
THORACIC: LUNG CANCER: EVOLVING TECHNOLOGY
Deep learning-based prediction of nodal metastasis in lung
cancer using endobronchial ultrasound
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ABSTRACT

Objective: Endobronchial ultrasound-guided transbronchial needle aspiration is a
vital tool for mediastinal and hilar lymph node staging in patients with lung cancer.
Despite its high diagnostic performance and safety, it has a limited negative predic-
tive value. Our objective was to evaluate the diagnostic performance of deep
learning-based prediction of lung cancer lymph node metastases using convolu-
tional neural networks developed from automatically extracted images of endo-
bronchial ultrasound videos without supervision of the lymph node location.

Methods: Patient and lymph node data were collected from a single-center data-
base. The diagnosis of metastasis was confirmed with endobronchial ultrasound-
guided transbronchial needle aspiration and/or surgically resected specimens; the
diagnosis of normal lymph node was confirmed with surgically resected specimens
only. An annotation system facilitated automated image extraction from endobron-
chial ultrasound videos. Image frames were randomly selected and split into training
and validation datasets on a per-patient basis. A deep learning model with convolu-
tional neural networks, SqueezeNet, was used for image classification via transfer
learning based on pretraining from ImageNet. Adaptive moment estimation and
stochastic gradient descent were applied as optimizers.

Results: SqueezeNet, with adaptivemoment estimation, achieved a sensitivity, spec-
ificity, accuracy, positive predictive value, and negative predictive value of 96.7%
each after 300 epochs, whereas SqueezeNet with stochastic gradient descent
achieved 91.1% each. However, SqueezeNet with stochastic gradient descent
demonstrated more stable performance than with adaptive moment estimation.

Conclusions: Deep learning-based image classification using convolutional neural
networks showed promising diagnostic accuracy for lung cancer nodal metastasis.
Future clinical trials are warranted to validate the algorithm’s efficacy in a prospec-
tive, large-cohort study. (JTCVS Techniques 2024;28:151-61)
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Convolutional neural networks detect lymph node
metastases with promising accuracy.
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Deep learning-based image clas-
sification using convolutional
neural networks showed prom-
ising diagnostic accuracy for lung
cancer nodal metastasis.
PERSPECTIVE
Endobronchial ultrasound-guided transbronchial
needle aspiration is a vital tool for mediastinal/hi-
lar lymph node staging in patients with lung can-
cer, but its negative predictive value is limited.
Deep learning-based image classification using
convolutional neural networks demonstrated
promising diagnostic accuracy for nodal metas-
tasis. Future clinical trials will be needed to vali-
date this tool.
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Abbreviations and Acronyms
AI ¼ artificial intelligence
Adam ¼ adaptive moment estimation
EBUS-TBNA ¼ endobronchial ultrasound-guided

transbronchial needle aspiration
Grad-CAM ¼ gradient-weighted class activation

mapping
LN ¼ lymph node
SGD ¼ stochastic gradient descent
SVM ¼ support-vector machine
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To view the AATS Annual Meeting Webcast, see the
URL next to the webcast thumbnail.

learning-based image classification method for predicting
lung cancer metastasis in LNs.
52 JTCVS Techniques c Decem
Endobronchial ultrasound-guided transbronchial needle
aspiration (EBUS-TBNA) has been widely performed in
mediastinal and hilar lymph node (LN) staging in patients
with lung cancer,1,2 owing to its remarkable diagnostic effi-
cacy and safety profile.3-5 A meta-analysis demonstrated
that EBUS-TBNA achieved a sensitivity of 90%, specificity
of 99%, accuracy of 96%, positive predictive value of
99%, and negative predictive value of 93% in the staging
of non–small cell lung cancer. However, the negative pre-
dictive value exhibits considerable variability across
studies, ranging from 72% to 97%.3 However, the negative
predictive value exhibits considerable variability across
studies, ranging from 72% to 97%.6 It is important to
note its limited negative predictive value, especially within
cohorts exhibiting high pretest probability for LN metas-
tasis.6,7 The American College of Chest Physicians guide-
lines for lung cancer recommend that when there is a high
pretest probability of N2 or N3 disease, a negative EBUS-
TBNA result should prompt consideration of mediastino-
scopy.1 However, precise evaluation of pretest probability
remains a challenge. In addressing this issue, some groups
have sought to predict metastasis before sampling by
analyzing EBUS images. The classification of LN charac-
teristics within EBUS images has been explored as a poten-
tial strategy to distinguish between metastatic and benign
LNs.8,9 Nevertheless, it is important to acknowledge that
this classification is inherently subjective and dependent
on observer discretion. Previous research has demonstrated
that grayscale texture analysis of EBUS images can effec-
tively differentiate between malignant and benign
LNs.10,11 However, this approach has exclusively been con-
ducted as a retrospective analysis rather than a real-time
prediction tool during EBUS procedures.

The application of artificial intelligence (AI) technolo-
gies to ultrasound image recognition began with breast
ber 2024
ultrasound images during the 1990s.12 Presently,
computer-aided detection systems demonstrate noteworthy
diagnostic performance for ultrasound-based breast cancer
detection.13 Similarly, AI-based computer-aided detec-
tion/diagnosis has been implemented in endoscopic ultra-
sound for pancreatic and gastrointestinal tract diseases.14-16

Our future objective is to establish a real-time prediction
system for metastatic LNs during EBUS procedures by
leveraging AI technology to improve pretest probability
estimation of nodal metastases. As the first step, this study
focused on predicting metastatic LNs using AI based on im-
ages automatically extracted from EBUS videos, without
supervision of LN location. We evaluated the diagnostic
performance of convolutional neural networks as a deep

METHODS
Subjects

We retrospectively collected patients and corresponding LN data using

the Interventional Thoracic Surgery Database at Toronto General Hospital,

under the Institutional Review Board of the University Health Network

(REB #19-5805; approved October 17, 2019). The study population

comprised patients who underwent EBUS-TBNA for lung cancer staging

at the Toronto General Hospital Interventional Thoracic Surgery Suite be-

tween January and December 2016. We included LNs in which a patholog-

ical diagnosis of lung cancer metastasis was made from EBUS-TBNA

specimens and/or surgically resected specimens, or a pathological diag-

nosis of normal LNs was made from surgically resected specimens. LNs

with inconclusive pathology results from EBUS-TBNA samples, such as

atypia not diagnostic of malignancy, were not included if surgery samples

were unavailable. Benign LNs with abnormal findings such as granuloma,

fibrosis, and inflammation were not considered normal LNs. Exclusion

criteria were surgically resected LNs showing a mix of metastatic and

normal LNs within the same station, and LNs from patients who underwent

any prior chemotherapy or chest radiotherapy. From the remaining LNs, we

extracted those for which EBUS videos were available.

Procedures
EBUS-TBNA was performed per standard protocol,17 using a BF-

UC180 F (Olympus Medical Systems) bronchoscope and an EU-ME2

(Olympus Medical Systems) ultrasound processor. EBUS videos were re-

corded prospectively in an external hard drive in the endoscopy suite as

is our usual clinical practice.

Automated Image Extraction From Videos
All EBUS videos were downloaded in theMP4 format and encodedwith

AAC, H.264 codec at 7203 480 pixels after removing protected health in-

formation. The typical sequence during EBUS procedures consists of the

following steps: identifying LNs, measuring the size of LNs using the

caliper function, and labeling the LN station. This sequencewas performed

for LNs requiring assessment, followed by sampling via EBUS-TBNA.

Building on this standard sequence, we developed a new annotation tool

to automatically extract frames of interest from videos (Figure E1). During

the measurement of LN size, the display zone showed blue lines represent-

ing a plus (þ) for the first line and a cross (3) for the second line, along

with the diameter displayed in the caliper zone, which the annotation sys-

temmarked as PLUS and CROSS.When the labelingmenu opened to input

the station name of the LN, the annotation system marks it as MENU. The
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sequence of events (PLUS-CROSS-MENU) was considered timestamps

indicating the appearance of a LN of interest. Subsequently, 60 frames

(2 seconds at 30 frames per second) before the start of the annotation pro-

cess were automatically collected for each LN.Machine learning used only

the display zone (400 3 375 pixels, depicted in an orange square in

Figure E1) from the collected EBUS images.

Training and Validation Split
Collected image frames were split into the training dataset and the vali-

dation dataset, at 6:1 ratio, on a per-patient basis. To balance the number of

metastatic LNs and normal LNs at 1:1, some image frames were randomly

selected and removed from the datasets.

Image Processing
Basic pixel value normalization was applied (squeeze values between

[0, 1]) and the display zone was cropped out, reducing the resolution by

50% (ie, 400 3 375 was scaled down to 200 3 188 pixels).

Models
As a nondeep learning model, the support-vector machine (SVM)18 was

used as a first step because SVM has shown good performances on imaging

feature classification, including ultrasound images.19-21 Features were

obtained from a ResNet 50.22 We then used principal component analysis,

keeping 99% of the variance of the extracted features, and trained a simple

SVM classifier with linear kernel to classify the malignancy of each frame.

As a deep learning model, we employed SqueezeNet, a deep convolutional

neural network for imageclassification.23Transfer learningwasappliedusinga

pretraining model from ImageNet.24 Adaptive moment estimation (Adam)25

and stochastic gradient descent (SGD)26 were utilized as optimizers and their

performanceswere compared. Trainingwas conducted using a learning rate of

10�4, a momentum of 0.99, a batch size of 32, and epochs of up to 300. Image

data augmentation (flipping or rotating) was not conducted. Additionally,
547 patients underwent EBU

129 patients met inclusion

Recruitment of eligible patients
with access to EBUS videos

Automated image extraction
from EBUS videos

Balancing the number of
malignant and normal LNs

Training dataset

2340 frames
from 39 metastatic LNs

2340 frames
from 39 normal LNs

3
from 6

74 eligible patients with 13

64 patients with 122 L

53 patients with 90 LN

FIGURE 1. Consolidated Standards of Reporting Trials diagram for this study

LN, lymph node.
gradient-weighted class activation mapping (Grad-CAM) was generated to

localize the part that contributed to diagnosis.27

Statistical Analysis
Data were summarized as counts and medians with interquartile ranges

for nonnormally distributed data. Sensitivity, specificity, accuracy, positive

predictive value, and negative predictive value were calculated using stan-

dard definitions.
RESULTS
A total of 547 patients underwent EBUS-TBNA between

January and December 2016, and among them, 129 patients
with a total of 305 LNs met inclusion criteria. EBUS videos
were available for 74 patients with a total of 133 LNs. LN
detection in the EBUS videos using our annotation system
was successful in 122 LNs (76 malignant, 46 normal), but
failed in 11 LNs due to image artifacts and atypical se-
quences of the caliper and labeling flow. To balance the
number of malignant and normal LNs equally, 11 videos
were removed and the remaining 90 LNs from 53 videos
were split into the training dataset (43 patients; 2340 frames
of malignant LNs, 2340 frames of normal LNs) and the vali-
dation dataset (10 patients; 360 frames of malignant LNs,
360 frames of normal LNs) (Figure 1). The characteristics
of extracted patients and LNs are shown in Table 1.
The diagnostic performance of the nondeep learning

model using SVM was 84.4% (95% CI, 80.7%-88.0%)/
45.2% (39.9%-50.6%)/66.1% (62.7%-69.6%)/63.8%
S-TBNA

 criteria

11 LNs with image extraction failure

32 LNs randomly selected and removed

60 frames
 metastatic LNs

360 frames
from 6 normal LNs

Validation dataset

3 LNs

Ns

s

4   surgically resected LNs showing a mix
     of metastatic and normal LNs within
     the same station
24 LNs from patients who previously
     underwent chemotherapy or chest
     radiotherapy
27 EBUS videos were unavailable

Excluded patients with:

. EBUS-TBNA, Endobronchial ultrasound-transbronchial needle aspiration;
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TABLE 1. The characteristics of study subjects

Characteristics Overall Training dataset Validation dataset

Patients 53 43 10

Age (y) 69 (59-79) 71 (59-79) 64 (51-68)

Female sex 31 (58.5) 24 (55.8) 7 (70.0)

Lymph node diagnosis

Metastatic lymph nodes

Adenocarcinoma 19 (21.1) 15 (19.2) 4 (33.3)

Squamous cell carcinoma 6 (6.7) 5 (6.4) 1 (8.3)

Large cell lung cancer 2 (2.2) 2 (2.6) 0 (0)

NSCLC-NOS 8 (8.9) 8 (10.3) 0 (0)

Small cell lung cancer 4 (4.4) 3 (3.8) 1 (8.3)

Carcinoid 6 (6.7) 6 (7.7) 0 (0)

Normal lymph nodes 45 (50.0) 39 (50.0) 6 (50.0)

Lymph node size on EBUS

images

Metastatic lymph nodes

Short axis (mm) 15.1 (10.5-20.9)

Long axis (mm) 18.4 (13.5-23.8)

Long-to-short axis ratio 1.15 (1.07-1.35)

Normal lymph nodes

Short axis (mm) 5.5 (4.0-8.8)

Long axis (mm) 9.3 (6.5-13.1)

Long-to-short-axis ratio 1.50 (1.23-1.83)

Training dataset Validation dataset

Metastatic Normal Metastatic Normal

Lymph node image frames 2340 2340 360 360

Station

4R 780 (33.3) 780 (33.3) 60 (16.7) 60 (16.7)

4L 540 (23.1) 660 (28.2) 60 (16.7) 60 (16.7)

7 840 (35.9) 780 (33.3) 120 (33.3) 60 (16.7)

11Rs 120 (5.1) 60 (2.6) 60 (16.7) 60 (16.7)

11Ri 60 (2.6) 0 (0) 0 (0) 60 (16.7)

11L 0 (0) 60 (2.6) 60 (16.7) 60 (16.7)

Values are presented as n, n (%), or median (interquartile range). NSCLC-NOS, Non–small cell lung cancer not otherwise specified; EBUS, endobronchial ultrasound.
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(59.6%-68.0%)/71.7% (65.6%-77.8%) in sensitivity/
specificity/accuracy/positive predictive value/negative pre-
dictive value, respectively, whereas SqueezeNet with
Adam after 300 epochs achieved 96.7% (95% CI,
94.8%-98.5%) for all performance metrics, and Squeeze-
Net with SGD after 300 epochs achieved 91.1% (95%
CI, 88.2%-94.1%) for all performance metrics, respec-
tively (Table 2). The area under the receiver operating char-
acteristic curves based on LN size, LN long-to-short axis
ratio, and each model are presented in Table E1. The
learning process of SqueezeNet with Adam exhibited
TABLE 2. Diagnostic performance comparison among prediction models

Prediction model Sensitivity Specificity Ac

SVM (nondeep learning) 84.4 (80.7-88.0) 45.2 (39.9-50.6) 66.1 (

SqueezeNet with Adam 96.7 (94.8-98.5) 96.7 (94.8-98.5) 96.7 (

SqueezeNet with SGD 91.1 (88.2-94.1) 91.1 (88.2-94.1) 91.1 (

Values are presented as % (95% CI). SVM, Support-vector machine; Adam, adaptive mom
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instability, whereas that of SqueezeNet with SGD demon-
strated a reduction in prediction accuracy variance with
an increasing number of epochs, resulting in a more stable
convergence of the model (Figure E2).

Representative image frames for Grad-CAM are shown in
Figure 2. In some images (Examples 1 and 2 in Figure 2), the
areas identified by the trained model for prediction corre-
sponded to the location of LNs within the image frames.
However, there were also frames where the regions used for
prediction did not align with the LN position (Examples 3
and 4 in Figure 2).
curacy Positive predictive value Negative predictive value

62.7-69.6) 63.8 (59.6-68.0) 71.7 (65.6-77.8)

94.8-98.5) 96.7 (94.8-98.5) 96.7 (94.8-98.5)

88.2-94.1) 91.1 (88.2-94.1) 91.1 (88.2-94.1)

ent estimation; SGD, stochastic gradient descent.



FIGURE 2. Gradient-weighted class activation mapping images in representative cases in the validation dataset. Example 1, station #7 lymph node with

adenocarcinoma; example 2, station #11L with adenocarcinoma; example 3, station #11 Rs with adenocarcinoma; example 4, station #4R with squamous

cell carcinoma. Examples 1 and 2 demonstrate accurate prediction in the lymph node location by SqueezeNet with adaptive moment estimation (Adam) and

stochastic gradient descent (SGD) optimizers. Example 3 exhibits inadequate localization using SqueezeNet with Adam. Example 4 shows inadequate local-

ization of the lymph node with SqueezeNet using both Adam and SGD. EBUS, Endobronchial ultrasound.
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DISCUSSION
In our study, deep learning-based image classification

employing convolutional neural networks on automatically
extracted images from EBUS videos demonstrated prom-
ising diagnostic performance in identifying lung cancer me-
tastases in mediastinal and hilar LNs (Figure 3). This pilot
investigation is a proof of principle; nonetheless, beyond
this, it may provide a fundamental dataset that could facil-
itate the development of a real-time LN predictive system
during EBUS procedures.

The SqueezeNet model, when applied with a pretraining
dataset, achieved a high diagnostic accuracy of 96.7% and
91.1% with Adam and SGD, respectively, in predicting LN
metastasis within EBUS images in our study. Previous
studies have explored various AI-based technologies for
predicting LN diagnosis. In 2008, Tagaya and colleagues28

reported the diagnostic performance of artificial neural net-
works in differentiating between LNs with sarcoidosis and
those with lung cancer metastasis by using small regions
of interest (32 3 32 pixels) from each EBUS image. Their
study indicated superior performance of artificial neural
networks compared to thoracic surgeons, with an accuracy
of 91%. Similarly, Ozcelik and colleagues29 utilized artifi-
cial neural networks on manually extracted regions of
JTCVS Techniques c Volume 28, Number C 155



Deep learning-based prediction of metastatic lymph nodes using EBUS

METHODS

RESULTS

IMPLICATIONS

Training set
[4680 frames]

Validation set
[720 frames]

EBUS image
(metastatic lymph node)

SqueezeNet with Adam

Accuracy

96.7%

91.1%SqueezeNet with SGD

SqueezeNet
with Adam

SqueezeNet
with SGD

Gradient-weighted class activation mapping

Training with optimization
(Adam, SGD)

Prediction of malignant and
benign lymph nodes

Automatic extraction
of frames with the
annotation system

EBUS videos

Convolutional Neural Networks
(SqueezeNet)

Conv + ReLu

Maxpool

Fire

Softmax

Deep learning-based image classification using convolutional neural networks has promising diagnostic
accuracy for lung cancer nodal metastasis. This technology may enhance pretest probability estimation in
EBUS-TBNA
EBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration;
Adam, adaptive moment estimation; SGD, stochastic gradient descent

FIGURE 3. Overview of deep learning-based image classification utilizing convolutional neural networks for lung cancer nodal metastasis from endobron-

chial ultrasound (EBUS) images. We retrospectively collected data from patients with pathologically confirmed metastatic and normal lymph nodes. EBUS

image frames were automatically extracted from recorded EBUS videos using a new annotation tool. A total of 4680 frames from 43 patients constituted the

training dataset for a convolutional neural network model, SqueezeNet. Two different optimizers, adaptive moment estimation (Adam) and stochastic

gradient descent (SGD), were employed during the learning process. The models were then tested using a validation dataset comprising 720 frames

from 10 patients. SqueezeNet with Adam achieved a diagnostic accuracy of 96.7% for metastatic lymph nodes after 300 epochs, whereas SqueezeNet

with SGD achieved 91.1%. The use of gradient-weighted class activation mapping revealed that the trained model accurately identified the location of

lymph nodes within the image frames in some cases. This technology has the potential to improve the pretest probability of EBUS-guided transbronchial

needle aspiration.
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interest from EBUS images, achieving an 82% diagnostic
accuracy for malignant and benign LNs. Yong and col-
leagues30 evaluated convolutional neural networks using a
156 JTCVS Techniques c December 2024
large cohort, including 310 cases. Regions of interest on
EBUS images were marked by bronchoscopists. The convo-
lutional neural network achieved an accuracy of 75.8% in
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predicting LNmetastasis. However, these approaches relied
on supervised selection of regions of interest, potentially
limiting real-time applicability. In contrast, Churchill and
colleagues31 applied convolutional neural networks to
entire EBUS images without selecting regions of interest,
yielding a diagnostic accuracy of 72.9%. Ito and col-
leagues32 also assessed diagnostic performance of convolu-
tional neural networks using entire EBUS images,
demonstrating a diagnostic accuracy of 87.9% for LN
metastasis via a 5-fold cross-validation technique with the
hold-out method. Li and colleagues33 evaluated convolu-
tional neural networks that combined features extracted
from EBUS B-mode images, Doppler images, and elasto-
graphic images, demonstrating 88.6% accuracy. However,
in clinical practice, this reliance on multiple modalities
for all LNs could increase procedure time, certainly relative
to systems that employ B-mode images alone.

Achieving similarly high real-world predictive perfor-
mance for LN diagnosis as we have shown here would
contribute to more accurately estimating the pretest proba-
bility before sampling of target LNs, resulting in improved
lung cancer care. For instance, in patients with lung cancer
where the pretest probability of metastatic LNs is high on
EBUS images, the procedural approach may be modified
to ensure greater tissue acquisition for genetic mutation
screening34,35 and programmed death-ligand 1 expression
evaluation,36 to appropriately determine the treatment strat-
egy for advanced lung cancer and prevent delays in treat-
ment initiation. Additionally, achieving high accuracy in
predicting the diagnosis of individual LNs would lead to
more efficient selection of nodes to puncture. Current
guidelines for mediastinal staging by EBUS-TBNA require
systematic nodal sampling from a minimum of 3 LN sta-
tions.37 The selection of LNs for EBUS-TBNA sampling
is often based on ease of access, such as larger nodes or
those located closer to the bronchial wall. However, cases
have been observed where positive and negative LNs
coexist within the same LN station, potentially leading to
false negatives in EBUS-TBNA.38,39 In such cases, attempt-
ing selective sampling from LNs with higher pretest proba-
bility might reduce false negatives in EBUS-TBNA. Our
ultimate goal of AI-assisted, EBUS-based prediction is to
accurately estimate the prepuncture probability for malig-
nancy to guide decision making following nondiagnostic
EBUS-TBNA. In cases with inconclusive results from
EBUS-TBNA, AI prediction might identify cases where
repeat EBUS-TBNA or additional mediastinoscopy can be
avoided. This could lead to a more efficient staging process
in patients with lung cancer with potential benefits for cost-
effectiveness. Future clinical trials should evaluate the in-
cremental diagnostic benefit of additional AI support during
EBUS-TBNA and assess the cost-effectiveness of intro-
ducing this technology.
Two different optimizers were employed with Squeeze-
Net in our study. Whereas SqueezeNet with Adam demon-
strated high diagnostic accuracy, its unstable learning
patterns indicated suboptimal model quality. Conversely,
SqueezeNet with SGD demonstrated slightly lower diag-
nostic accuracy but maintained stable learning processes.
Further evaluation of these developed algorithms is neces-
sary in the context of prospective real-time assessment.
Despite a recent study showing superior performance of
fine-tuned machine learning methods like SVM over
models including neural networks,40 SVM in our study
did not show sufficient predictive performance, achieving
only 66.1% accuracy.
As demonstrated by Grad-CAM, in some LN images the

focus of prediction accurately aligned with the LN itself
rather than other mediastinal structures such as vessels. In
this deep learning approach, only EBUS images and diag-
nosis results were provided; the supervision of LN location
was not included. Nonetheless, the model still could accu-
rately identify the positions of metastatic LNs that corre-
spond with the actual LN locations. However, it should be
noted, as shown in Figure 2, that there were image frames
where the driver of the model’s prediction was from an im-
age region different from the true LN location.
This study has several limitations. First, this study was con-

ducted at a single center with a limited number of participants
and LNs, using a single EBUS processor. As a result, therewas
limited variation in LN stations, lung cancer subtypes, and
benign LNs, potentially biasing the machine learning out-
comes. Not all accessible EBUS stations were included in
the training and validation datasets; only stations 4, 7, and 11
were used, whereas others (2, 3, 10, and 12) were not included.
Structures other than LNs in these excluded stations, such as
mediastinal tissues and vessels, may affect prediction accuracy.
Furthermore, benign LNs with granulomas, fibrosis, and
inflammation were not included; only normal LNs were
selected in this study. The high positive/negative predictive
values of our AI algorithms may therefore reflect the restric-
tions of our dataset. To address these limitations, training using
a larger cohort encompassing a diverse range of malignant and
benign LNs with testing of performance in a prospective clin-
ical study is necessary. Secondly, micrometastases in LNs are
unlikely to be detected with this AI approach, as the AI algo-
rithm relies solely on EBUS B-mode images; micrometastases
may be too small to generate architectural distortion detectable
by EBUS. Although our cohort did not include any LNs with
micrometastases, their presence should be carefully considered
for future evaluation of AI in EBUS images. Thirdly, in our
study, surgically resected LNs showing a mix of metastatic
and normal nodes within the same station were excluded
because it was challenging to correlatewhich LN corresponded
with the EBUS video. Thismay have potentially overestimated
the performance ofAI prediction. Lastly, this study employed a
JTCVS Techniques c Volume 28, Number C 157
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method of recognizingLNs of interest based on a specific label-
ing sequence on videos. This means that the frames containing
LNs were selected under supervised conditions although the
location of LNs was unsupervised.

Our objective is to establish a system capable of esti-
mating metastatic LNs in real time from EBUS images.
As the first step, we attempted to diagnose metastatic LNs
using AI without supervising the location of LNs based
on automatically extracted images from EBUS videos. In
the next phase, our efforts will focus on developing a pro-
gram using EBUS videos without any input of information
from the bronchoscopist, creating a more flexible deep
learning-based system to recognize frames containing
LNs and predicting metastasis.

CONCLUSIONS
The deep learning-based image classification using convo-

lutional neural networks in our pilot study demonstrated prom-
ising diagnostic performance for lung cancer nodal metastasis
using automatically extracted images fromEBUS videos. This
achievement suggests the potential for deep-learning systems
to provide real-time LN diagnosis predictions during EBUS-
TBNA. Further evaluation of the developed algorithms in a
prospective, large-cohort study is needed.

Webcast
You can watch a Webcast of this AATS meeting presenta-
tion by going to: https://www.aats.org/resources/deep-
learning-based-prediction-7536.
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FIGUREE1. An example of an annotated video frame from the automated annotation tool.When the lymph node size is measured by the proceduralist, the

annotation system marks it as PLUS (yellow) and CROSS (turquoise). When the labeling menu is opened to input the lymph node station name, the anno-

tation system marks it as MENU (red).

160 JTCVS Techniques c December 2024

Thoracic: Lung Cancer: Evolving Technology Ishiwata et al



1.0

Accuracy
SqueezeNet with Adam

0.9

0.8

0.7

0.6

0.5

0 50 100 150
Epoch

200 250 300

1.0

Accuracy
SqueezeNet with SGD

0.9

0.8

0.7

0.6

0.5

0 50 100 150
Epoch

200 250 300

0.4

FIGURE E2. The performance curve for SqueezeNet architecture. Red curves represent training accuracy across epochs; blue curves represent validation

accuracy. Adam, Adaptive moment estimation; SGD, stochastic gradient descent.

TABLE E1. Comparison of area under the receiver operating characteristic curves

Prediction model AUC Sensitivity* (%) Specificity* (%)

Lymph node size measurement

Short axis 0.86 75.6 82.2

Long axis 0.83 84.4 73.3

Long-to-short axis ratio 0.75 66.7 82.2

SVM (nondeep learning) 0.65

SqueezeNet with Adam 0.99

SqueezeNet with SGD 0.94

AUC, Area under the curve; SVM, support-vector machine; Adam, adaptive moment estimation; SGD, stochastic gradient descent. *Sensitivity and specificity at the maximum

Youden’s index (sensitivity þ specificity �1).
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