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Abstract. Breast cancer is a recognized threat to the health 
of women globally. Due to the lack of the knowledge about 
the molecular pathogenesis of breast cancer, therapeutic 
strategies remain inadequate, especially for aggressive breast 
cancer. In the present study, sequential bioinformatics analysis 
was performed using data from the GSE20711 dataset, and 
the results demonstrated that three genes may impact the 
survival of patients with breast cancer. One of these genes, 
RAD54 homolog B (RAD54B), may be a potential prognostic 
factor for breast cancer. A signature was established that 
could evaluate the overall survival for patients with breast 
cancer based on the risk score calculated from RAD54B 
expression and the Tumor‑Node‑Metastasis (TNM) stage 
[risk score=expRAD54B x 0.236 + TNM stage (I/II=0 or 
III/IV=1) x1.025]. In addition, based on the GSE85871 dataset 
and inhibitory assay, the study identified a natural compound, 
Japonicone A, which may reduce the proliferation of breast 
cancer cells by inhibiting the expression of RAD54B. Overall, 
the present study identified a novel candidate gene and a 
candidate compound as promising therapeutic targets for the 
treatment of breast cancer.

Introduction

Cancer is considered to be one of the most dangerous factors 
to human life. The global cancer statistics for 2018 demon-
strated that breast cancer exhibits the highest morbidity and 
mortality rates in females worldwide compared with other 
types of cancer (1). Several therapeutic strategies have been 
developed for breast cancer treatment, including surgery, 
chemotherapy, radiotherapy, hormone therapy and newly 
improved immunotherapy  (2). However, due to the high 
heterogeneity among different types of breast cancer, the 
prognosis for a number of patients is still poor, especially for 
patients with distant metastases, who are usually diagnosed 
at a late stage (3). As a result, it is very important to identify 
the basic molecular mechanisms leading to the occurrence 
and development of breast cancer. Improved knowledge 
on breast cancer may result in more efficient treatment 
strategies.

With the development of new research techniques, 
bioinformatics analysis is considered as one of the most 
important methods used to study cancer, especially the 
underlying molecular mechanisms (4). A number of studies 
have used bioinformatics to analyze the gene expression 
profiles of various types of cancer by identifying, comparing 
or clustering differentially expressed genes in cancer cells 
compared with healthy cells. Candidate genes involved in 
the occurrence and development of cancer can be identified 
and further studied to be developed as promising therapeutic 
targets (5‑8). Bioinformatics analysis is considered to be an 
important technique in breast cancer study and has already 
helped achieve promising improvements, such as identifying 
new prognostic factors or pathways and genes associated with 
breast cancer (9‑12).

The present study analyzed the expression data from 
GSE20711 and revealed that the RAD54B gene was associated 
with the Tumor‑Node‑Metastasis (TNM) stage, which may be 
used as a signature for predicting the overall survival time of 
patients with breast cancer. This signature may contribute to 
the precise treatment and prognostic monitoring of patients 
with breast cancer. Furthermore, the present study identi-
fied a compound (Japonicone A) from the traditional herb 
Inula japonica Thunb that could decrease the proliferation of 
breast cancer cells by inhibiting the expression of RAD54B. 
The present study identified a novel candidate gene and a 
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candidate compound as promising therapeutic targets for the 
treatment of breast cancer.

Materials and methods

Gene expression datasets. The gene expression datasets 
GSE20711 and GSE85871 were downloaded from the Gene 
Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo). GSE20711 was comprised of 88 breast cancer 
samples and 2 normal breast tissue samples, and used the 
platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 
Array) (13). GSE85871 was comprised of the gene expression 
profiles of MCF‑7 cells, which were treated with 102 different 
molecules used in traditional Chinese medicine, and used the 
GPL571 platform (Affymetrix Human Genome U133A 2.0 
Array) (14). The Cancer Genome Atlas (TCGA) Breast Invasive 
Carcinoma dataset (including high‑throughput sequencing 
(HTSeq) and clinical data of 1,104 breast cancer tissue samples 
and 113 normal breast samples) was downloaded using the R 
package ‘TCGAbiolinks (version 2.10.0)’ (15).

Screening for differentially expressed genes (DEGs). The 
‘limma (version 3.36.2)’ package was used to load normal-
ized data into R (version 3.3.3; https://www.r‑project.org) 
software and screen the DEGs between breast cancer and 
non‑tumor tissues (16). The genes with fold‑change ≥2 and an 
adjusted P‑value (false discovery rate) <0.05 were identified as 
DEGs (17).

Co‑expression network construction and module identification. 
Weighted correlation network analysis (WGCNA) is a 
commonly used systemic biological data mining method for 
describing the correlation patterns among genes and identifying 
the modules of highly correlated genes; it uses average linkage 
hierarchical clustering coupled with topological overlap dissimi-
larity based on high‑throughput chip or RNA‑Seq data (18). The 
‘WGCNA (version 1.63)’ package in R was used to construct 
the co‑expression network for the DEGs in the 88 breast cancer 
samples in GSE20711 (18). β is a soft‑thresholding param-
eter that emphasizes strong correlations between genes and 
depreciates weak correlations (19). In the present study, β=18 
(scale‑free R2=0.8) was used to ensure a scale‑free network. A 
cut height of 0.85 and effect size of ≥10 were used to identify 
the modules. Pearson's correlation matrices were calculated for 
the modules (20).

Enrichment analysis. The Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis of the genes in the modules were performed 
using the ‘clusterProfiler (version 3.9.1)’ R package based on 
hypergeometric distribution algorithm (P<0.05), and ‘GOplot 
(version 1.0.2)’ was used for further analysis (21,22).

Survival analysis. To validate the genes in the turquoise 
modules, the largest modules, the clinical information and 
RNA sequencing data (HTSeq‑FPKM) of breast cancer were 
obtained from TCGA Project database (https://cancergenome.
nih.gov). Kaplan‑Meier survival analysis with the log‑rank test 
was conducted to evaluate the association between the genes 
in the turquoise module and patient survival. P<0.05 was 

considered to indicate a statistically significant association. 
Univariate Cox analysis was used to test whether the genes 
may be used as independent prognostic factors. The data 
were randomly divided into two groups: A discovery cohort 
(n=458) and an internal testing cohort (n=457). The genes 
and clinicopathological characteristics that were signifi-
cant in the univariate Cox analysis and the Kaplan‑Meier 
survival analysis were used for the multivariate Cox regres-
sion analysis. The Akaike information criterion (AIC) value, 
which was calculated based on different influencing factors 
by the multivariate Cox regression analysis, was used to 
remove the confounding factors to obtain the best variable 
for data fitting, where the minimum AIC value has the best 
fit (23). Subsequently, a prognostic mRNA and clinical trait 
signature with min AUC value was constructed, which may 
be used to calculate a risk score for each individual patient 
with breast cancer. According to the median of the risk score 
(median value, 1.915), the patients were stratified into low‑risk 
and high‑risk groups. The risk groups from the two cohorts 
were evaluated using Kaplan‑Meier analysis and the log‑rank 
test  (24). A nomogram combining the risk score with two 
other clinical factors (age and sex) was constructed to provide 
a graphic representation of the prediction model using the 
R package rms (version 5.1‑3.1) (25).

Protein‑protein interaction (PPI) network construction. The 
search tool for the retrieval of interacting genes/proteins 
(STRING) database (https://string‑db.org/) was used to 
construct the PPI networks, and the results exported from 
STRING were imported into Cytoscape (version 3.4.0) for 
visualization (24).

Immunohistochemistry. The Human Protein Atlas (http://www.
proteinatlas.org/) was used to validate the expression of the 
three genes in breast cancer tissue (26). The direct links to these 
images are as follows: RAD54B, https://www.proteinatlas.org/
ENSG00000197275‑RAD54B/pathology/tissue/breast+cancer 
#imid_2186145; KIF21A, https://www.proteinatlas.org/
ENSG00000139116‑KIF21A/pathology/tissue/breast+cancer# 
imid_17124866; and C8orf76, https://www.proteinatlas.org/
ENSG00000189376‑C8orf76/pathology/tissue/breast+cancer# 
imid_6235831.

Gene Set Enrichment Analysis (GSEA). GSEA was performed 
using KEGG pathway annotation data from the KEGG 
database (27). According to the median value of RAD54B 
expression, patients from the GSE20711 and TCGA datasets 
were divided into two groups. The clusterProfiler (version 3.9.1) 
package was used to analyze the data and construct the ridge 
plot (28).

Cell culture and stimulation. The MCF‑7 cell line was 
obtained from the American Type Culture Collection. 
The cells were cultured in complete Dulbecco's modified 
Eagle's medium (Gibco; Thermo Fisher Scientific, Inc.) 
supplemented with 10% fetal bovine serum (Gibco; Thermo 
Fisher Scientific, Inc.) in 5% CO2

 stored at 37˚C. The cell 
cultures were checked for Mycoplasma contamination 
using a Mycoplasma PCR Detection kit (Sigma‑Aldrich; 
Merck KGaA) every 3 months. The cell line was not listed 
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in the database of commonly misidentified cell lines (https://
iclac.org/databases/cross‑contaminations).

Japonicone A (>97% purity) was kindly gifted by Professor 
Weidong Zhang (School of Pharmacy, Second Military 
Medical University, Shanghai, China) (29‑32). Japonicone A 
was dissolved in dimethyl sulfoxide (DMSO) and the solu-
tion was diluted in the cell culture media to ensure that the 
concentration of DMSO was <0.1%, as described in a previous 
study (31). The working concentration (10 µM) of Japonicone 
A was the same as the one applied in the GSE85871 dataset, 
which was initially used to identify that Japonicone A 
inhibited the expression of RAD5B in MCF‑7 cells (15). In 
addition, Hu et al (29) used 10 µM Japonicone A in a treat-
ment assay. Preliminary experiments were performed with 
10 µM Japonicone A on the proliferation of MCF‑7 cells in 
the present study, and the results suggested that the concentra-
tion was effective (data not shown). Therefore, MCF‑7 cells 
were treated with 10 µM Japonicone A for 24 h prior to cell 
collection and analysis. DMSO without Japonicone A was 
used as the solvent control. The volume of the solvent control 
was the same with DMSO‑dissolved Japonicone A used in the 
experimental group. 

Reverse transcription‑quantitative PCR. Total  RNA was 
extracted from MCF‑7 cells using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). RNA was reverse‑transcribed 
into cDNA with High‑Capacity cDNA Reverse Transcription 
kit (Applied Biosystems; Thermo Fisher Scientific, Inc.). 
qPCR was performed using SYBR® Premix Ex Taq II (Takara 
Bio, Inc.). Relative mRNA expression levels were calculated 
by normalizing the relative quantitation cycle value to the 
control group following standardization to the internal control 
β‑actin  (33). The primers used were as follows: Human 
RAD54B forward, 5'‑AAG​AAC​CTG​ACT​GCC​TCA​CG‑3' and 
reverse, 5'‑TCC​ACC​ACA​GGT​AAA​CCA​GC‑3'; and human 
β‑actin forward, 5'‑CAG​GGC​GTG​ATG​GTG​GGC​A‑3' and 
reverse, 5'‑CAA​ACA​TCA​TCT​GGG​TCA​TCT​TCT​C‑3'. The 
thermocycling conditions for the RT‑qPCR was as follows: 
2 min at 95˚C, 40 cycles at 95˚C for 10 sec, 59.5˚C for 10 sec, 
68˚C for 15 sec, and 72˚C for 10 sec.

Receiver operating characteristic (ROC) curve analysis. The 
R package ‘survivalROC (version 1.0.3)’ was used for the ROC 
curve analysis  (34). The ROC curve was used to test the 
sensitivity and specificity of the variables in predicting overall 
survival, and to assess the predictive ability of the calculated 
prognostic signature for 5‑year patient survival (25).

Decision curve analysis (DCA). R package ‘rmda 
(version 1.6)’ was used for DCA, which estimates the net 
benefit of a signature by subtracting the false‑positives from 
the true‑positives (35,36).

Flow cytometry. Anti‑mouse marker of proliferation Ki‑67 
(ki‑67)‑FITC flow cytometry antibody was purchased from 
Miltenyi Biotec (diluted 1:100 with 1X permeabilization 
buffer; catalog no. 130‑117‑691). The intracellular staining 
of ki‑67 was performed using the Foxp3/Transcription Factor 
Staining Buffer Set (eBioscience; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions. Briefly, 

MCF‑7 cells were collected and centrifuged at 150 x g for 
5  min at room temperature. The cell pellets were mixed 
with 1 ml fixation‑permeabilization buffer (a 1:3 mixture of 
fixation‑permeabilization concentrate and diluent, which 
were included in the kit) at 4˚C for 1 h. The cells were washed 
twice with 2 ml 1X permeabilization buffer (10X permea-
bilization buffer diluted to 1X with ddH2O). The fixed cells 
were stained with the anti‑ki‑67‑FITC antibody for 30 min at 
room temperature in the dark. Finally, the washed cells were 
resuspended in PBS prior to detection using BD FACSVerse 
(BD Biosciences). The flow cytometric data were analyzed 
with FlowJo software (version 10.3; FlowJo LLC).

MTT assay. A total of 5x103 MCF‑7 cells were seeded in 96‑well 
plates and treated with the aforementioned amount of control 
(DMSO) or 10 µM Japonicone A for 24 h. Subsequently, 20 µl 
MTT (5 mg/ml) was added to the wells and incubated for 4 h. 
The wells were supplemented with 150 µl DMSO to dissolve 
the formazan crystals prior to optical density measurement 
by a microplate reader at 490 nm. There were three duplicate 
wells for each group, and the cell viability was normalized to 
the control group in each experiment.

Statistical analysis. The statistical analyses were performed 
using R (version 3.3.3). Student's t‑test was used for compari-
sons between two independent groups. P<0.05 was considered 
to indicate a statistically significant difference. The experi-
ments presented in Fig. 7 were replicated four times and each 
dot in the histogram represents one independent experiment; 
lines and error bars represent the mean ± SD.

Results

Co‑expression network construction and key module iden‑
tification. The GSE20711 samples with complete clinical 
data were included in the WGCNA analysis (Fig. 1A). DEGs 
between breast cancer tissues and non‑tumor tissues were 
identified (Table SI). Based on the DEGs, a co‑expression 
network was constructed, and the modules were identified by 
WGCNA. The results revealed that the most significant DEGs 
could be grouped into three major modules (turquoise, blue 
and brown modules) (Fig. 1B). Further analysis demonstrated 
that the turquoise module exhibited the highest positive 
correlation with TNM stage and negative correlation with ER 
status compared with the other modules (Fig. 1C). Thus, this 
module was identified as the clinically significant module for 
subsequent analysis.

Enrichment analysis and PPI network of the turquoise 
module. GO enrichment analysis was performed for the 
genes in the turquoise module, and the results were catego-
rized into three functional groups: Biological process (BP), 
molecular function (MF) and cellular component (CC). The 
genes in the BP group were mainly enriched in ‘mitotic 
cell cycle process’, ‘cell cycle’, ‘cell cycle process’, ‘mitotic 
cell cycle’, ‘cell division’ and ‘nuclear division’ (Fig. 2A); 
the genes in the CC group were enriched in ‘condensed 
chromosome’, ‘chromosome’, ‘spindle’ and ‘chromosomal 
region’ (Fig. 2B); the genes in the MF group were mainly 
enriched in ‘protein binding’, ‘ATP binding’, ‘catalytic 
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activity’ and ‘microtubule binding’ (Fig. 2C). In addition, 
the KEGG pathway analysis revealed that the DEGs were 

mainly involved in ‘cell cycle’, ‘oocyte meiosis’, ‘pyrimi-
dine metabolism’, ‘p53 signaling pathway’ and ‘DNA 

Figure 1. Key modules identified in breast cancer. (A) Clustering dendrogram of the 88 breast cancer samples. (B) Gene clustering and module identification 
by weighted correlation network analysis of the GSE20711 dataset. (C) Heatmap of the correlations between modules and clinicopathological characteristics 
of breast cancer. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2.
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Figure 2. Enrichment analysis and PPI network of the genes in the turquoise module. (A) Results of the GO BP analysis, (B) the GO CC analysis and (C) the 
GO MF analysis of the turquoise module. The circles indicate the gene expression distribution in each term, and the Z‑score value indicates the difference in 
the number of upregulated versus downregulated genes divided by the square root of the total count. (D) Results of the KEGG pathway analysis of the turquoise 
module. The colors indicate the significance [‑log10(P‑value)], and the size of the circles represents the number of genes enriched in the corresponding annota-
tion. (E) The PPI network of the genes in the turquoise module. The size represents the degree of connectivity, and the color represents FC (red, upregulated 
genes; green, downregulated genes). GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; PPI, protein‑protein 
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold‑change.
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replication’ (Fig. 2D). The PPI network based on the genes 
from the turquoise module demonstrated that the majority 
of the genes closely interacted with each other (Fig. 2E). 
Taken together, the results demonstrated that the DEGs in 
the clinically significant module mainly participated in the 
regulation of cancer cell proliferation, and that the majority 
of them interacted with each other.

Potential independent prognosis factors in breast cancer. 
The association of the turquoise module with tumor prognosis 
was analyzed based on TCGA data. Using univariate Cox 
analysis, several genes (SHCBP1, RAD54B, KIF21A and 
C8orf76) associated with prognosis were identified (Table I). 
The results of the Kaplan‑Meier survival analysis identified 
RAD54B, KIF21A and C8orf76 as potential independent 
prognosis factors, which were negatively associated with 
overall patient survival time (Fig. 3A‑C) and upregulated in 
late clinical tumor stages (III and IV) compared with early 
stages (I and II; Fig. S1).

The Human Protein Atlas database, the data of which 
are open access to all researchers, contains a systems‑based 
analysis of protein expression in 17 types of cancer using 
data from 8,000 patients, as well as immunohistochemistry 
images directly demonstrating the indicated protein expres-
sion in tumor tissues (37,38). The database was searched to 
analyze the expression of RAD54B, KIF21A and C8orf76 
in normal and breast cancer tissues. With the exception of 
C8orf76, the protein expression of RAD54B and KIF21A 
was increased in breast cancer tissues compared with that in 
normal tissues (Fig. 3D‑F).

RAD54B combined with TNM stage may predict the survival 
of patients with breast cancer. Since RAD54B, KIF21A and 
C8orf76 were significantly associated with the overall survival 
of patients with breast cancer, the patients from TCGA 
Project database were randomly divided into two groups: 
The discovery cohort and the internal cohort  (Table SII). 
Combined with the clinicopathological characteristics in the 
datasets, a prognostic module was developed using forward 
conditional stepwise regression with multivariate Cox analysis 
in the discovery cohort. From the AIC values, a prognostic 

signature containing one gene (RAD54B) and one clinical 
trait (TNM stage) was identified. Based on this signature, the 
risk score was calculated for each sample in the discovery 
cohort using the following formula: Risk score=RAD54B 
expression x 0.236 + TNM stage (I/II=0 or III/IV=1) x 1.025. 
The samples were ranked by score and divided into high‑risk 
and low‑risk groups based on the median of the risk scores 
(median, 1.915), which was set as the cut‑off point (Fig. 4A). 
The sample with the median value was assigned to the 
high‑risk group. The patients in the high‑risk group exhibited 
shorter overall survival times compared with the patients 
in the low‑risk group (Fig. 4B and C). In addition, the ROC 
curve analysis revealed that the AUC was 0.687 based on the 
risk scores (Fig. 4D).

The risk score model was further evaluated using the 
internal cohort. Using the risk‑score formula and cut‑off point 
derived from the discovery cohort, the patients were divided 
into high‑risk (n=256) and low‑risk (n=201) groups. The overall 
survival of the patients in the internal cohort revealed a similar 
trend to that in the discovery cohort (Fig. 4E‑H). In addition, 
the nomogram based on the signature and the decision curve 
analysis demonstrated that this prognostic signature was 
effective for evaluating the prognosis of patients with breast 
cancer (Fig. S2).

Japonicone A may inhibit MCF‑7 cell proliferation by 
targeting RAD54B. As RAD54B may serve an important role 
in breast cancer and may be a potential therapeutic target, 
the data from TCGA and GSE20711 were divided according 
to the expression of RAD54B into high and low expression 
groups (Fig. 5A and B). GSEA analysis demonstrated that the 
cell cycle function exhibited the strongest association with the 
expression of RAD54B in the two datasets (Fig. 5C and D). 
These results suggested that RAD54B may regulate the prolif-
eration of breast cancer cells.

Based on the GSE85871 dataset, the expression of RAD54B 
in breast cancer MCF‑7 cells treated with 102 different mole-
cules used in traditional Chinese medicine was analyzed. The 
results demonstrated that treatment with a compound known 
as Japonicone A resulted in downregulated RAD54B expres-
sion in these cells (Fig. 6). To confirm this result, an inhibitory 

Table I. Univariate Cox analysis and Kaplan‑Meier survival analysis based on the data of patients with breast cancer from TCGA 
dataset.

	U nivariate analysis	 Kaplan‑Meier survival analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Factor	 HR (95% CI)	 P‑value	 Log‑rank test P‑value

Pathological stage	 2.31 (1.62‑3.31)	 <0.001c

Lymph nodes 	 2.31 (1.6‑3.33)	 <0.001c

SHCBP1	 1.18 (1.03‑1.35)	 0.019a	 >0.05
KIF21A	 1.19 (1.01‑1.39)	 0.034a	 0.006b

C8orf76	 1.27 (1.03‑1.58)	 0.027a	 0.010a

RAD54B	 1.2 (1.01‑1.41)	 0.035a	 0.008b

aP<0.05, bP<0.01 and cP<0.005. HR, hazard ratio; CI, confidence interval; RAD54B, RAD54 homolog B; KIF21A, kinesin family member 
21A; C8orf76, chromosome 8 open reading frame 76; SHCBP1, SHC binding and spindle associated 1.
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Figure 3. Overall survival and immunohistochemical analysis of the three genes identified in breast cancer. (A‑C) Survival analysis based on Kaplan‑Meier 
plotter; P‑values were obtained from the log‑rank test. Based on the median expression, the patients were classed into the high‑level or the low‑level group 
for (A) C8orf76, (B) KIF21A and (C) RAD54B. (D) The protein levels of C8orf76 in normal tissue (left: Staining, medium; intensity, moderate; quantity 
>75%) or tumor tissue (right: Staining, medium; intensity, moderate; quantity >75%). (E) The protein levels of KIF21A in normal tissue (left: Staining, low; 
intensity, weak; quantity >75%) or tumor tissue (right: Staining, medium; intensity, moderate; quantity >75%). (F) The protein levels of RAD54B in normal 
tissue (left: Staining, not detected; intensity, not detected; quantity, not detected) or tumor tissue (right: Staining, low; intensity, weak; quantity >75%). Images 
(D‑F) were obtained from the Human Protein Atlas (http://www.proteinatlas.org/). RAD54B, RAD54 homolog B; KIF21A, kinesin family member 21A; 
C8orf76, chromosome 8 open reading frame 76.
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Figure 4. Signature (RAD54B expression and TNM stage) predictor score analysis of TCGA patients with breast cancer in the discovery and internal cohorts. 
(A and E) The distribution of the risk score for the (A) discovery and (E) internal testing cohort. Each dot represents one patient; the vertical and horizontal 
axes represent the risk score calculated from the signature, and the results were sorted by risk score. The horizontal black dotted line represents the cut‑off 
point. (B and F) Patient survival status and time in the (B) discovery and (F) internal testing cohort. Each dot represents one patient; the vertical axis represents 
the survival time. The results were sorted by the risk score. (C and G) Kaplan‑Meier overall survival plots for TCGA breast cancer risk groups obtained 
from the (C) discovery and (G) internal testing cohort. (D and H) ROC curve analysis of the risk score in the (D) discovery (H) and internal testing cohort. 
TCGA, The Cancer Genome Atlas; RAD54B, RAD54 homolog B; ROC, receiver operating characteristic; AUC, area under the curve.
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assay with Japonicone A on MCF‑7 cells was performed. 
RT‑qPCR analysis revealed that the expression of RAD54B 
was inhibited in MCF‑7 cells treated with 10 µM Japonicone A 
for 24 h (Fig. 7A). In addition, the proportion of Ki‑67+ MCF‑7 
cells, which was the indicator for cell proliferation used in the 
present study, was reduced (Fig. 7B). The viability of MCF‑7 
cells was determined by MTT assay (39); the results demon-
strated that cell viability was decreased following treatment 
with10 µM Japonicone A (Fig. 7C).

Discussion

Breast cancer is a major cause of mortality in females. Despite 
research on breast cancer treatment in the past decades, the 

currently available therapeutic strategies are still inadequate, 
especially for aggressive breast cancer (40). This is partly due 
to the lack of knowledge about the molecular pathogenesis of 
the disease. Therefore, exploring the molecular mechanisms 
and identifying biomarkers for breast cancer may provide more 
effective target‑specific or personalized therapeutic strategies. 
In the current study, based on the data from the GSE20711 
dataset, a sequential bioinformatics analysis was performed, 
and three genes that may have impact on the overall survival 
of patients with breast cancer were identified. One of the 
three genes, RAD54B, may be a useful prognostic factor for 
breast cancer.

RAD54B belongs to the Snf2 superfamily and maps to 
human chromosome 8q21.3‑q22 (41). RAD54B was initially 

Figure 5. GSEA analysis of RAD54B high versus low expression groups in GSE20711 and TCGA. (A and B) The expression of RAD54B in the high and low 
expression groups in the (A) GSE20711 and (B) TCGA datasets. (C and D) Ridge plots of the results of the GSEA analysis of the (C) GSE20711 and (D) TCGA 
datasets. RAD54B, RAD54 homolog B; GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas. ***P<0.005 vs. low expression groups.
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Figure 6. Expression of RAD54B in MCF‑7 cells following treatment with 102 different molecules from traditional Chinese medicines, and only Japonicone 
A exhibited statistically significant inhibition on RAD54B. ***P<0.001 vs. DMSO. RAD54B, RAD54 homolog B.
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identified as a homolog of RAD54, which serves a central 
role in homologous recombination and the DNA repair 
process (41‑43). RAD54B also functions as a scaffold for p53 
degradation in response to DNA damage, thus regulating the 
cell fate between cell cycle arrest and progression (37). As a 
result, constitutive upregulation of RAD54B promotes genomic 
instability; this has been observed in tumors, such as hepatic 
carcinoma (44). A recent study has demonstrated that inhibition 
of RAD54B significantly reduced the proliferation and colony 
formation of hepatoma cells (45). In the present study, RAD54B 
was upregulated in breast cancer cells, and its expression level 
was associated with the poor overall survival of patients with 
breast cancer. In addition, when combining RAD54B with 
patient TNM stage to construct a model, the model could be 
used to predict the prognosis of patients more accurately than 
TNM stage alone, which may be beneficial to the development 
of personalized treatments for patients. The results of the 
GO, KEGG and GSEA analyses demonstrated that RAD54B 
was primarily involved in the cell cycle regulation of breast 
cancer cells, and the in vitro inhibitory assay demonstrated 
that reduced expression of RAD54B significantly inhibited the 
proliferation of MCF‑7 cells. Therefore, RAD54B may be used 
as a potential therapeutic target for breast cancer treatment.

Traditional Chinese medicine has been used for the preven-
tion and treatment of diseases for centuries. Following the 
development of modern pharmacognosy, various biologically 
active natural compounds in traditional Chinese medicine, such 
as berberine and artemisinin, have been identified to exhibit 
therapeutic efficacy with minimal adverse effects, which 
provides new sources and platforms for developing first‑line 
drugs (46‑48). Thus, in combination with the aforementioned 
bioinformatics analysis, the data from the GSE85871 dataset, 
which includes the gene expression profiles of MCF‑7 cells 
following treatment with 102 molecules from traditional 
Chinese medicine, were analyzed. The results demonstrated 
that Japonicone A effectively inhibited RAD54B expression in 
MCF‑7 cells. Japonicone A is a component in the aerial parts of 
Inula japonica, which was traditionally used to treat bronchitis, 

digestive disorders, diabetes and general inflammation (49). 
Previous studies have demonstrated that Japonicone A may 
suppress the growth of Burkitt lymphoma cells via the NF‑κB 
pathway (31) and the growth of non‑small cell lung cancer 
cells via mitochondria‑mediated pathways (50). In the present 
study, the bioinformatics analysis and the in vitro inhibitory 
assay revealed that Japonicone A may inhibit the expression of 
RAD54B in breast cancer cells, resulting in the inhibition of 
cell proliferation. In vivo experiments are required to provide 
stronger evidence; these will be performed in our future studies 
to explore the curative effect of Japonicone A on breast cancer.

In conclusion, the present study identified RAD54B as a 
prognostic factor and a potential therapeutic target for breast 
cancer.
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