
and analysed for asymmetry using both the Begg and Egger test. All p values were two-sided with
significance set at p < 0.05. Statistical analyses were conducted with the Review Manager computer
program, Version 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration,
Copenhagen, Denmark 2014).

3. Results

Among the publications retrieved using electronic search, 15 studies were eligible for quantitative
analysis, for a total of 2363 patients [4–6,10–21] (Figure 1).
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Figure 1. Flow diagram of included studies.

Baseline characteristics of the included studies and treatments received are reported in Table 1.
Thirteen were retrospective series and two were prospective studies. Among the studies, 11, three and
one included patients treated with ABs prior to and/or during ICIs and only prior to and only during
ICIs, respectively. Median courses of ABs were rarely reported. In studies where median duration of
antibiotics was reported, it was no longer than two weeks and no shorter than one week, respectively.

The median age was 64 years. Antibiotics were given to 29% of patients. Progression-free survival
was reduced in those who took antibiotics (HR = 1.53, 95% CI 1.22–1.93; p < 0.01; Figure 2).

The analysis included nine studies, and due to high heterogeneity (I2 = 77%), a random effect
model was adopted.

In the primary analysis, use of antibiotics was associated with an increased risk of death (HR = 2.07,
95% CI 1.51–2.84; p < 0.01; Figure 3).



J. Clin. Med. 2020, 9, 1458 4 of 11

Table 1. Characteristics of included studies.

Author/
Year

Type of
Study

N◦

Of Patients
(Disease)

Treatment
Received (%)

Median
Age
(Years)

Ab%
/Timing

Median Duration
(Weeks)/n◦ of AB
Courses/pts

Med
FUP
(mos)

Type of
Analysis

Covariates
of MVA
for OS

Quality
(NOS
Score)

Abu-Sbeih/
2019

retrospective 826 (melanoma
n = 347;
hematologic
n = 116; other
n = 363)

anti-PD(L)1
(51.6),
anti-CTLA4 (32),
combo (16.5)

62 68.9
/before or after
start (47.5%),
both (52.5%)

NR/NR NR MVA ICI type,
Stage IV cancer,
IMDC, anaerobic
AB use

6

Ahmed/
2018

retrospective 60 (NSCLC
n = 34; other
n = 26)

anti-PD1 (81.7),
anti-PDL1 (5),
ICI + CT (13.3)

59 28
/2w before
and/or after
start

1–2 NR MVA broad spectrum
AB use, age

5

Derosa/
2018

retrospective 360 (RCC
n = 121, NSCLC
n = 239)

RCC: anti-PD(L)1
(88), anti-PD(L)1
+ anti-CTLA4 (8),
anti-PD(L)1 +
BEVA (4)
NSCLC:
anti-PD(L)1 (86),
combo (14)

64 21.5
/1 mos before
start

NR/NR NR MVA RCC: ab 30–0
days/no AB
IMDC risk,
tumour burden
NSCLC: ab 30–0
days/no AB, PS,
clinical trial Y/N,
prior regimens
>/<3

5

Elkrief/
2019

retrospective 59 (melanoma) * NIVO/PEMBRO/
IPI (100)

64.5 13.5◦

/1 month before
0.9/NR NR MVA age, PS, gender,

AB use, LDH,
BRAF, line of tx,
type of ICI

5

Galli/
2019

retrospective 157 (NSCLC) anti-PD(L)1
(95.6),
anti-CTLA4 o
combo (4.4)

66.7 17.2
/during ICI
period

1/NR 28.6 MVA high AB
/immunotherapy
exposure ratio
through entire
ICI period

8

Guo/
2019

retrospective 49
(oesophageal)

anti-PD(L1) alone
(61), combo (39)

56.7 43/2 mos before
or 1 month
after

1.42/NR 16.4 MVA PS, treatment, n◦

of metastatic
sites, NLR,
antibiotic use

7
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Table 1. Cont.

Author/
Year

Type of
Study

N◦

Of Patients
(Disease)

Treatment
Received (%)

Median
Age
(Years)

Ab%
/Timing

Median Duration
(Weeks)/n◦ of AB
Courses/pts

Med
FUP
(mos)

Type of
Analysis

Covariates
of MVA
for OS

Quality
(NOS
Score)

Hakozaki/
2019

retrospective 90 (NSCLC) NIVO (100) 68 14.4/1 month
before start

>1 (84.6%)/ NR MVA driver mutations 6

Huemer/
2018

retrospective 30 (NSCLC) NIVO (83),
PEMBRO (17)

NR 37/1 month
before/after
start

NR/NR NR MVA sex, antibiotic
use, ICI,
EGFR/ALK
mutations, line of
tx, PDL1 status,
immune-related
adverse events

5

Huemer/
2019

retrospective 142 (NSCLC) NIVO, PEMBRO
or ATEZO (100)

66 44/1 months
before or after
start

NR/NR 13.3 UVA NR 7

Kaderbhai/
2017

retrospective 74 (NSCLC) NIVO (100) 67.5 20.3/3 months
before or
concurrent

1/NR NR UVA
(PFS)

NR 5

Krief/
2019

prospective
cohort

72 (NSCLC) NIVO (100) 68.8 42/2 months
before or 1
month after
start

1.35/1.7 16.6 MVA AB use; KRAS
mutations,
gemmatimonadaceae
on blood
microbiome at
baseline

7

Pinato/
2019

prospective
cohort

196 (NSCLC
n = 118;
melanoma
n = 38; RCC
n = 11; other
n = 26)

anti-PD(L)1 (96) 68 29/1 month
before or
concurrent

NR/NR NR MVA response to ICI,
AB 0–30 days
before ICI

6
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Table 1. Cont.

Author/
Year

Type of
Study

N◦

Of Patients
(Disease)

Treatment
Received (%)

Median
Age
(Years)

Ab%
/Timing

Median Duration
(Weeks)/n◦ of AB
Courses/pts

Med
FUP
(mos)

Type of
Analysis

Covariates
of MVA
for OS

Quality
(NOS
Score)

Sen/
2018

retrospective 172 (NSCLC
n = 21; RCC
n = 25;
melanoma
n = 16; sarcoma
n = 16; other
n = 94)

anti-CTLA4 (61),
anti-PD1 (39)

60 33/during and
up to 2 mos
before

NR/NR NR UVA NR 5

Tinsley/
2019

retrospective 291 (melanoma
n = 179, RCC
n = 48, NSCLC
n = 69)

NR 66 32/2w before
up to 6w after
start

NR/NR NR MVA AB use,
comorbidities,
metastatic sites
> 3, PS > 0

6

Zhao/
2019

retrospective 109 (NSCLC) anti-PD1 (52.3),
anti-PD1 + CT
(30.3), anti-PD1 +
antiangiogenic
(17.4)

62 18.3/1 mos
before or after
start

NR/NR NR MVA AB use, PS 6

* only immunotherapy without chemotherapy; ◦: all patients; AB: antibiotic; mos: months; RCC: renal cell carcinoma; NSCLC: non-small-cell lung cancer; PD1: programmed death
1; PDL1: programmed death-ligand 1; ICI: immune checkpoint inhibitors; CT: chemotherapy; CTLA4: Cytotoxic T-lymphocyte antigen 4; BEVA: bevacizumab; NIVO: nivolumab;
PEMBRO: pembrolizumab; IPI: ipilimumab; ATEZO: atezolizumab; MVA: multivariate analysis; UVA: univariate analysis; PFS: progression-free survival; IMDC: international metastatic
RCC database consortium; PS ECOG: performance status; tx: therapy; NLR: neutrophil to lymphocyte ratio; NR: not reported; AB: antibiotics; combo: combination of two immune
checkpoint inhibitors.
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Figure 3. Forrest plot for overall survival in patients assuming antibiotics pre/during immunotherapy.

The analysis included 14 studies, and due to high heterogeneity (I2 = 87%), a random effect model
was adopted.

Risk of bias through Begg’s funnel plot was not significant for the OS and PFS analysis (Figures 4
and 5). Conversely, Egger’s test showed evidence of bias (p < 0.01 for both analysis). After adjusting
for missing studies through the trim and fill method, we found that the point estimate of the overall
effect size remained significant only for OS analysis HR = 1.65 (95%CI, 1.25–2.17). After the one study
removal procedure, we showed that after removing one study at a time the HRs ranged from 1.86 to
2.17, with the Guo et al. paper exerting the largest effect on OS.

Subgroup analysis was performed on the timing of antibiotics. Only one study included patients
treated with ABs exclusively during ICIs (Galli et al.), and it did not report any reduced survival. Two
other authors presented results of the effect of prior AB use with respect to start of ICIs (Derosa et al.
and Elkrief et al.), and aggregated analysis of these two papers showed a similar effect size (HR = 2.33,
95%CI 1.33–3.34; p < 0.01). All other publications included a mixed group of patients given ABs before
and/or during ICIs (survival data not split for timing), so a formal analysis of these studies was not
presented but results were similar to main analysis (HR = 2.11, 95%CI 1.54–2.9; p < 0.01). Similarly,
analysing the effect of administering AB classes or courses of ABs was not possible due to a lack of
data. After excluding studies where analysis was not adjusted (univariate analysis), the effect on OS of
AB use was more robust (HR = 2.33, 95%CI 1.61–2.37; p < 0.01).
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A meta-regression analysis was performed adjusting for median ABs duration, median follow
up, disease sites and number of study patients (the only covariates with adequate number of data for
analysis). No significant correlation was found to explain heterogeneity.
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4. Discussion

In the past years, it has been reported that changes in the gut microbiota of individuals with cancer
who received antibiotics may reduce the outcome when they are treated with ICIs. We performed
a systematic review and meta-analysis of observational evidence reporting the outcome of patients
treated with ICIs for advanced cancers according to AB exposure, and we found that use of ABs
reduces OS and PFS.

In a seminal paper published in Science in 2018, Routy et al. [22] showed that AB consumption
is associated with reduced response to the anti-PD-(L)1 blockade. Samples attained from patients
with lung and kidney cancer showed that non-responding patients had low levels of the bacterium
Akkermansia muciniphila. Oral bacterium supplementation in antibiotic-treated mice restored the
response to immunotherapy. Gopalakrishnan et al. and Matson et al. [23,24] evaluated faecal
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samples from melanoma patients receiving anti-PD-(L)1 blockade and found that those who failed
immunotherapy had an imbalance in commensal bacteria composition which was linked with impaired
activity of immune cells. Other authors found that faecal Bifidobacterium was associated with the
antitumor effects of ICIs3. Oral administration of Bifidobacterium alone also improved tumour control
to the same magnitude as anti-PD-(L)1 therapy, and combination treatment nearly abolished tumour
outgrowth. Increased dendritic cell function with a consensual enhanced cluster of differentiation 8
(CD8) + T cell priming/accumulation in the tumour microenvironment mediated the observed effect.
Similarly, even the antitumor effect of Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade seems
to depend on distinct Bacteroides species, as found in mouse models by Vétizou et al. [25]. Lack of
response was overcome by B. fragilis by immunization with B. fragilis polysaccharides or by adoptive
transfer of B. fragilis-specific T cells; conversely, AB-treated mice did not respond to CTLA-4 blockade.

In clinical settings, several authors reported a possible detrimental association between timing
of/exposure to ABs and survival with ICIs. Particularly, Galli et al. [5] found that an elevated ratio
between days of antibiotics and days of immunotherapy is more harmful than the use of ABs itself. In a
similar study, Tinsley et al. [26] observed that a single course of ABs is associated with a better OS than
that of multiple/prolonged courses of ABs. Although these observations are consistent with a possible
detrimental effect of ABs, it cannot be excluded that AB use may identify a group of patients with poor
prognoses due to concomitant severe infections or comorbidities, rather than ABs themselves affecting
the outcome of patients treated with ICIs.

Our meta-analysis has some limitations. First, this is a meta-analysis of retrospective series with
heterogeneous populations and obvious diversity in tumour stages/types and patient characteristics.
AB type and duration, as well as the indication of AB use, were only partially reported. Third, there
is a potential bias linked to covariates used in con multivariate analysis, sample sizes, follow-up
and clinical characteristic of populations included. Fourth, a direct association between AB use and
the effect on microbiota and then on OS cannot be concluded because no concomitant evaluation of
gut microbiota composition under antimicrobial influence was addressed. Finally, patients treated
with anticancer therapy other than ICIs were not included. However, this pooled analysis of real-life
experiences seems to confirm the hypothesis that AB-associated dysbiosis might be detrimental in
patients treated with ICIs. A recently published paper by Huang and colleagues had the same goal of
the present meta-analysis but with a less updated literature search, and about half of the included
papers were congress abstract forms but they came to a similar conclusion [27].

5. Conclusions

An intact gut microbiota is needed to elicit the immune system and provide ICI benefits to cancer
patients. Strategies to modulate the microbiome with the aim to improve ICI efficacy should be
actively investigated.
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