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Gut microbiota is regarded as the second human genome and forgotten organ, which is
symbiotic with the human host and cannot live and exist alone. The gut microbiota
performs multiple physiological functions and plays a pivotal role in host health and
intestinal homeostasis. However, the gut microbiota can always be affected by various
factors and among them, it is radiotherapy that results in gut microbiota 12dysbiosis and it
is often embodied in a decrease in the abundance and diversity of gut microbiota, an
increase in harmful bacteria and a decrease in beneficial bacteria, thereby affecting many
disease states, especially intestine diseases. Furthermore, gut microbiota can produce a
variety of metabolites, among which short-chain fatty acids (SCFAs) are one of the most
abundant and important metabolites. More importantly, SCFAs can be identified as
second messengers to promote signal transduction and affect the occurrence and
development of diseases. Radiotherapy can lead to the alterations of SCFAs-producing
bacteria and cause changes in SCFAs, which is associated with a variety of diseases such
as radiation-induced intestinal injury. However, the specificmechanism of its occurrence is
not yet clear. Therefore, this review intends to emphasize the alterations of gut microbiota
after radiotherapy and highlight the alterations of SCFAs-producing bacteria and SCFAs
to explore the mechanisms of radiation-induced intestinal injury from the perspective of
gut microbiota and its metabolite SCFAs.

Keywords: radiotherapy, gut microbiota, dysbiosis, metabolites, SCFAs, radiation-induced intestinal injury
INTRODUCTION

Gut microbiota, second genome of the human body, as the genes that it carries are about 100 times
more than the human genome (Singh et al., 2017; Chassaing and Cascales, 2018; Knauf et al., 2019).
It is estimated that about 1014 microorganisms reside in the human intestinal tract, weighing 1-2 kg,
which includes bacteria, archaea, fungi, and viruses. These microorganisms are commensal with
human host, 90% of the symbiotic microorganisms in the digestive tract (Singh et al., 2017).
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Although there are individual differences in the composition of
gut microbiota (Lynch Susan and Pedersen, 2016; Bouter
Kristien et al., 2017; Budden Kurtis et al., 2017), it plays an
important role in maintaining homeostasis and internal
environment stability through its metabolites. The gut
microbiota can produce a variety of small molecules and
metabolites, among which short chain fatty acids (SCFAs) can
connect intestinal flora and host to play a key physiological role
(Xing et al., 2020). They can serve as messengers, with the ability
to alter the gut microbiota, thereby affecting various disease
states (Yadav et al., 2018). Various factors affect the composition
and function of gut microbiota, influencing the physiological and
pathological state of the host. But the influence has great
differences (Ursell et al., 2014; Serino, 2019). Among them,
radiotherapy can have an important impact on gut microbiota.

Radiotherapy is one of the main treatments for cancer patients in
which more than 50% of those patients receive it, but its side effects
cannot be ignored (Citrin, 2017; De Ruysscher et al., 2019).
Recently, radiation-induced intestinal injury has attracted more
and more attention. The reason is that the intestine is extremely
sensitive to ionizing radiation, especially in the radiotherapy of
abdominal and pelvic malignant tumors, the healthy intestine is
inevitably exposed to the radiation (Hauer-Jensen et al., 2014;
Kumagai et al., 2018). The current research on the mechanism of
radiation-induced intestinal injury has the following explanation:
intestinal epithelial injury, intestinal microvascular changes,
immune mechanism, neuro-immune interaction, gut microbiota
and many other factors (Hauer-Jensen et al., 2014). It is gut
microbiota and its metabolites (especially SCFAs) play significant
roles in radiation-induced intestinal injury. Radiotherapy leads to
abnormal intestinal motility, which promotes the colonization of
intestinal flora in the gastrointestinal tract, and these two are also
important factors for the development of severe radiation
enteropathy (Husebye et al., 1995). Crawford et al. have studied
irradiated germ-free mouse with g-rays, indicating a link between
gut microbiota and radiation enteritis (Crawford and Gordon,
2005). Extensive evidence already showed that the diversity of
intestinal flora and the concentration of SCFAs decreased in
radiation-induced intestinal injury (Ferreira et al., 2014).
Therefore, in this review, we will outline current knowledge about
the changes in gut microbiota and SCFAs after radiotherapy. We
will also highlight the specific mechanism associated with SCFAs on
radiation-induced intestinal injury, thus providing a feasible basis
for clinical diagnosis and treatment.
RADIOTHERAPY LEADS TO GUT
MICROBIOTA DYSBIOSIS AND
CHANGES IN SCFA

Gut Microbiota Dysbiosis
The Effect of Radiotherapy on the Gut Microbiota
Radiotherapy can cause damage to multiple organ systems, and
the degree of damage is usually dose-dependent (Kiang and
Olabisi, 2019). Dysbiosis in the gut is one of the main damage
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
outcomes, and it is described in Table 1. ROSOFF has found that
when exposed to whole body radiation reaching a lethal dose, it
can cause death. After radiation, intestinal bacteria is isolated, so
it is believed that the suppression of intestinal flora has an
important effect on the ability to recover after fatal radiation
(Rosoff, 1963). Hou et al. have studied the effects of intestinal
bacterial depletion on mice receiving 12Gy single-dose whole-
body irradiation (TBI). They found that the use of broad-
spectrum antibiotics that disrupt commensal bacteria to be
harmful to mammals receiving lethal TBI, indicating that the
gut microbiota plays a pivotal role in the body (Hou et al., 2007).
Husebye et al. have revealed the relationship between intestinal
motility and gastrointestinal flora, in which abnormal motility
was linked to the colonization of Gram-negative bacteria in the
gastrointestinal tract. Meanwhile, they have pointed out that
abnormal intestinal motility and Gram-negative bacilli in the
proximal small intestine are important factors in the pathogenesis
of severe late radiation enteropathy (Husebye et al., 1995). In
particular, radiotherapy for malignant tumors in the abdominal
area may interfere with the colonization resistance of the
endogenous intestinal flora. The destruction of colonization
resistance of intestinal flora is the main pathophysiological
mechanism of radiation enteritis, which is also a common and
serious complication of patients after receiving radiotherapy
(Visich and Yeo, 2010). Lam et al. have studied the adult male
Wistar rats received single or multiple whole body irradiations of
10.0Gyand18.0Gy.Microarray andquantitativePCR(polymerase
chain reaction) analysis were used to determine the composition of
fecal microbiota. Radiation exposure biomarkers include the 16S
rRNA levels of 12 members of Bacteroidales, Lactobacillaceae, and
Streptococcaceae increased after radiation exposure, the levels of 98
Clostridiaceae andPeptostreptococcaceae remainedunchanged, and
the levels of 47 Clostridiaceae members decreased. The
characterization of the bacterial flora confirms that the intestinal
flora can be used as a new biomarker for radiation exposure (Lam
et al., 2012). Nam et al. have conducted a prospective observation
study of intestinalflora in gynecological cancer patients undergoing
pelvic radiotherapy. In this study, 454 pyrosequencing was used to
study the overall composition and changes of the intestinal
microflora of cancer patients undergoing radiotherapy. The
results showed that the intestinal microbial composition of cancer
patients was significantly different from that of healthy people.
Radiotherapy resulted in a significant reduction in the number and
abundance of intestinal flora. Specifically after treatment, the
number of phyla Firmicutes decreased and the number of
Fusobacteria increased. In addition, pelvic radiotherapy also
affects the highly individual-specific intestinal flora of cancer
patients, thereby gradually reshaping the composition of the
intestinal microflora. However, the specific classification of
radiotherapy affecting the intestinal flora is still uncertain (Nam
et al., 2013).The gut microbiota plays an important role in
regulating immune homeostasis in the host. Patients undergoing
radiotherapy resulting in cytotoxicity showed significant changes in
the intestinal flora, themost common ofwhichwere the decrease of
Bifidobacterium, Clostridium cluster XIVa and Faecalibacterium
prausnitzii and increase of Enterobacteriaceae and Bacteroides.
July 2021 | Volume 11 | Article 577236
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These flora changes have promoted the development of
gastrointestinal mucositis, mainly by changing the intestinal barrier
function, innate immunity and intestinal repair mechanisms
(Touchefeu et al., 2014). Kim et al. have characterized the large
intestine and small intestine flora of mice after g-ray irradiation by
Illumina MiSeq high-throughput sequencing platform and bacterial
16S rRNA gene analysis, and have found that the abundance and
diversity of intestinal flora change a lot after irradiation. At the
phylum level, radiation causes a decrease in the phyla Firmicutes and
Actinobacteria in the large and small intestines, while radiation
increases the number of Bacteroidetes in the large intestine and the
number ofProteobacteria in the small intestine. Furthermore, several
genera in the microflora of the large and small intestine have been
identified at the genera level. The most abundant bacterial genera in
the small intestine are Turicibacter and Corynebacte rium, and the
subclass of this organ is Alistipes. In general, at the genus level, the
bacterial diversity of small intestine ismuch smaller than that of large
intestine. In the large intestine, irradiation increases theproportionof
Alistipes, Lactobacillus and Akkermansia, but decreases the
proportion of Barnesiella, Prevotella, Bacteroides, Oscillibacter,
Pseudoflavonifractor and Mucispirillum. Additionally, in the small
intestine, the radiation caused significant changes in thefive generaof
Turicibacter, Corynebacterium, Alistipes, Lactobacillus and
Muciprillum. Among them, the increase of Corynebacterium
abundance and the decrease of Alisipes abundance are the most
obvious (Kim et al., 2015). Goudarzi et al. have used 16S rRNA
sequencing and metabolomics to determine the fecal metabolomics
characteristics of x-ray irradiatedmice. 16S rRNA sequencing results
showed that the intestinalflora changed significantly after irradiation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
After 5 and 12Gy X-ray irradiation, it was found that the abundance
of common bacteria in Lactobacillaceae and Staphylococcacea
increased, while the abundance of bacteria in Lachnospiraceae,
Ruminococcaceae and Clostridiaceae decreased. Metabolomics data
showed that the metabolites of intestinal flora changed significantly
such as pipecolic acid, glutaconic acid, urobilinogen and
homogentisic acid. In addition, there were significant changes in
bile acids such as taurocholic acid and 12-ketodeoxycholic acid
(Goudarzi et al., 2016).

Radiosensitivity of Gut Microbiota
of Different Species
Different species have different radiosensitivity. Carbonero et al. have
studied the changes in intestinal flora of Gottingen minipigs (GMP)
and rhesus macaques in acute radiation syndrome. They have found
that although GMP and rhesus macaques have different intestinal
microflora distributions, radiation had a similar effect at the phylum
level, resulting in a decrease in Bacteroidetes and an increase in
Firmicutes in both models. Irradiation significantly reduced the
abundance of the main Bacteroidetes genus (Bacteroides for GMP,
Prevotella for macaques). Intracellular symbionts (Elusimicrobia in
GMP, Spirochaetes in macaques) continue to increase after
irradiation, indicating that they are potential biomarkers of
intestinal damage. The abundance of Prevotella, Lactobacillus,
Clostridium XIVa, Oscillibacter and Elusimicrobium/Treponema is
significantly related to the radiation intensity (Carbonero et al., 2019).
They have also compared the bacterial population changes of the two
species in the acute radiation syndrome after bioequivalent dose
irradiation, and have found that there is a general increase of
TABLE 1 | Radiotherapy causes gut microbiota dysbiosis.

Model Sample type Sequencing Method Gut microbiota dysbiosis Reference

Male Wistar rats Fecal samples Microarray (16S rRNA) and
quantitative PCR analyses

Increase: 12 members of Bacteroidales,
Lactobacillaceae, and Streptococcaceae

(Lam et al., 2012)

Decrease: the levels of 47 Clostridiaceae members
nine gynecologic cancer
patients

Fecal samples Pyrosequencing of bacterial 16S
rRNA fragments

Increase: Fusobacteria (Nam et al., 2013)
Decrease: the number and abundance, phyla
Firmicutes

C57BL/6 mice the contents of the
small and large
intestines

Illumina MiSeq high-throughput
sequencing and bacterial 16S rRNA

Increase: Bacteroidetes and Firmicutes (Kim et al., 2015)
Decrease: phyla Firmicutes and Actinobacteria

C57BL/6J mice Fecal samples 16S rRNA sequencing and
metabolomics

Increase: Firmicutes, common bacteria in
Lactobacillaceae and Staphylococcacea

(Goudarzi et al., 2016)

Decrease : Bacteroidetes, Lachnospiraceae,
Ruminococcaceae and Clostridiaceae

Gottingen minipigs (GMP)
and Chinese rhesus
macaques

Fecal samples Illumina MiSeq sequencing and 16S
rRNA amplicon

Increase:intracellular symbionts (Elusimicrobia in
GMP, Spirochaetes in macaques), Firmicutes in
minipigs

(Carbonero et al.,
2018; Carbonero et al.,

2019)
Decrease: Bacteroidetes and Proteobacteria

137 bank voles Myodes
glareolus

Fecal samples amplicon sequencing of bacterial
16S rRNA genes

Increase: Bacteroides (Lavrinienko et al.,
2018)

Male BALB/c mice Fecal samples high-throughput sequencing of 16S
rRNA

Increase : Clostridium, Helicobacter and
Oscilibacter

(Liu et al., 2019)

Decrease: Bacteroides and Barnesiella
Patients with and without
radiation enteropathy

Fecal samples,
intestinal mucosa
samples

Metataxonomics (16S rRNA gene)
and imputed metataxonomics
(Piphillin)

Increase: Clostridium IV, Roseburia, and
Phascolarctobacterium

(Reis Ferreira et al.,
2019)

Decrease: bacterial diversity
18 cervical cancer patients Fecal samples 16S rRNA sequencing using the

Illumina HiSeq platform
Increase: b‐diversity, Proteobacteria and
Gammaproteobacteria

(Wang et al., 2019)

Decrease: a‐diversity, Bacteroides.
July 2021 | Volu
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intracellular symbionts in bothmodels, indicating that these findings
are universal after radiation. It is worth noting that the opposite
dynamics are observed in themaindoor,withFirmicutes increased in
minipigs and Bacteroidetes and Proteobacteria decreased but
Bacteroidetes are rich in macaques set. The size of the miniature
pigs and changes in the affected species were more extensive than
those observed in rhesus macaques, indicating that different species
have different sensitivity to radiation (Carbonero et al., 2018).
Lavrinienko et al. have studied the effect of environmental
radionuclides on the intestinal flora of bank voles Myodes
glareolus. It has been found that exposure to high levels of
environmental radionuclides had no significant effect on the
intestinal flora abundance, but it was related to almost twice the
increase ofBacteroides comparedwithFirmicutes : Bacteroidetes ratio
(Lavrinienko et al., 2018). Liu et al. have studied and compared the
composition of intestinal flora in mice exposed to low dose ionizing
radiation (LDR).MaleBALB/cmicewereexposed to lowdoseofCo60

radiation and fecal samples collectedbefore andafter irradiationwere
used for high-throughput sequencing of 16S rRNA gene sequence
amplicons. They have observed substantial changes in the
composition of the intestinal flora, including alpha and beta
diversity, in mice exposed to LDR compared to the control group
without radiation. They have also found that the abundance of
Clostridium, Helicobacter and Oscilibacter after radiation increased
in a time-dependentmanner,while the abundanceofBacteroides and
Barnesiella showed a time-dependent decline. In addition, these
changes in the gut microflora are accompanied by changes in the
abundance of multiple metabolites (Liu et al., 2019).

The Relationship Between Gut Microbiota Dysbiosis
and Radiation-Induced Intestinal Injury
There is a close relationship between gut microbiota dysbiosis
and intestinal injury after radiotherapy. Reis Ferreira et al. have
reported that the largest clinical study to date to explore the
relationship between microbiota and acute and late radiation
enteropathy. It has been found that the alteration of microbiota is
associated with early and late radiation enteropathy and has
clinical significance for the risk assessment, prevention and
treatment of radiation side effects. Dynamically, a correlation
between low bacterial diversity and early and late radiation
enteropathy has also been observed. Higher Clostridium IV,
Roseburia, and Phascolarctobacterium counts were significantly
associated with radiation enteropathy(RE). In radiation-induced
bowel disease, homeostatic intestinal mucosal cytokines
associated with intestinal flora regulation and intestinal wall
maintenance are significantly reduced (Reis Ferreira et al.,
2019). Wang et al. have characterized the intestinal flora of
radioactive enteritis caused by pelvic radiotherapy, and used
bacterial epithelial co-culture to evaluate the epithelial
inflammatory response. It has been found that intestinal
microflora disorders is observed in patients with RE, which
was characterized by a significant decrease in a diversity, but
an increase in b diversity, a relatively high abundance of
Proteobacteria and Gammaproteobacteria, and less abundance
of Bacteroides. Metastat analysis further revealed unique
microbiological characteristics associated with grades, such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the more abundant Virgibacillus and Alcanivorax in patients
with mild enteritis. In addition, compared with the control flora,
using bacterial-epithelial coculture, the RE-derived flora can
induce epithelial inflammation and barrier dysfunction, and
enhance the expression of TNF-a and IL-1b (Wang et al.,
2019). Gerassy-Vainberg et al. have found that radiation-
induced intestinal disorders increased the susceptibility of the
intestine to RE and inflammation. These findings suggest that gut
microbiota may be a key driver of RE process and provide the
possibility to prevent or treat RE by targeting intestinal
microbiota. In vivo experiments have shown that a small
number of irradiated bacteria (rich in Sutterella in other
bacteria) is enough to induce a higher susceptibility to
intestinal inflammation, indicating that the reduction of
bacterial diversity may lead to a short-term and long-term risk
of enteropathy in patients (Gerassy-Vainberg et al., 2018; Sokol
and Adolph Timon, 2018). Of course, radiotherapy can not only
cause gut microbiota dysbiosis, but also change the
corresponding metabolites, which will be explained in
detail below.

Changes of SCFAs Caused by Gut
Microbiota Dysbiosis After Radiotherapy
The gut microbiota and its metabolites are in constant crosstalk
with the host, and radiotherapy has been shown to have an
important impact on gut microbiota and metabolites, especially
SCFAs. Casero et al. have found in the study of space radiation (16O
radiation) that the gut microbiota changes dramatically after
irradiation, which tends to the decrease of normal gut microbiota
andshifts towards the increaseofopportunistic pathogenicbacteria,
causing intestinalmicroecological imbalance. Inaddition, this study
has also suggested that the change of the gutmicrobiota induces the
change in microbial metabolism and metabolic function. This
shows the relationship between gut microbiota and its
metabolites after radiation (Casero et al., 2017). Morgan JL et al.
have found that thedietary high ironand radiation reduced the total
concentration of some main SCFAs, and the decline was most
pronounced when increased dietary iron is in an interactive mode
with radiation exposure. The changes of fecal SCFAs concentration
after the increase of dietary iron or exposure to radiation may be
caused by the alterations of bacterial composition and/or the
changes of bacterial metabolism (Morgan et al., 2014). According
to an independent study, dietary iron consumption and radiation
therapy (4.3-5.4Gy) can inhibit gut microbiota to varying degrees,
including known butyrate producing bacteria. It has been reported
that iron supplementation in the diet of iron deficient animals can
increase the concentration of SCFAs in the cecum and the
proportion of butyrate-producing bacteria (Dostal et al., 2012).
After irradiation, the flora Firmicutes decreased significantly, while
Verrucomicrobia and Bacteroidetes increased, while dietary pectin
restored thebacteria to the control level and can reverse thedecrease
in intestinalmicrobial diversity causedby radiation. In addition, the
concentrations of SCFAs and itsmain products acetate, propionate,
butyrate, etc. decreased significantly after irradiation. The SCFAs
are usually produced by the gut microbiota, so in fact, the decrease
or the disruption that is caused to the bacteria by the radiation is
July 2021 | Volume 11 | Article 577236

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. Radiotherapy and Gut Microbiota
what is leading for the decrease in SCFA production (Kim et al.,
2015; Wang et al., 2015).

SCFAs, one of the most abundant microbial metabolites in the
intestine (Ley et al., 2006; Turnbaugh et al., 2006), are the main end
products of bacterial fermentation and typical representatives of the
mutual relation between humans and their bacterial symbionts
(Gentile and Weir, 2018) which are reported to be beneficial to
humanhealth (CookandSellin, 1998). SCFAsaremainlycomposed
of acetate, propionate and butyrate, these three account for more
than 95% and the rest of the ingredients are iso-butyrate, valerate,
iso-valerate, hexanoate and the proportions of these ingredients
change with diet (Miller and Wolin, 1996; De Filippo et al., 2010;
Salonen et al., 2014; Koh et al., 2016).The common SCFAs-
producing intestinal flora are mainly anaerobic bacteria,
including Bacteroides, Bifidobacterium, Clostridia, Streptococcus,
etc. (Marchesi et al., 2016) Acetate, propionate and butyrate are
produced by their respective gut microbiota through different
metabolic pathways. Acetate is produced by many enteric
bacteria, such as Akkermansia muciniphila, Bacteroides spp.,
Bifidobacterium spp., Prevotella spp., Ruminococcus spp.via
pyruvate in acetyl-CoA pathway and Blautia hydrogenotrophica,
Clostridium spp., Streptococcus spp.via Wood-Ljungdahl pathway
(Ragsdale and Pierce, 2008; Louis et al., 2014; Koh et al., 2016; Bose
et al., 2019). Propionate is mainly produced by Bacteroidetes spp.,
some Firmicutes such as Phascolarc-tobacterium succinatutens,
Dialister spp., Veillonella spp.via succinate pathway. It is also
produced by Roseburia inulinivorans and Ruminococcus obeum,
Proteobacteria via acrylate pathway and produced by Roseburia
inulinivorans, Ruminococcus obeum, Salmonella enterica via
propanediol pathway (Louis et al., 2014; Reichardt et al., 2014;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Koh et al., 2016). Butyrate is produced by Faecalibacterium
prausnitzii,Roseburia spp., Eubacterium rectale, Eubacterium
hallii, Anaerostipes spp. via butyryl-CoA:acetate CoA-transferase
route, and produced by Coprococcus catus via phospho-
transbutyrylase and butyrate kinase (Duncan et al., 2002; Hetzel
et al., 2003; Louis et al., 2014; Vital et al., 2014; Koh et al., 2016).
Radiotherapy caused a change in SCFAs-producing bacteria and a
decrease in SCFAs. The different bacteria producing acetate,
propionate and butyrate and the changes in SCFAs-producing
bacteria and the decrease of SCFAs after radiotherapy are shown
in Table 2.

Changes of SCFAs and Radiation-Induced
Intestinal Injury
The intestine is highly sensitive to ionizing radiation, especially
in the radiotherapy of abdominal and pelvic malignant tumors,
the healthy intestine is inevitably exposed to the radiation,
resulting in adverse consequences that are identified as
radiation-induced intestinal injury (Hauer-Jensen et al., 2014;
Kumagai et al., 2018). It has been reported that the prevalence of
intestinal side effects caused by long-term radiation exceeds the
combination of ulcerative colitis and Crohn’s disease (Hauer-
Jensen et al., 2014). In general, there are acute and chronic types
of radiation-induced intestinal injury according to the time of
radiotherapy. Acute radiation-induced intestinal injury occurs
within 3 months after radiotherapy, while chronic radiation-
induced intestinal injury occurs more than 3 months after
radiotherapy (Chater et al., 2019; Reis Ferreira et al., 2019).
The main symptoms of acute radiation intestinal injury include
abdominal pain, diarrhea, bleeding, fistula and perforation. The
TABLE 2 | The production of SCFAs and changes after radiotherapy.

SCFAs Producing bacteria Biosynthetic
pathway

Radiotherapy
causes

changes in
SCFAs

Reference

Acetate many enteric bacteria, such as Akkermansia muciniphila, Bacteroides spp.,
Bifidobacterium spp., Prevotella spp., Ruminococcus spp.

pyruvate in
acetyl-CoA
pathway

Decrease of
SCFAs

(Louis et al., 2014; Koh
et al., 2016)

Blautia hydrogenotrophica, Clostridium spp., Streptococcus spp. Wood-
Ljungdahl
Pathway

(Ragsdale and Pierce, 2008;
Bose et al., 2019)

Propionate Bacteroidetes spp., some Firmicutes such as Phascolarc-tobacterium
succinatutens, Dialister spp., Veillonella spp., Roseburia spp., Firmicutes, Roseburia
inulinivorans, Ruminococus spp., Cllostridium spp., Clostridiales bactrium, Eubacterium
spp, Coprococcus spp., Dialister succinatiphilus, Phascolarctobaterium succinatutens,
Akkermansia muciniphila

succinate
pathway

Decrease of
SCFAs

(Louis et al., 2014; Reichardt
et al., 2014; Koh et al., 2016)

some Firmicutes including Roseburia inulinivorans and
Ruminococcus obeum, Proteobacteria, Clostridium spp.,
Clostridiales bacterium, Coproccus catus,

acrylate
pathway

Roseburia inulinivorans, Ruminococcus obeum Salmonella enterica,
Eubacterium halli, Clostridium sp.

propanediol
pathway

butyrate Faecalibacterium prausnitzii, Roseburia spp., Eubacterium rectale, Eubacterium hallii,
Anaerostipes spp.,

butyryl-CoA:
acetate CoA-
transferase
route

Decrease of
SCFAs

(Duncan et al., 2002; Hetzel
et al., 2003; Louis et al.,

2014; Vital et al., 2014; Koh
et al., 2016)

Coprococcus catus phospho-
transbutyrylase
and butyrate
kinase
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main manifestations of chronic radiation intestinal injury are
intestinal obstruction, fibrosis and vascular sclerosis (Wang et al.,
2006; Haydont and Vozenin-Brotons, 2007; Mangoni et al.,
2017). Acute radiation-induced intest inal injury is
characterized by an inflammatory response, while chronic
radiation-induced intestinal injury is more prone to intestinal
fibrosis, which is independent on inflammation and initially
driven by TGF b1-mediated phenotype switch and transforms
fibroblasts into collagen matrix and produces myofibroblasts
(Yarnold and Brotons, 2010).

It is worth mentioning that there is a close correlation
between changes in gut microbiota, SCFAs and radiation-
induced intestinal injury. Radiotherapy reduces the ability of
bacteria to produce SCFA and is associated with the appearance
of symptoms of pelvic radiation disease (PRD) (Teo et al., 2015).
A research has suggested that pelvic radiotherapy can cause acute
small intestinal injury, and it can affect the nutritional status of
the gut, so it is used to evaluate the morphological, nutritional,
and functional changes after radiotherapy (Pıá de la Maza et al.,
2001). During pelvic radiotherapy, Wedlake et al. have proved
that the SCFAs, fermentation products of soluble dietary fiber,
promote the absorption of sodium and water, thus helping to
relieve diarrhea after radiotherapy. In addition, increasing the
intake of dietary fiber would increase the production of SCFAs
and reduce the inflammatory process after radiotherapy, thus
alleviating gastrointestinal toxicity after radiotherapy (Wedlake
et al., 2017). Increasing fiber intake would increase SCFAs
production and thereby reduce the inflammatory process
(McOrist et al., 2011). In radiation-induced intestinal injury,
SCFAs decreased, but dietary pectin could reverse and increase
SCFAs so as to play a protective role in radiation-induced
intestinal injury. Sureban et al. have reported that dietary
pectin has a beneficial protective effect on the intestinal tract in
mice model of acute intestinal injury after radiation by
stimulating crypt proliferation (Sureban et al., 2015).

The gut microbiota is a crucial factor in radiation-induced
intestinal injury, especially SCFAs which play a vital role in it.
There is growing evidence that radiation causes significant changes
in the gutmicrobiota of animals and humans.Multiple studies have
indicated that thedecline of bacterial diversity is consistently related
to radiation-induced intestinal injury (Mosca et al., 2016; Cui et al.,
2017; Castaño-Rodrıǵuez et al., 2018). In the patients with acute
severe diarrhea after pelvic radiotherapy, Manichanh et al. found
thatmicrobial diversity has changed a lot, and it was speculated that
the change could be attributed to the colonization of different
microorganisms (Manichanh et al., 2008; Ferreira et al., 2014; Wu
et al., 2019). In recent years, it hasbeen found that the level of SCFAs
can indirectly respond to the regulation of gut microbiota. They all
reduce intestinal inflammation by reducing the production of
chemokines or adhesion molecules (Husted et al., 2017). In
addition, studies have shown that the gut flora of patients with
chronic radiation enteritis (CRE) is characterized by an increase in
the number of Gammaproteobacteria, Bacilli and Negativicutes
which are common in intestinal malnutrition, intestinal
inflammation and radiation-induced intestinal injury (Lupp et al.,
2007; Litvak et al., 2017). SCFAsare themain energy sourceof colon
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
cells, and the use of SCFAs may be weaken in chronic radiation
proctitis. The principle is that in the case of hemophilia induced by
radiation, the related atrophy of mucosa may interfere with
mitochondrial fatty acid oxidation, and SCFA supplementation in
the formof enema canovercome this defect and improve the energy
supply to colon cells (Denton et al., 2002; van de Wetering
et al., 2016).

SCFAs play an important role in relieving intestinal injury
induced by radiotherapy. In the study in mice, metabolomics
revealed treatment with SCFAs(sodium acetate sodium butyrate
or sodium propionate), especially propionate caused long-term
radioprotection, mitigation of hematopoietic and gastrointestinal
syndromes, anda reduction inproinflammatory responses,which is
mediated by the attenuation of DNA damage and the release of
reactive oxygen species in hematopoietic and gastrointestinal
tissues (Guo et al., 2020). Preoperative radiotherapy may
adversely affect certain mechanical and histological aspects of
colonic anastomotic healing, but rectal irrigation with SCFAs may
promote anastomotic healing (Terzi et al., 2004). SCFAs (such as
acetate, propionate, and butyrate) play a protective role in in
chemotherapy- or radiation-induced intestinal inflammation.
Therefore, SCFAs have the certain therapeutic potential (Tian
et al., 2020). Morever, the present study suggested that butyrate
can enhance the efficacy of radiotherapy while protecting normal
mucosa, thereby minimizing the toxicity caused by radiotherapy.
The reason is that butyrate inhibits the proliferation of three-
dimensional colorectal cancer organoids and enhances the
radiation-induced cell death in colorectal cancer organoids
through FOXO3A.However, butyrate does not increase radiation-
induced cell death after irradiation of normal organoids (Park et al.,
2020). In vitro experimental studies proved that sodium butyrate
andvalproic acid can enhance the radiosensitivity ofhumanthyroid
cancer cells (Perona et al., 2018).
MECHANISM OF SCFAS IN RADIATION-
INDUCED INTESTINAL INJURY

Metabolites are often considered to function primarily as a “fuel” or
energy source, or as the basis of ametabolic pathway.However, key
metabolites (SCFAs are one of them) can also be regarded as
extracellular signaling molecules, as they bind to receptors to
activate a second messenger, thereby promoting downstream
signal transduction (Husted et al., 2017).With regard to SCFAs,
the two most studied mechanisms are: activation of G protein
coupled receptor (GPCRs) [GPR41,GPR43 and GPR109A] and
inhibition of histone deacetylase (HDAC). These characteristics of
SCFAs affect their immunomodulatory potential, i.e. to maintain
the anti-inflammatory/pro-inflammatory balance. SCFAs not only
play a local role in the intestinal tract colonized by symbiotic
bacteria, but also affects the intestinal immune cells and regulates
the immune response through a variety of protein-inflammatory
complexes (Ratajczak et al., 2019).

Due to rapid epithelial turnover, both the small and large
intestine cause acute or chronic radiation damage to the
intestine, especially when exposed to 45 Gy or higher doses of
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radiation (Gecse Krisztina, 2018). Radiation-induced intestine
injury is pathologically similar to inflammatory bowel disease,
and high-fiber intervention proved to be effective. The cohort
study found that SCFAs producing bacteria were significantly
correlated with the progression of radiation-induced intestinal
injury, and the association is not random. Ionizing radiation can
induce the release of proinflammatory factors such as IL-1b,
TNFa and NF-kB (Somosy et al., 2002; François et al., 2013).
SCFAs have anti-inflammatory activity and can inhibit the
expression of these proinflammatory cytokines (Segain et al.,
2000; Tedelind et al., 2007; Ferreira et al., 2014). SCFAs exerts
anti-inflammatory activity by suppressing NF-kB and STAT1
activation (Postler and Ghosh, 2017; Spiljar et al., 2017; Belizário
et al., 2018; Feng et al., 2018). A large number of studies have
shown that butyrate can inhibit the NF-kB signaling pathway by
rescuing the redox mechanism and controlling the reactive
oxygen species that mediate the activation of NF-kB. In
addition, butyrate exerts anti-inflammatory effects by activating
PPAR-g highly expressed in colon epithelial cells and inhibiting
IFN-g signaling (Liu et al., 2018).Butyrate can also inhibit HDACs
and thus decrease the activation of their downstream signaling
pathways VEGF and STAT3. Through anti-inflammation.
Moreover, butyrate inhibits pro-inflammatory IL-6 and IL-17
which affect STAT3 and NF-kB signaling pathways (Chen et al.,
2019). Furthermore, it has been confirmed that SCFAs exert anti-
tumoractivity throughmultiple signalingpathways, suchasWnt/b-
catenin, PI3K/Akt/mTOR,MAPK (p38, JNK and ERK1/2), EGFR/
Kras/Braf (Mármol et al., 2017; Feng et al., 2018; Afrin et al., 2020).
NF-kB activation is also found in colorectal cancer and colitis-
related tumors, which is responsible for the production of a variety
of proinflammatory mediators and cytokines, such as the
prostaglandin gene E2 (PGE2), inducible nitric oxide synthase
(iNOS), COX-2, TNF-a, IL-6 and IL-1b,which in turn play a key
role in the development of colorectal cancer (Karki et al., 2017;
Ferrer-Mayorga et al., 2019).

Intestinal fibrosis is the main intestinal complication in late
radiotherapy. Kerem et al. (2006) have reported that oral dietary
fiber or transrectal SCFAs can improve the healing of colon
anastomosis and decrease the activity of matrix metalloproteinase-
2 in rats after irradiation (Belizário et al., 2018). The results show
that dietary pectin can significantly improve radiation-induced
bowel fibrosis. The beneficial effects of SCFAs are manifold and
involve at least two mechanisms, including activation of GPR41,
GPR43, and GPR109A and inhibition of HDACs (Slavin, 2013;
Chang et al., 2014). As an HDAC inhibitor, SCFAs can act as a
regulator of gene expression by inducing protein hyperacetylation,
chromatin remodeling, transcriptional activation and inhibition,
leading to cell cycle arrest and cell death. Chung et al. have reported
that SCFAs, as an HDAC inhibitor, can promote radiation-induced
wound healing and improve skin fibrosis and tumorigenesis by
inhibiting the expression of radiation-induced TGF-b and tumor
TNF-a (Chung et al., 2004). Wang et al. have shown that sodium
butyrate could attenuate TGF-b induced EMT and inhibit cell
migration and invasion in hepatoma cells in vitro, and the effect
of SCFAs on EMT and intestinal fibrosis may be partly attributed to
its regulatory role as an HDAC inhibitor (Wang et al., 2013). Yang
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et al. have demonstrated that EMT plays a role in radiation-induced
intestinal fibrosis and soluble dietary fiber may reduce radiation-
induced EMT, and intestinal fibrosis by regulating intestinal flora
and SCFA concentration (Yang et al., 2017). The mechanism of
SCFAs on radiation-induced intestinal injury is shown in Figure 1.
THERAPEUTIC OPTIONS
FOR RADIATION-INDUCED
INTESTINAL INJURY

Gastrointestinal radiation injury is considered to be one of the
important causes of systemic complications after radiation
exposure, and may mediate some effects leading to multiple organ
failure (François et al., 2013). In addition, in many experimental
models, it has been shown that excessive inflammatory responses
following intestine injury can also lead to multiple organ failure.
Therefore, early intestinal changes that occur after radiation
exposure are particularly promising targets for interventions to
prevent or reduce radiation syndrome (Kim et al., 2009). Gut
microbiota and its metabolites can be used as effective treatment
options for radiation-induced intestinal injury. At present, the
application of probiotics, fecal bacteria transplantation and
metabolites play important roles in the protection of radiation-
induced intestinal injury.

Probiotics
There is sufficient research evidence that probiotics play an
important role in preventing and treating cancer and
complications. Many recent findings do support the hypothesis
that daily use of certain selected probiotics can be an effective
method to effectively protect patients from the risk of serious
consequences caused by radiation therapy or chemotherapy. As a
potential dietary supplement, probiotics may be able to reduce the
risk of colorectal cancer andmanage the safety of traditional cancer
therapies such as surgery, radiation therapy, and chemotherapy
(Drago, 2019; Shamekhi et al., 2020). Ciorba et al. showed that
Lactobacillus probiotics of sufficient dosage have the potential to
reduce gastrointestinal toxicity after radiotherapy through clinical
studies and preclinical models (Ciorba et al., 2015). Probiotics have
been shown to play an important role in immune regulation and
showanti-tumorproperties. Bacterial strainsmayberesponsible for
the detection, and degradation of potential carcinogens and the
production of SCFAs, which affect cell death and proliferation, and
are called signaling molecules in the immune system. Lactic acid
bacteriapresent in the intestinehavebeenshown toplay a role in the
regression of carcinogenesis due to their influence on immune
regulation, which can serve as evidence for the interaction between
bacterial metabolites and immune epithelial cells. Probiotics have
the ability to increase and decrease the production of anti-
inflammatory cytokines, which play an important role in
preventing cancer. They can also activate phagocytic cells to
eliminate early cancer cells (Górska et al., 2019). L.acidophilus
was also proved to be beneficial against the radiation-induced
mucosal injury of intestine in rats (Ki et al., 2014). Moreover,
probiotics supplements containing Bifidobacterium reduce
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chemotherapy-induced mucositis and radiation-induced diarrhea
(Badgeley et al., 2021). The double strain probiotics (Lactobacillus
acidophilus LAC-361 and Bifidobacterium longum BB-536) may
reduce radiation induced diarrhea at the end of the treatment of
patients with pelvic cancer (Demers et al., 2014). In a randomized
trial, Garcia Peris and his colleagues (Garcia-Peris et al., 2016)
showed that delivery of a fibrous mixture containing inulin
promoted the growth of SCFA producing bacteria such as
Roseburia and improved diarrhea in patients receiving pelvic
radiotherapy (Kim et al., 2009). Therefore, it is of great
significance that probiotics can mitigate radiation-induced
intestinal injury.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT) has been considered to
affect microbial community due to radiation. Ding Xiao et al. have
reported for the first time that it is safe and effective that FMTmight
improve intestinal symptoms and mucosal injury in patients with
CRE for a period of time (Ding et al., 2020). FMT can improve the
survival rate of irradiated animals, increase the peripheral white
blood cell count and improve the gastrointestinal function and
intestinal epithelial integrity of irradiated male and female mice.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
FMT retains the intestinal bacterial component of the host small
intestine in a gender-specific manner, and retains its mRNA and
long-term non-coding RNA expression profile. FMT can be used as
a therapeutic agent to reduce the toxicity caused by radiation and
improve the prognosis of tumor patients after radiotherapy (Cui
et al., 2017). The post expansion of FMT in Blautia is beneficial to
reduce intestinal inflammation and intestinal microbiome
rebalancing (Jenq Robert et al., 2015; Wong et al., 2016).
Although the relative proportion of these bacteria is low
compared with other SCFA producers (such as Faecalibacterium),
the trend of patients is that the production capacity of SCFA is
higher but the dynamic decline, and the level of steady-state rectal
mucosal cytokines involved in the maintenance of mucosal barrier
is significantly reduced, which will be supported by the regulation of
microbiota. Recently, FMT has been regarded as a successful
treatment of immunotherapy induced colitis (Wang et al., 2018).
Metabolites
SCFAs
Multiple evidence indicates that SCFAs are effective for the
treatment of radiation-induced intestinal injury. Vernia et al.
FIGURE 1 | Mechanism of SCFAs on radiation-induced intestinal injury. Radiotherapy can lead to dysbiosis of the gut microbiota, including the changes in SCFAs-
producing bacteria. The bacteria producing acetate, propionate and butyrate are all reduced, and the ability to produce SCFAs is weakened accordingly. SCFAs
mainly induce downstream reactions through two pathways: activation of GPCRs and inhibition of HDAC. After activating GPCRs, SCFAs can act on downstream
MAPK, NF-kB, PI3K/AKT, JAK/STAT, Wnt/b-catenin and other signaling pathways to promote signal transduction. SCFAs production is reduced and its anti-
inflammatory activity is weakened, which in turn promotes the release of inflammatory cytokines and triggers inflammatory response. In addition, reduced production
of SCFAs also induces TGF-b mediated intestinal fibrosis. Inflammation and intestinal fibrosis are two different outcomes of acute and chronic radiation-induced
intestinal injury. Black arrows indicate promotion, and black lines indicate inhibition.
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discovered early in clinical research that topical sodium butyrate
enemas, at a dose of 80 mmol/L (80 mL/24 h), is effective for the
treatment for acute radiation proctitis (Vernia et al., 2000). In the
first controlled trial, Pinto A et al. provided safe and effective
evidence that SCFA enemas contained 60 mM sodium acetate, 30
mM sodium propionate, and 40 mM sodium butyrate, which can
accelerate healing process of chronic radiation proctitis (Pinto et al.,
1999). Later, it was confirmed by research that patients with chronic
radiation rectal injury were given SCFAs enema, and the clinical
symptoms of radiation rectal disease were significantly relieved
(Hong et al., 2001). Clinical studies showed that daily prophylactic
use of sodium butyrate enemas did not reduce the incidence,
severity and duration of acute radiation proctitis (Maggio et al.,
2014). Among SCFAs, valeric acid plays the most important role in
radioprotection. In detail, exogenous valeric acid supplementation
improves the survival rate of irradiated mice, protects hematopoietic
organs, and improves gastrointestinal function and intestinal
epithelial integrity of irradiated mice. High-throughput
sequencing and relative and absolute quantitative isobaric tags
indicated that oral valeric acid restored the taxonomic ratio of
enteric bacteria, and reprogrammed the small intestine protein
profile of mice exposed to systemic irradiation. Valeric acid has a
beneficial effect on radiation-induced hematopoiesis and intestinal
damage in which it reduces inflammation and protects the intestinal
bacterial composition of irradiated animals. Importantly, keratin 1
(KRT1) plays a key role in the radioprotection of valeric acid in vivo
and in vitro. Valeric acid may play a role in AML1/KRT1 signaling
through transporters or CPCRs (Li et al., 2020). Moreover, as one of
the SCFAs, valproic acid has been found to have anti-tumor activity,
the main mechanism of which is to inhibit histone deacetylase
(Gurvich et al., 2004). Debeb et al. have reported that valproic acid
can be used as a radiosensitizer for breast cancer in the short term,
but it may increase the risk of cancer recurrence in the long term
(Debeb et al., 2010). Chen et al. have also found that low dose
valproic acid enhances radiosensitivity of prostate cancer by
acetylating p53 dependent mitochondrial membrane potential and
apoptosis (Chen et al., 2011).
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Other Metabolites
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) can reverse
intestinal microbial disease by increasing the number of beneficial
bacterial species including Lactobacilli, Bifidobacteria, and butyrate-
producing bacteria such as Roseburia and Coprococcus. In addition,
n-3 PUFA reduces the proportion of LPS production and mucolytic
bacteria in the intestine, which can reduce inflammation and
oxidative stress. Importantly, n-3 PUFA also plays an anti-cancer
role in colorectal cancer (Zhang et al., 2019). Lee et al. have found
that oral consumption of human symbiotic bacteria containing lactic
acid-producing bacteria, such as Bifidobacterium and Lactobacillus,
can significantly promote the proliferation of Lgr5+ intestinal stem
cells and epithelial cells in vivo and in vitro. Among several
metabolites of lactic acid producing bacteria symbionts, lactic acid
is related to epithelial development mediated by intestinal stem cells.
Paneth cells and intestinal stromal cells highly express Gpr81 (a
known lactate receptor), and lactic acid treatment promotes
intestinal stem cell-mediated epithelial regeneration in a Gpr81-
dependent manner. In addition, feeding lactic acid-producing
bacterial symbionts or lactic acid can protect mice from severe
intestinal damage caused by radiation exposure and chemotherapy
treatment. Similarly, they also confirmed that lactate and the
receptor Gpr81 stimulate the Wnt/b-catenin signaling pathway in
Paneth and intestinal stromal cells to promote intestinal stem cell-
mediated epithelial regeneration (Lee et al., 2018).
CONCLUSIONS AND PERSPECTIVES

An increasing number of evidence demonstrated that radiotherapy
can lead to gut microbiota dysbiosis and cause the alterations in the
gut microbial communities such as the alterations of Bacteroidetes
and Firmicutes counts, which disrupts intestinal homeostasis and
thereby promoting the occurrence and development of various
diseases. Therefore, it has attracted more and more attention to
reveal the pathogenesis of the disease from the perspective of gut
FIGURE 2 | The relationship between ionizing radiation, gut microbiota, SCFAs and radiation-induced intestinal injury. Ionizing radiation can lead to dysbiosis of gut
microbiota, which is mainly disruption and it leads to the decrease of beneficial bacteria and increase in harmful or pathogenic bacteria. Gut microbiota dysbiosis
includes the decrease in SCFAs-producing bacteria, which may result in the decrease of SCFAs. The decrease of SCFAs may be a major pathogenesis of radiation-
induced intestinal injury.
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microbiota. In addition, due to the different radiation sensitivity of
different species, the alterations in gut microbiota caused by ionizing
radiation are also different. Most importantly, the gut microbiota
metabolites such as SCFAs play a pivotal role in health and disease.
Radiation-inducedgutmicrobiotadysbiosis causes changes inSCFAs
accordingly and the reason can be attributed to the fact that
radiotherapy has led to changes in the SCFAs-producing bacteria
such asBacteroidetes, Firmicutes andRoseburia etc. which in turn led
to a decrease in the production of SCFAs. Furthermore,many studies
have confirmed the correlation between the alterations of SCFAs and
radiation-induced intestinal injury. The crosstalk between the
alterations of SCFAs and radiation-induced intestinal injury can be
traced from upstream to the decrease of the diversity of gut
microbiota that produces SCFAs, and the downstream SCFAs can
affect the occurrence and development of radiation-induced
intestinal injury through different mechanisms. In this review, we
focusedon theprogressive relationshipamong ionizing radiation, gut
microbiota, SCFAs and radiation-induced intestinal injury, as shown
in Figure 2. Furthermore, we revealed the mechanism of radiation-
induced intestinal injury from the perspective of gut microbiota and
itsmetabolite SCFAs, providing a reference for clinical diagnosis and
treatment in the future. Of course, probiotics, FMT and various
metabolites also provide good prospects for the treatment of
radiation-induced intestinal injury, which further proves the
importance of gut microbiota in maintaining intestinal homeostasis
and human health.

In conclusion, we believe that radiotherapy can cause changes
in the gut microbiota, including the SCFAs-producing bacteria,
which in turn leads to a decrease in SCFAs production. Less
production of SCFAs is likely to be the pathogenic mechanism of
radiation-induced intestinal injury and supplementing SCFAs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
can alleviate radiation intestinal injury, which can provide a new
reference for the pathogenesis and treatment of radiation-
induced intestine injury. In short, in this review, we highlight
the correlation among gut microbiota, SCFAs and radiation-
induced intestinal injury exposed to ionizing radiation. We also
elaborate this relevance and have a better understanding of the
pathophysiological basis of gut microbiota and SCFAs associated
with radiation-induced intestinal injury so as to provide a
reference for accurate treatment in the future.
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