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Epilepsy is a common neurological disorder, about 1% population worldwide suffered from
this disease. In 1989, the International League Against Epilepsy (ILAE) classified anterior
cingulate epilepsy as a form of frontal lobe epilepsy (FLE). FLE is the second most common
type of epilepsy. Previous clinical studies showed that FLE account an important cause in
refractory epilepsy, therefore to find alternative approach to modulate FLE is very important.
Basic research using animal models and brain slice have revealed some insights on the
epileptogenesis and modulation of seizure in anterior cingulate cortex (ACC). Interneurons
play an important role in the synchronization of cingulate epilepsy. Research has shown
that the epileptogenesis of seizure originated from mesial frontal lobe might be caused by
a selective increase in nicotine-evoked γ-aminobutyric acid (GABA) inhibition, because the
application of the GABAA receptor antagonist picrotoxin inhibited epileptic discharges. Gap
junctions are also involved in the regulation of cingulate epilepsy. Previous studies have
shown that the application of gap junction blockers could attenuate ACC seizures, while
gap junction opener could enhance them in an in vitro preparation. μ-Opioid receptors have
been shown to be involved in the epileptic synchronization mechanism in ACC seizures in a
brain slice preparation. Application of the μ-opioid agonist DAMGO significantly abolished
the ictal discharges in a 4-aminopyridine induced electrographic seizure model in ACC. Basic
research has also found that thalamic modulation has an inhibitory effect on ACC seizures.
Studies have shown that the medial thalamus may be a target for deep brain stimulation
to cure ACC seizures.
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INTRODUCTION
Seizure is a common neurological disorder that affects approx-
imately 1% of the population worldwide. Frontal lobe epilepsy
(FLE) is the second most prevalent type of seizure, but detect-
ing seizure onset in FLE is difficult. Most seizures are detectable
because epileptic currents pass through brain areas that are
involved in motor or language processing. Limbic seizures are
difficult to study because the symptoms in these patients are
usually related to alterations in motivational, social, and cog-
nitive function (Csernansky et al., 1990; Levin and Duchowny,
1991). These subtle symptoms are sometimes difficult to detect
unless the seizure activity spreads to other brain regions. The
ACC is considered a part of the limbic cortex, and the ACC is
one of the most difficult brain regions in which to detect seizure
onset. This is because the ACC is not readily accessible for rou-
tine electrographic investigations using scalp electrodes (Quesney,
1986), and the close proximity between the right and left ACC
also increases the difficulty in identifying where seizures actually
initiate (Mazars, 1970; Geier et al., 1977; Nadkarni and Devin-
sky, 2009). Invasive electrodes only provide limited sampling.
The dense venous drainage over the medial surface of the hemi-
sphere hinders electrode placement in the ACC. Despite these
limitations, clinical studies have provided insights into ACC func-
tion, and basic research has revealed the mechanism of epileptic
synchronization and how ACC seizures are modulated. Cingu-
late epilepsy was first characterized and defined in 1970 using an

intracerebral-depth electrode (Mazars, 1970) and such seizures are
usually classified as simple partial (Nadkarni and Devinsky, 2009).

The ACC can be subdivided into affective and cognitive parts
(Bush et al., 2000; Vogt, 2005). The affective part is connected to
the periaqueductal gray, amygdala, anterior insula, and nucleus
accumbens (Devinsky et al., 1995). The affective pathway is
involved in endocrine and autonomic function (Critchley et al.,
2005). The cognitive part is interconnected with the parietal cor-
tex, lateral prefrontal cortex, and premotor and supplementary
motor areas (Devinsky et al., 1995; Bush et al., 2000). Investi-
gations of seizures can provide additional insights into brain
function. The symptoms of ACC seizures are closely associated
with interactions between the ACC and other brain regions.

CLINICAL STUDIES OF CINGULATE EPILEPSY
In the pre-magnetic resonance imaging (MRI) era, clinical stud-
ies of ACC seizures were primarily retrospective. The data were
obtained from patients with ACC seizures who underwent anterior
cingulotomy. Patients who were free from seizures after ante-
rior cingulotomy strongly suggested that the seizure originated
in the ACC. With the invention of MRI, magneto encephalogram
(MEG), intracranial electrodes, and single-photon emission com-
puted tomography (CT), clinicians were able to more precisely
locate the seizure onset in the ACC.

Cingulate epilepsies were first characterized by MRI and CT in
1970 (Mazars, 1970). In 1989, the International League Against
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Epilepsy included cingulate epilepsy as a type of FLE. The
ACC epilepsy was classified as a type of FLE by ILAE in 1989.
However, the term “ACC epilepsy” is controversial because the
symptoms of ACC epilepsies may overlap with other types of
FLE (Williamson et al., 2000). Some researchers have attempted
to distinguish cingulate gyrus epilepsy from FLE by examining
semiological patterns (Williamson et al., 2000). Other researchers
considered that seizures caused by lesions in the cingulate cor-
tex are more specific and can be classified as ACC seizures
(Alkawadri et al., 2011).

Patients with ACC seizures fall into two categories: (1) patients
with lesions in the ACC, which also includes cortical dysplasia in
the ACC that causes focal seizures (Biraben et al., 2001; Nobili
et al., 2007), and patients with ACC neoplasms, but this condition
is quite rare (Zaatreh et al., 2002); (2) patients with no lesions
in the ACC and a normal MRI that reveals only non-specific
findings. Most focal ACC epilepsies are believed to be idiopathic
and cryptogenic. Clinically, these lesional ACC seizures are often
characterized by an early onset, drug resistance, and behavioral
disturbances (Biraben et al., 2001; Zaatreh et al., 2002).

Anterior cingulate seizures have a broad range of clinical man-
ifestations. The age of onset of ACC seizures is usually early in
life (Williamson et al., 1985). However, ACC seizures may also
start in adulthood. ACC seizures mostly occur during sleep and
can be misdiagnosed as parasomnias. The common symptoms of
ACC seizures include emotional outbursts. Autonomic symptoms
are also common (Devinsky et al., 1995; Nadkarni and Devinsky,
2009). In adults, the aggressive features and psychotic symptoms of
ACC seizure are overt, but a case report of young children showed
intact intellect and normal behavioral ability (De Rose et al., 2009).

These clinical symptoms have been described as seizures that
originate in the frontal lobe, and these symptoms are the hall-
mark of seizures that affect area 24. Despite clinical evidence that
demonstrates that the ACC is involved in frontal lobe epileptic
disorders, few basic research studies have reported the mechanism
of seizure synchronization in the ACC.

ANIMAL MODELS OF ACC SEIZURES
There are clinical limitations on identifying seizure onset within
ACC. Although an invasive depth and subdural electrodes increase
spatial resolution in identifying seizure onset, they only provide
limited sampling (Quesney, 1986; Quesney et al., 1992). Therefore,
animals models are needed to conduct ACC epilepsy research.
The first animal model of anterior cingulate seizure was estab-
lished by (Andy and Chinn, 1957). Threshold and suprathreshold
electrical stimulation of the ACC was used to induce epileptic
afterdischarges in unanesthetized freely moving cats. The after-
discharges invariably propagated to the contralateral ACC. The
propagation between the left and right ACC was faster than
between the ACC and posterior cingulate gyrus. The propaga-
tion of the cingulate epileptic afterdischarges also passed through
various brain structures, such as the sensory cortex basal ganglia,
cerebellum, hypothalamus, and mesencephalic structure. After-
discharges also propagated to the motor cortex but less frequently.
Behavioral changes were minimal during cingulate gyrus afterdis-
charges and only one cat showed extremely aggressive behavior
during afterdischarges (Andy and Chinn, 1957).

The kindling (i.e., motor seizure development) model was first
established in rodents (Racine,1975). Kindling in the ACC requires
a mean of 11.6 s stimulation. The initial discharges in the frontal-
cingulate regions were short in duration, with an average of 10.6 s.
The seizures that arose from the ACC showed strong transhemi-
spheric propagation. The electroencephalographic spike of the
first afterdischarge was usually simple, with a frequency of 1–3 Hz
in the ACC. Approximately 75% of the rodents with seizures
that arose from cingulate kindling exhibited an immediate loss of
postural control without rearing during the first and subsequent
afterdischarges. Approximately 50% of the rodents exhibited these
symptoms in the second to fourth afterdischarge. The behavioral
seizure response was a mixture of both neocortical and limbic
types (Racine, 1975).

Repetitive electrical stimulation of the ACC in baboons (Papio
papio) also induced cingulate seizures. The symptoms that arose
from ACC kindling had protracted non-convulsive seizure state
features, such as flexion of the neck, widening of the eyelids, rapid
bilateral spread, and eventually secondary generalization. Kin-
dling of the ACC evolves into convulsive seizures after epileptiform
activity propagates to the frontal central cortex. Focal epileptoge-
nesis on one side of the ACC was shown to interfere with seizure
development on the contralateral side (Wada and Tsuchimochi,
1995). These authors later showed that cingulate kindling can lead
to the prolonged inhibition of kindling at a homotopic secondary
site. This antiepileptic effect is not specific to primates because
it was also shown to occur in cats. They also showed that the
antiepileptic effect was not confined to the contralateral homo-
topic site, and the antiepileptic effect is presumably attributable to
an enhanced intrinsic inhibitory mechanism in the mammalian
brain (Wada and Hirayasu, 2004).

The basic synchronization mechanism of cingulate epilepti-
form activity has been studied in vitro (Panuccio et al., 2008a,
2009; Chang et al., 2011, 2013). The convulsant 4-aminopyridine
(4-AP) induces epileptic discharges in humans (Lundh et al., 1984)
and other mammals (Glover, 1982). In vitro studies showed that
4-AP could induce epileptic events in different brain regions, such
as the cingulate cortex (Panuccio et al., 2009), amygdala (Klueva
et al., 2003), and parahippocampal cortex (Avoli et al., 1996). 4-AP
is a potassium channel blocker that affects A-type and D-type K+
currents (Ulbricht and Wagner, 1976; Storm, 1988). 4-AP-induced
seizures are sensitive to anticonvulsants, and pharmacoresistant
activity can be induced by combining the GABAA receptor antago-
nist bicuculline with 4-AP (Bruckner et al., 1999). Bath application
of 50 μM 4-AP in coronal ACC slices elicited epileptiform syn-
chronization that was composed of interictal and ictal events. The
glutamatergic system is involved in the epileptic synchronization
of cingulate epilepsy. In a 4-AP-induced seizure model, bath appli-
cation of the N-methyl-D-aspartate (NMDA) receptor antagonist
CPP (10 μM) abolished ictal events but did not affect interictal
events. Concomitant application of the AMPA/kainate receptor
antagonist CNQX (10 μM) abolished ictal events and reduced
the amplitude of interictal events (Panuccio et al., 2009). In a 4-
AP + bicuculline-induced drug-resistant seizure model, the appli-
cation of the NMDA receptor antagonist APV (50 μM) shortened
the duration and amplitude of clonic phase discharge. Concomi-
tant application of the AMPA/kainate receptor antagonist CNQX
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(20 μM) completely suppressed tonic- and clonic-phase seizures
(Chang et al., 2011; Figure 1).

Application of the GABAA and GABAB receptor antagonists
PTX (50 μM) and CGP55845 (4 μM), respectively, abolished
ictal events induced by 4-AP and transformed the epileptiform
activity into recurrent synchronous discharges. The results showed
that GABAA transmission contributed to the synchronization of
epileptic discharges in the ACC (Panuccio et al., 2009). The para-
doxical GABA-mediated excitatory mechanism may result from
a shift of GABAA receptor reversal potential (Staley and Proctor,
1999) or a transient increase in [K+]0, which in turn enhances
synchronization through a synaptic or non-synaptic mechanism
(Avoli et al., 1996; Kohling et al., 2000; Gigout et al., 2006). The
synchronization of ACC seizures is also mediated by gap junc-
tions (Panuccio et al., 2008a; Chang et al., 2013). The application
of a gap junction blocker significantly decreased the amplitude
and duration of epileptiform activity. Epileptic synchronization
in the ACC is also subjected to opioid modulation. Application of
10 μM DAGO significantly abolished ictal discharges induced by
4-AP (Panuccio et al., 2009).

In cortical areas, the lateral propagation of electrical activity
is under tight control because unrestrained, laterally propagated
electrical activity easily leads to epileptiform activity. Epilepti-
form activity in neocortical areas is restrained by surrounding
inhibition (Prince, 1967), and a decrease in surrounding inhibi-
tion causes the spread of epileptiform activity (Pinto et al., 2005).
The development of interneurons in the ACC was altered in mice
with targeted mutation of the gene that encodes urokinase plas-
minogen activator receptor (μPAR). The ACC and parietal cortical
areas showed 50% fewer GABAergic interneurons in a μPAR−/−
mouse strain compared with wildtype littermates. The numbers

of interneurons in other cortical areas did not differ from wildtype
mice. The μPAR−/− strain displayed spontaneous seizures and a
lower seizure threshold when challenged with pentylenetetrazol
(Powell et al., 2003). Although seizure onset was not determined,
the μPAR−/− strain may serve as an animal model for inves-
tigating the importance of GABAergic interneurons in ACC
seizures.

Epileptiform activity that initiates in the ACC showed strong
trans-hemispheric propagation. To test whether left and right ACC
epileptic discharges synchronize through the corpus callosum, a
modified slice cutting method was established to preserve the cor-
pus callosum between the left and right ACC (Walker et al., 2012).
Seizure-like activity could be induced by the bath or local applica-
tion of bicuculline and in a zero-magnesium solution. Seizure-like
activity could be regulated by the corpus callosum, demonstrated
by an incision of the callosum in vitro. An incision of the callo-
sum diminished bilateral propagation. Interestingly, patch-clamp
recordings showed that inhibitory postsynaptic currents (IPSCs)
were increased by the focal application of bicuculline in the con-
tralateral ACC. No GABAergic projection was found between the
left and right ACC, and the authors concluded that the callosal
projection has a strong effect on local GABAergic interneurons
(Walker et al., 2012).

EPILEPTOGENESIS MECHANISM OF ACC SEIZURES
Most ACC seizures in clinical cases result from lesions. The
remainder of ACC seizures are sporadic, and the patho-
physiological mechanisms appear to be similar to those
affect the cerebral cortex. Cortical epilepsies can result from
extracellular ionic fluctuations (Taylor and Dudek, 1982),
the dysfunction of energy metabolism (Cavus et al., 2005),

FIGURE 1 |Typical example of 4-AP + bicuculline-induced epileptiform

activity in an MT-ACC slice. (A) Location of the multielectrode and
brain slice. The green area is selected and magnified in (B). (B)

Epileptiform activity is composed of ictal discharges (arrow), tonic-phase
firing (red line), and clonic-phase firing (green line). The application of
APV (50 μM) decreased the amplitude and duration of clonic-phase firing,
and the subsequent application of CNQX (20 μM) completely abolished

tonic- and clonic-phase firing. The application of CNQX also decreased
the amplitude of ictal discharges. (C) The statistical results showed that
both the amplitude and duration of epilepsy were significantly decreased
after application of APV and CNQX. Comparison were performed using
ANOVA and post hoc t -test (**p < 0.01; ##p < 0.01; ###p < 0.001).
Caud, caudate; Cx, cortex; Th, thalamus. Adapted from Chang et al.
(2011).
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channelopathies (Kullmann, 2002), and alterations in transmit-
ter uptake (Chapman, 1998; Rainesalo et al., 2004). Although the
pathophysiological mechanisms may have major differences, the
outcome of the hypersynchronous bursting of cortical neurons
and the concomitant phenotype are similar if the same brain
regions are involved.

Clinical electroencephalographic and functional MRI (fMRI)
data suggest that autosomal-dominant frontal lobe epilepsy
(ADFLE) may have a mesial frontal origin (So, 1998). ADFLE often
involves complex motor movements and vocalizations. The gene
loci that encode the nicotinic acetylcholine receptor α and β sub-
units CHRNA4, CHRNB2, and CHRNA2 are involved in ADFLE
(Steinlein et al., 1995; Bertrand et al., 1998; De Fusco et al., 2000).
Two mouse strains that carry mutant alleles of the α4 subunit of
the nicotinic acetylcholine receptor display spontaneous seizures.
In vitro recordings of neocortical pyramidal neurons showed that
nicotine-evoked GABAergic inhibition is significantly increased.
Spontaneous seizures could be blocked by the application of a low
dose of the GABAA receptor antagonist picrotoxin. These results
suggest that excessive GABAergic transmission is involved in the
epileptogenesis of ACC seizures. Epilepsy that occurs in the ACC
may be attributable to enhanced GABAergic function (Engel, 1996;
Mann and Mody, 2008; Panuccio et al., 2008b). The application
of the GABAA receptor antagonist picrotoxin inhibited epilep-
tic discharges (Klaassen et al., 2006). The possible mechanisms of
GABAergic inhibition that contribute to epileptogenesis include
the resetting of synchronization (Klaassen et al., 2006), the direct
excitatory effects of axo-axonic interneurons in layer II/III pyra-
midal cells (Szabadics et al., 2006), or changes in GABA reversal
potential (Marty and Llano, 2005).

The dysregulation of interneuron development might also
contribute to abnormal epileptic discharges (Levitt et al., 2004).
The μPAR−/− mouse strain exhibited a specific reduction of
parvalbumin-positive interneurons in the ACC and parietal cor-
tex and displayed spontaneous seizures. Previous studies showed
that the hypersynchrony of GABAergic transmission is involved
in ACC seizures (Panuccio et al., 2009). These results indicate that
the balance between excitatory and inhibitory transmission is very
important in seizure control, and the dysregulation of GABAergic
transmission is one of the factors of the epileptogenesis of ACC
seizures.

MODULATION OF ACC SEIZURES
THALAMIC MODULATION OF ACC SEIZURES
Seizure onset in limbic systems might propagate to different limbic
sites and some nuclei in the thalamus, such as parafasicular nuclei
(Langlois et al., 2010), mediodorsal nucleus (Juhasz et al., 1999),
and centromedian nucleus (Velasco et al., 1995). Thalamic nuclei
are involved in communication between different cortical regions
and also support seizure propagation between a primary focus
and other cortical and subcortical regions. Therefore, these nuclei
could play a pivotal role in the remote control of seizure activity
and be an interesting target for DBS (Kahane and Depaulis, 2010).
The ACC is reciprocally connected with the MT (Vogt et al., 1987;
Hatanaka et al., 2003; Vogt, 2005), and the MT might play a pivotal
role in the remote control of seizure synchronization (Kahane and
Depaulis, 2010).

Previous studies demonstrated that the MT is involved in
seizure modulation, especially seizures that involve limbic regions.
The MT has been consistently shown to be involved in seizure
onset. A significant amount of neuronal loss can be found in
medial dorsal and rhomboid/reuniens nuclei. These results suggest
that the MT plays a role in limbic seizure modulation (Bertram
et al., 1998, 2001). Clinical studies showed that electrical stimu-
lation of the MT decreases the occurrence of seizures (Sterman
et al., 1982; Urino et al., 2010), and these results indicate that MT
activity is involved in seizure blockade.

Studies of the mechanisms of seizure generation have used the
genetic Absence Epilepsy Rat from Strasbourg and showed that
spike-wave discharges (SWDs) can be generated from within the
somatosensory cortex (Polack et al., 2009). When thalamic activity
was blocked by tetrodotoxin (TTX), cortical epileptiform activity
turned into a longer sequence of SWDs, indicating that thala-
mic inputs might suppress epileptic activity. The prolongation of
epileptiform activity could be attributable to desynchronization
following tonic firing in ventral–medial thalamocortical (TC) neu-
rons (Glenn et al., 1982). Thalamic inputs might desynchronize the
cortical response. Previous studies showed that noxious stimula-
tion can increase medial thalamic activity and desynchronize the
cortical electroencephalogram (Antognini et al., 2000).

Our recent studies used brain slices that preserved the path-
way between the MT and ACC (Lee et al., 2007). We showed that
thalamic inputs could desynchronize epileptic events in the 4-
AP + bicuculline-induced seizure model (Chang et al., 2011 and
Figure 2).

This inhibitory effect on seizure activity might occur via the
activation of GABAergic transmission. Our results showed that
50 μM bicuculline completely suppressed the GABAergic system,
and no significant difference was found between the intact TC
and severed thalamic groups. Thus, thalamic inputs may exert
inhibitory effects via the GABAergic system in the ACC.

The lateral propagation of seizure-like activity in the neocortex
is restrained by surrounding inhibition. Studies of hippocampal
slices also showed that epileptiform activity became synchro-
nized in different columns when surrounding inhibition collapsed.
Thalamic inputs might activate and strengthen surrounding inhi-
bition. This phenomenon was demonstrated in a calcium imaging
experiment, in which calcium transients tended to be more syn-
chronized when the inhibitory effect of thalamic inputs was
eliminated. Removing the thalamic inputs in our slice may have
decreased the inputs that activate surrounding inhibition or desyn-
chronized them, causing epileptiform activity to wane (Chang
et al., 2011).

μ-OPIOID RECEPTOR AGONIST MODULATES ACC SEIZURES
The opioid receptor family includes the μ, δ, and κ receptors
(Benarroch, 2012). The opioid receptors are expressed through-
out the central nervous system. The high expression of opioid
ligand binding sites can be found in the limbic system and ACC,
the major region of opioid action in the brain (Herz et al., 1970;
Hiller et al., 1973; Pert and Yaksh, 1974). All three opioid receptor
subtypes are localized in the ACC, but the relative amount of κ

receptors is less, and their distribution varies among different lay-
ers (Mansour et al., 1987). Opioid receptors in the ACC are known
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FIGURE 2 | Inhibitory effect of MT stimulation on 4AP + bicuculline-

induced epileptiform activity. (A) Stimulation sites in the MT and CC and
recording site in the ACC. (B) Activity evoked by MT and CC stimulation.
Evoked responses were all-or-none because they were not altered by changes
in stimulation intensity. (C) The duration and amplitude of epileptiform activity
were significantly greater in response to CC stimulation than in response to
MT stimulation. (D) A cut was made in the middle of the corpus callosum and
at the border between the thalamus and basal ganglia. Epileptiform activity
that arose from the side without thalamic inputs was significantly larger than
the activity that arose from the side with thalamic inputs. (E) Pseudocolor

isopotential map that shows that the seizure began within the cortex and
propagated to the basal ganglia and thalamus. (F) Typical traces were selected
and magnified. Notice that the duration and amplitude of epileptiform activity
were larger on the right side of the ACC (i.e., thalamic input removal side).
(G) Summary results that show that the amplitude and duration of epileptiform
activity were significantly larger in the thalamic removal groups. However,
when the concentration was increased to 50 μM to completely block GAB-
Aergic transmission, no significant difference was observed between groups.
Comparison were performed using ANOVA and post hoc t -test (**p < 0.01).
Caud, caudate; Cx, cortex; Th, thalamus. Adapted from Chang et al. (2011).

to be involved in the top-down modulation of pain signals (Petro-
vic et al., 2002; Eippert et al., 2009), the incentive motivational
properties of drug-related cues (Gremel et al., 2011), and affective
responses (Zubieta et al., 2003).

Endogenous opioids in the brain could act as neurohor-
monal transmitters for epilepsy (Loacker et al., 2007; Kauffman
et al., 2008). Clinical research showed that β-endorphin lev-
els are correlated with seizure frequency and duration (Marek
et al., 2010). A positron emission tomography radioligandbinding
assay showed that opioid receptor availability was upregulated

after spontaneous seizures (Hammers et al., 2007). These clinical
studies showed that opioids play an important role in seizure mod-
ulation. Previous studies showed that an increase in the level
of endogenous opioids increases seizure threshold (Stogmann
et al., 2002). The κ receptor agonist dynorphin is released during
focal hippocampal seizures to prevent secondary generalization
and status epilepticus (Koepp et al., 1998; Romualdi et al., 1999).
However, other reports indicated that opioid receptors have bipha-
sic effects with regard to epileptogenesis. At low concentrations,
morphine has antiseizure effects, whereas higher concentrations
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enhanced spontaneous seizures. The proseizure effect of high-
dose morphine is mediated through μ and κ receptors, and δ

receptor activation appears to not be involved in this process
(Saboory et al., 2007).

The role of μ-opioid receptors in the regulation of ACC
seizures has been investigated. μ-Opioid receptors have been
shown to be involved in the epileptic synchronization mecha-
nism of ACC seizures in brain slice preparations (Panuccio et al.,
2009). The bath application of 10 μM [D-Ala2, N-MePhe4, Gly-
ol]-enkephalin (DAMGO) significantly abolished ictal discharges
induced by 4-AP. This effect could be reversed by the application
of 10 μM naloxone (Panuccio et al., 2009).

DAMGO might act on μ-opioid receptors on interneurons to
interfere with seizures caused by synchronization of the GABAer-
gic system. The application of DAMGO significantly increased
both the duration and interval of the occurrence of epileptic events
when the GABAergic system is further blocked by the application
of the GABAA and GABAB receptor antagonists PTX (50 μM)
and CGP55845 (4 μM), respectively. Alterations in epileptic events
induced by DAMGO is thought to occur via interactions with glu-
tamatergic receptors (Panuccio et al., 2009). Thus, both excitatory
and inhibitory epileptic synchronization mechanisms in the ACC
appear to be modulated by μ receptors.

GAP JUNCTION MODULATION OF ACC SEIZURES
Gap junctions mainly exist between interneurons in the neocortex
(Galarreta and Hestrin, 1999) and are important in the regula-
tion of synchronization between interneurons. Therefore, gap
junctions in the ACC might be involved in pathophysiological
hypersynchronization in epileptic discharges. Gap junctions are
also expressed on glial cells (Nemani and Binder, 2005). Glial
cells regulate the ionic concentration in the extracellular space
during seizures, preventing the accumulation of potassium that
causes neurons to become more excitable (Park and Durand,
2006). Glial cells also regulate the potassium concentrations
after seizure activity (Xiong and Stringer, 1999). Gap junctions
might be involved in epileptogenesis, especially in the modula-
tion of the spatiotemporal properties and changes in frequency
distribution.

Gap junctions are involved in oscillations with different fre-
quencies. These oscillations include theta oscillations (Konopacki
et al., 2004; Allen et al., 2011), gamma oscillations (Tamas et al.,
2000; Hormuzdi et al., 2001), and fast ripples (Grenier et al., 2003).
Previous studies showed that gap junction blockers could block
carbachol-induced theta oscillations in brain slices (Konopacki
et al., 2004), whereas the gap junction opener TriMA increased
theta oscillations (Bocian et al., 2011). This was caused by the
local synchronization and desynchronization of interneurons.
Using an MT-ACC slice preparation, we found that theta oscilla-
tions significantly decreased after application of the gap junction
decoupler CBX, indicating that the activity of local interneu-
rons was desynchronized (Chang et al., 2013). Interneurons are
important in the synchronization (Engel, 1996; Mann and Mody,
2008; Panuccio et al., 2008b) and restraint of the propagation of
seizure-like activity (Prince, 1967; Pinto et al., 2005). The preva-
lence of gap junctions in cortical interneurons suggests that gap
junctions play important roles in seizure propagation. The gap

junction decoupler CBX could slow down and desynchronize
spontaneous field events. The epileptic discharges were abol-
ished by CBX, and this effect partially recovered with washout
(Panuccio et al., 2008a).

Electrical synapses in the TC system are strong. When electri-
cally coupled cells in the neocortex are excited by thalamic inputs,
they typically display strong synchrony of both subthreshold volt-
age fluctuations and spikes (Cruikshank et al., 2005). The ACC
is heavily connected with the MT (Hatanaka et al., 2003; Wang
and Shyu, 2004). Our recent studies showed that inputs from the
MT could modulate seizure-like activity in the ACC (Chang et al.,
2011). The modulation occurs partially through the regulation
of cortical gap junctions. One of the important features of TC
afferents is that they contact both excitatory projection neurons
and local inhibitory interneurons in the cortex. Thus, somatosen-
sory information is immediately distributed to both excitatory and
inhibitory cells. Surprisingly, however, the synapses between thala-
mic relay neurons and inhibitory interneurons are much stronger
than those between thalamic relay neurons and excitatory princi-
pal cells. Thus, TC afferents lay the foundation for a powerful and
simple disynaptic circuit that provides feed-forward inhibition.
We found that the removal of thalamic inputs could potentiate
cingulate seizure-like activity (Chang et al., 2011), indicating that
thalamic inputs exert their effects through cortical interneurons.
We also found that electrical stimulation in the thalamus could
suppress seizures, and this might also be caused by the activation
of cortical interneurons (Figure 3).

Gap junctions are significantly involved in the regulation of
the clonic phase of seizure-like activity in the cingulate cortex.
In our study, we found that ictal bursts and the tonic phase of
seizure-like activity, clinically manifested as the tonic phase of a
generalized seizure (Logan et al., 2011), are not influenced by a
gap junction opener or blocker, while clonic phase is enhanced
by the application of a gap junction opener and inhibited by a
gap junction blocker. This is because the synchronization and
propagating mechanism of ictal bursts and the tonic phase of
seizure-like activity induced by 4-AP and bicuculline depend on
synaptic transmission mediated by both AMPA and NMDA recep-
tors (Perreault and Avoli, 1992; Borck and Jefferys, 1999; Kohling
et al., 2001), and gap junctions are not involved in synaptically
synchronized primary bursting activity (Kohling et al., 2001).
These results indicate that gap junctions are more involved in the
maintenance and propagation of seizure-like activity.

The involvement of gap junctions in the maintenance of
seizure-like activity was also demonstrated by the application of
a gap junction blocker 30 min prior to the application of 4-AP
and bicuculline. Our results showed that the application of a
gap junction blocker did not influence the induction of seizure-
like activity. 4-AP- and bicuculline-induced seizure-like activity
reached a maximal response 50 min after application. Within
50 min, the amplitude and duration of seizure-like activity were
not significantly different between the CBX and 4-AP + bicu-
culline groups, indicating that gap junctions are not involved in
the induction stage of seizure-like activity. The significant decrease
in the duration of seizure-like activity by the action of CBX is likely
mediated by depression of the synchronization between neurons
(Szente et al., 2002). Although CBX is also a mineralocorticoid
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FIGURE 3 | Schematic diagram of thalamic modulation of cingulate

seizures. (A) The thalamus innervates both pyramidal neurons and inhibitory
interneurons in the cortical area. Thalamic inputs can activate inhibitory
interneurons, and the interneurons can in turn silence cortical pyramidal
neurons. (B) Epileptiform activity is usually caused by the hyperactivity of
some pyramidal neurons. The activation of these pyramidal neurons will also
activate the inhibitory interneurons around them, forming surrounding
inhibition that can prevent the lateral propagation of epileptiform activity.

(C) Removing the thalamic inputs also reduces the inputs of inhibitory
interneurons, and the weakening of surrounding inhibition facilitates the
propagation of epileptiform activity. (D) Electrical stimulation of the thalamus
will activate both pyramidal neurons and inhibitory interneurons in cortical
areas, but the synapses between thalamic relay neurons and interneurons are
stronger than those between thalamic relay neurons and pyramidal neurons.
Therefore, electrical stimulation of the thalamus can suppress seizure
propagation.

agonist, such receptors are not involved in seizure-like activity
induced by 4-AP or a Mg2+-free solution (Ross et al., 2000).
The results of application of the mineralocorticoid antagonist
SPL excluded the possibility that CBX might also act on this
receptor.

CURRENT STIMULATION MODULATION OF FRONTAL LOBE EPILEPSY
Thirty percent of seizure patients suffer from drug-resistant
seizures (Kwan and Brodie, 2000). An alternative method has
been adopted in clinical research to control seizures. These meth-
ods include transcranial magnetic stimulation (TMS), transcranial
direct current stimulation (tDCS), and DBS. One of the clin-
ical methods used to cure these patients is DBS. Deep brain
stimulation was adopted because it could cure patients with
unidentifiable seizure initiation sites, or it could be used to treat
patients with a seizure focus that cannot be removed. One of
the targeted brain regions for DBS is the thalamus. The thala-
mus relay information from peripheral to central locations and is
responsible for the synchronization of different cortices. There-
fore, some nuclei in the thalamus, such as the centromedian,
mediodorsal, and parafasicular nuclei, are potential clinical tar-
gets for DBS (Bertram et al., 2001; Kahane and Depaulis, 2010).
Previous clinical studies showed that anterior thalamus stimula-
tion (4–5 V, 90–110 Hz, 60–90 μV) could alleviate intractable
cingulate seizures (Lim et al., 2007). The possible underlying
mechanism could be that DBS in the thalamus changes corti-
cal synaptic plasticity (Anderson et al., 2004, 2006). TMS and
tDCS are non-invasive methods used to transiently alter neuronal
excitability. Transcranial direct current stimulation can transiently
alter neuronal excitability, and it is economical compared with
TMS. Therefore, many research laboratories and even computer
game companies use TDS to influence the subject’s attention or

learning and memory ability. The effect of tDCS can outlast
the stimulation period (Nitsche et al., 2007) and alter synaptic
plasticity (Fritsch et al., 2010). One of the hallmarks of epilep-
tic seizures is enhanced neuronal excitability, and tDCS has been
shown to reduce seizures by the diminution of cortical excitability
(Nitsche and Paulus, 2009). Transcranial direct current stimula-
tion is particularly useful in patients with epileptogenic foci in
cortical convexity (Nitsche and Paulus, 2009). The tDCS stimu-
lation protocol has two modalities. In the closed-loop modality,
tDCS is delivered after the epileptic discharge is detected online.
In the open-loop modality, a predetermined pattern of stimula-
tion frequency is delivered, regardless of the underlying cortical
oscillation. Transcranial direct current stimulation was shown to
suppress seizures when applied during interictal states or termi-
nate frontal lobe epileptiform discharges (Kimiskidis et al., 2013).
The tDCS of the epileptogenic zone has the potential to control
intractable seizures (Morrell, 2006). The nature of the tDCS-
induced effect depends on the stimulation parameters, such as the
duration, frequency, intensity, and field orientation. Transcranial
direct current stimulation is known to cause changes in synaptic
plasticity (Fritsch et al., 2010). Transcranial direct current stim-
ulation may suppress seizures long-term by inducing long-term
depression.

CONCLUSION AND FUTURE PERSPECTIVE
The synchronization mechanism of ACC epileptic discharges is
largely attributable to the dysregulation of interneuronal networks.
Spontaneous seizures are caused by excessive GABAergic transmis-
sion, such as in the case of the ADFLE and 4-AP-induced epilepsy
models. The reduction of GABAergic transmission in the ACC
might also cause seizures, such as the spontaneous seizures found
in the μPAR−/− mouse strain. To fully understand the role of
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inhibitory interneurons in ACC seizures, one must precisely con-
trol the activity of interneuronal networks by either enhancing or
suppressing interneurons. Based on the basic research, the ACC
seizure could be modulated by gap junction. Application of gap
junction uncoupler decrease the duration of seizure-like activi-
ties, while gap coupler enhance seizures. The μ-opioid receptors
are also involved in the pathogenesis of ACC seizure, as μ-opioid
agonist DAMGO reduced the ictal discharge. The ACC seizure
is also subjected to the modulation by thalamic inputs. Remov-
ing or inactivating thalamus enhanced seizure-like activities
in ACC.

To fully understand the role of inhibitory interneurons in ACC
seizures, one must precisely control the activity of interneuronal
networks by either enhancing or suppressing interneurons. Opto-
genetics is the integration of optics and genetics to allow the
expression of light-sensitive channels, such as channel rhodopsin-
2 (ChR2) and Halorhodopsin from Natronomonas (NpHR) in
certain groups of neurons (Nagel et al., 2003; Boyden et al.,
2005; Zhang et al., 2006). Using blue light to activate ChR2 can
trigger action potentials in neurons. Using yellow light to acti-
vate NpHR can hyperpolarize neurons. Many knock-in mouse
lines are available to specifically and robustly increase the Cre-
dependent expression of ChR2 and other light-sensitive proteins
(Madisen et al., 2012). By combining hundreds of available Cre
lines, ChR2 or NpHR can be expressed in different subtypes of
interneurons, and these knock-in mice will facilitate investiga-
tions of the function of neural circuits with high fidelity and
accuracy.
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