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Pancreatic cancer (PanC) is one of the most lethal solid malignancies, and metastatic 
PanC is often present at the time of diagnosis. Although several high‐ and low‐pen-
etrance genes have been implicated in PanC, their roles in carcinogenesis remain only 
partially elucidated. Because the nuclear factor erythroid2‐related factor2 (NRF2) 
signaling pathway is involved in human cancers, we hypothesize that genetic vari-
ants in NRF2 pathway genes are associated with PanC risk. To test this hypothesis, 
we assessed associations between 31 583 common single nucleotide polymorphisms 
(SNP) in 164 NRF2‐related genes and PanC risk using three published genome‐wide 
association study (GWAS) datasets, which included 8474 cases and 6944 controls of 
European descent. We also carried out expression quantitative trait loci (eQTL) anal-
ysis to assess the genotype‐phenotype correlation of the identified significant SNP 
using publicly available data in the 1000 Genomes Project. We found that three novel 
SNP (ie, rs3124761, rs17458086 and rs1630747) were significantly associated with 
PanC risk (P = 5.17 × 10−7, 5.61 × 10−4 and 5.52 × 10−4, respectively). Combined analy-
sis using the number of unfavorable genotypes (NUG) of these three SNP suggested 
that carriers of two to three NUG had an increased risk of PanC (P < 0.0001), com-
pared with those carrying zero to one NUG. Furthermore, eQTL analysis showed that 
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1  | INTRODUC TION

Pancreatic cancer (PanC) is one of the most lethal solid malignancies, 
and PanC is the fourth most common cause of cancer deaths in the 
USA,1 responsible for an estimated 44 330 deaths in 2018.2,3 The 
poor prognosis of pancreatic ductal adenocarcinoma relates to the 
advanced disease stage at the time of diagnosis and its profound re-
sistance to therapies,4,5 because metastatic PanC is commonly pres-
ent by the time of initial diagnosis as a result of a lack of effective 
screening tests. To reduce the enormous death toll related to this 
cancer, an enhanced screening method among the at‐risk popula-
tions is urgently needed. However, identification of the at‐risk pop-
ulations requires highly effective biomarkers that predict PanC risk.6

Genetic and environmental factors for the etiology of PanC re-
mains only partially elucidated. Risk factors for PanC cancer identi-
fied in epidemiological studies include cigarette smoking, increased 
body mass index, heavy alcohol consumption, and a diagnosis of 
diabetes mellitus.7 Recently, investigations have reported a num-
ber of genetic factors or susceptibility genes or loci for PanC risk. 
PanC high‐penetrance genes include BRCA1, BRCA2, TP53, CDKN2A, 
APC, STK11 and MMR genes, whereas low‐penetrance risk loci in-
clude chromosome 9q34 (in the ABO blood group gene), 1q32.1 
(in NR5A2), 5p15.33 (in the CLPTM1L‐TERT gene region), 16q23.1 
(BCAR1), 13q12.2 (PDX1), 22q12.1 (ZNRF3), 1p36.33 (NOC2L), and 
22q13.1 (PDGFB).7-11 However, these established genes or loci could 
explain only 20%‐30% of PanC risk, including 5%‐10% of the fa-
milial aggregation of PanC. In the remaining 80%‐85% of sporadic 
patients, there has been limited success in resolving the genetic ar-
chitecture of PanC.8

The nuclear factor E2‐related factor 2 (NFE2L2 or NRF2) path-
way is one of the major signaling cascades involved in cell defense 
and survival against endogenous and exogenous stress.12 NRF2 
mediates the expression of more than 100 oxidative stress‐related 
genes. These cytoprotective genes all contain the cis‐regulatory ele-
ment sequence antioxidant response element (5′‐GTGACnnnGC‐3′) 
in their promoter regulatory regions for NRF2 binding.12 It has been 
shown that constitutive activation of NRF2 in cancer cells increases 
the expression of cytoprotective genes and, consequently, enhances 
proliferation via metabolic reprogramming and inhibition of apopto-
sis.13 A growing number of studies have shown that aberrant activa-
tion of the transcription factor NRF2 promotes PanC tumorigenesis, 
likely by regulating the expression of a vast array of genes.14-16 A 

high rate of somatic mutations in NRF2‐KEAP1 pathway genes has 
been observed in several types of carcinoma in TCGA database,17 
which highlights the roles of genes in the NRF2 pathway as cancer 
driver genes with potential clinical ramifications. Several polymor-
phisms in NRF2 pathway genes have recently been identified to 
be associated with cancer risk, including lung adenocarcinoma and 
breast cancer.18,19 Therefore, a complete understanding of the ger-
mline changes in PanC is essential to identify potential susceptibility. 
In the present study, we aimed to identify novel susceptibility loci in 
NRF2 pathway genes for their associations with PanC risk by using 
a pathway‐based approach to leverage the published PanC GWAS 
datasets.

2  | MATERIAL S AND METHODS

2.1 | Study participants

Of the available GWAS datasets, there were 15 423 participants in 
the case‐control study of PanC comprising 8477 cases and 6946 
controls, who were from the Pancreatic Cancer Cohort Consortium 
(PanScan) and the Pancreatic Cancer Case‐Control Association 
Study. We first used 4755 cases and 3446 controls from the PanScan 
GWAS dataset derived from three phases of 17 cohort and 11 case‐
control studies, including PanScan I, PanScan II, and PanScan III with 
1760 cases and 1780 controls, 1457 cases and 1666 controls, and 
1538 cases and 0 controls, respectively. PanScan II and PanScan III 
were merged into one dataset of PanScan II/III in the analysis due 
to lack of controls in PanScan III. We then used another Pancreatic 
Cancer Case‐Control Association Study from the Pancreatic Cancer 
Case‐Control Consortium (PanC4) that included individuals from 
the USA, Europe, and Australia (3722 cases and 3500 controls) 
(Figure S1). Details of cases (individuals with pancreatic ductal ad-
enocarcinoma) and controls have been previously described.11,20,21 
Distributions of demographic characteristics between pancreatic 
cancer cases and controls are shown in Table S1. Both the PanScan 
and PanC4 GWAS datasets are available through dbGAP with per-
mission from NCI of NIH to use the datasets with the accession num-
bers of phs000206.v5.p3 and phs000648.v1.p1, respectively.

Each study obtained written informed consent from study par-
ticipants and approval from its Institutional Review Board (IRB) in-
cluding IRB certification permitting data‐sharing in accordance with 
the NIH Policy for Sharing of Data Obtained in NIH Supported or 

both rs3124761 T and rs17458086 C alleles were associated with increased mRNA 
expression levels of SLC2A6 and SLC2A13, respectively (P < 0.05). In conclusion, ge-
netic variants in NRF2 pathway genes could play a role in susceptibility to PanC, and 
further functional exploration of the underlying molecular mechanisms is warranted.

K E Y W O R D S

genome‐wide association study, NRF2, pancreatic cancer susceptibility, pathway analysis, 
single nucleotide polymorphism
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Conducted GWAS. The present study protocol, which had been 
laid down in accordance with the ethical standards in the 1964 
Declaration of Helsinki and its later amendments, was approved by 
the Duke University Health System Institutional Review Board and 
strictly followed.

2.2 | Gene selection, genotyping, and imputation

The term “NRF2 pathway” was searched in GeneCards: The Human 
Gene Database (https://www.genecards.org/). Overall, 164 genes 
located on autosomal chromosomes were selected (details are pre-
sented in Table S2). GWAS genotyping was done in accordance with 
the approach described previously.8

Genotyping data for SNP located in these genes and their ± 500‐
kb flanking regions were extracted for imputation with IMPUTE2 
software. For quality control, variants were excluded if: (i) comple-
tion rate <98%; (ii) minor allele frequency (MAF) <0.01; (iii) Hardy‐
Weinberg proportion P < 1 × 10−5; and (iv) low quality imputation 
score (IMPUTE 2 INFO score <0.8). The imputed SNP with an infor-
mation score >0.8 were qualified for further analysis. After quality 
control, there were 33 566 SNP, 32 450 SNP, and 33 170 SNP within 
5.0  kb up‐ and downstream of NRF2 signaling pathway genes for 
PanScan I, PanScan II/III, and panC4, respectively. The final meta‐
analysis contained 31 583 SNP that met the inclusion criteria for all 
three studies.

2.3 | Association analysis

In the single‐locus analysis, we used a logistic regression model with 
adjustment for age, gender, and the top five principal components, 
which were selected from unconditional logistic regression analysis 
with the top 20 principal components from all three studies (Table 
S3). An OR and its 95% CI were estimated by unconditional logistic 
regression analysis with PLINK 1.922 with a score test for the log 
additive genetic effect. A meta‐analysis was further used on the re-
sults of a log‐additive model of 31 583 SNP using the fixed‐effects 
inverse‐variance method based on β estimates and standard errors 
using Stata software (v.12; Stata Corp., College Station, TX, USA). 
Cochran's Q statistics and I2 were used to assess heterogeneity (Q‐
test P < 0.10 or I2 > 50%).23

The FDR approach with a cut‐off value of 0.15 was applied to 
control for multiple testing and to reduce the probability of false‐
positive findings.24,25 The association between each SNP and PanC 
risk was evaluated with an additive genetic model.

The multivariable stepwise logistic regression model with a cut‐
off value of 0.05 was used to identify independent SNP. NUG of 
SNP with independent effects was used to assess the classification 
performance of the model. All individuals were also divided into a 
low‐risk group (0‐1 NUG) and a high‐risk group (2‐3 NUG) for addi-
tional analysis.

Moreover, Haploview v.4.2 was used to produce the Manhattan 
plot, and LocusZoom was used to construct the regional associa-
tion plots by using the 1000 Genomes Project CEU dataset (phase 

I integrated release 3, March 2012), which were the same as previ-
ously described.8 Linear regression analysis was applied to analyze 
correlations between SNP and the corresponding gene expression 
levels. All statistical analyses were carried out with SAS software 
(version 9.4; SAS Institute, Cary, NC, USA) if not otherwise specified.

2.4 | In silico functional prediction and validation

We used four in  silico tools of F‐SNP (http://compbio.cs.queensu.
ca/F‐SNP),26 SNPinfo (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.
htm),27 RegulomeDB (http://regulomedb.org/),28 and HaploReg 
(http://www.broadinstitute.org/mammals/haploreg/haploreg.
php)29 to predict potential functions of the significant SNP. We car-
ried out an eQTL analysis to estimate the associations between SNP 
and mRNA expression levels of the corresponding gene by using 
mRNA expression data from the lymphoblastoid cell lines of 373 
Europeans available in the 1000 Genomes Project30 and 127 tumor 
tissues in TCGA31 as well as the eQTL results from the Genotype‐
Tissue Expression (GTEx) project.32 In addition, we also compared 
the mRNA expression levels of targeted genes between tumor and 
adjacent normal tissues available in the Oncomine database (https://
www.oncomine.org/).33 Possible allelic effects of these variants 
on TF‐binding motifs were determined using PrEdict Regulatory 
Functional Effect of SNP by Approximate P‐value Estimation 
(PERFECTOS‐APE; http://opera.autos​ome.ru/perfe​ctosa​pe/), which 
determines the probability of a TF motif (using position weight ma-
trices, from HOCOMOCO‐10, JASPAR, HTSELEX, SwissRegulon, 
and HOMER databases) in the DNA sequence overlapping each vari-
ant. Fold change in the probability of a TF binding site present for 
each allele of a variant was then calculated.34

3  | RESULTS

3.1 | Single‐locus analysis

Workflow of the present analysis is shown in Figure 1. First, we car-
ried out the single‐locus analysis to estimate the associations be-
tween selected SNP (MAF ≥0.01) and PanC risk for each of the three 
European‐ancestry populations by using logistic regression analysis 
with adjustment for the five principal components. Of those SNP in-
cluded for PanScan I, PanScan II/III and PanC4, we identified 1673, 
2193 and 1415 SNP with a nominal P  <  0.05, respectively (Figure 
S2). In the subsequent meta‐analysis of the three populations, 1073 
SNP remained associated with PanC risk at P < 0.05 in an additive 
genetic model, of which 13 SNP on SLC2A6, PDGFB, SLC5A3, SLC2A13 
and MAPK8 passed multiple testing corrections with an FDR <0.15 
(Figure 2A; Table 1). Although some SNP in some chromosome re-
gions (ie, 22q13.1‐PGDFB and 10q11.22‐MAPK8) have been reported 
by GWAS or pathway‐based analyses,8,35 three SNP (ie, SLC2A6 
rs3124761 at 9q34, SLC2A13 rs17458086 at 12q12, and SLC5A3 
rs1630747 at 21q22.11) are novel findings (Figure 2B‐D), for which 
we carried out additional in  silico analysis for their functional rele-
vance. The results of these three SNP in each of the GWAS datasets 

http://opera.autosome.ru/perfectosape/
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and the final meta‐analysis are summarized in Figure S3. All three 
SNP were from imputation and showed a relatively low heterogene-
ity among the three GWAS datasets (all Q‐test P > 0.1 and I2 < 25.0%).

3.2 | Genotype effect and the joint‐effect of the 
three significant SNP

We then assessed the independent genotype effects and their joint 
effects of the three identified SNP in the presence of age, gender 
and the top five principal components in a multivariate stepwise 
logistic regression model. All three SNP remained significantly and 
independently associated with PanC risk (Table S4). Specifically, the 
genotypes of SLC2A6 rs3124761 C/T, SLC2A13 rs17458086 T/C, 
and SLC5A3 rs1630747 A/C were significantly associated with PanC 
risk in the additive models (P < 0.0001, P = 0.004, and P = 0.002, 
respectively, Table  2). In dominant models, both the rs3124761 
T allele and rs17458086 C allele carriers were at increased risk of 
PanC (OR = 1.19, 95% CI = 1.11‐1.27, and P < 0.0001; OR = 1.36, 
95% CI = 1.14‐1.64, and P < 0.001), whereas the rs1630747 C allele 
was associated with reduced risk (OR = 0.89, 95% CI = 0.84‐0.96, 
P  =  0.001), compared with their corresponding wild‐type alleles 
(Table 2). In recessive models, the rs3124761 TT genotype carriers 
were at increased risk of PanC (OR = 1.28, 95% CI = 1.04‐1.57, and 
P  =  0.0191), whereas the rs1630747 CC genotype was associated 
with reduced risk (OR = 0.88, 95% CI = 0.77‐0.99, P = 0.0433) com-
pared with their corresponding wild‐type genotypes (Table 2).

We then combined the risk genotypes of rs3124761 CT+TT, 
rs17458086 TC+CC, and rs1630747 AA into a single genetic score 

NUG. The trend test indicated a significant association between an 
increased NUG and an increased risk of PanC (P < 0.0001, Table 3). 
We also divided all individuals into a low‐risk group (0‐1 NUG) and a 
high‐risk group (2‐3 NUG) and found that PanC risk in high‐risk individ-
uals was greater than that among the low‐risk group (OR = 1.26, 95% 
CI = 1.16‐1.37, P < 0.0001, Table 3). As the difference in the distribution 
of age existed in each dataset (Table S1) and age is a known risk factor 
for PanC, we carried out subgroup analysis by age group (ie, <60, 60‐70 
and >70 years) and gender. It was found that the risk associated with 
high‐risk NUG was most evident in the <60 years group (OR = 1.34, 
95% CI = 1.15‐1.56, P = 0.0002). There was no obvious difference be-
tween males and females. Additionally, there was no evidence for an 
interaction among and between these strata (P > 0.05, Table S5).

3.3 | Genotype and phenotype correlation analysis

Finally, we carried out in  silico prediction for potential effects of 
the three SNP on mRNA expression levels preliminarily through the 
online tools (Table S6). All three SNP are located in intronic regions, 
but are also located in the enhancer region of histone H3 mono 
methyl K4 (H3k4me1) that marks active/poised enhancers and/
or in binding sites for DNase or transcription factors (Figure 3A,F, 
Figure S4A).

We then assessed the effects of the three variants on the pre-
dicted TF‐binding sites. It is notable that the three SNP are pre-
dicted to alter the ability to bind with some motifs, among which 
are rs3124761 T, rs17458086 C and rs1630747 C alleles that are 
predicted to disrupt the TF‐binding motifs for the RARG, BCL2, and 

F I G U R E  1   Flowchart of the present study. eQTL, expression quantitative trait loci; FDR, false discovery rate; GTEx, Genotype‐Tissue 
Expression; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; NRF2, nuclear factor erythroid2‐related factor2; PC, 
pancreatic cancer; SNP, single nucleotide polymorphism; TCGA‐PRAD, The Cancer Genome Atlas Prostate Adenocarcinoma



2026  |     YANG et al.

ZN784 proteins, respectively (Figure  3B,G, Figure S4B). This sug-
gests that RARG, BCL2, and ZN784 binding motifs can be altered 
by rs3124761, rs17458086, and rs1630747, respectively, and thus 
change SLC2A6, SLC2A13, and SLC5A3 mRNA expression levels.

To substantiate the associations between the identified SNP and 
PanC risk, we evaluated correlations between SNP and mRNA ex-
pression levels of the corresponding genes in normal lymphoblastoid 
cell lines from 373 Europeans available from the 1000 Genomes 
Project. By using Student's t test or linear regression analysis of the 
logarithm transformed expression values (log2), we showed that 
the rs3124761 T allele (risk) was correlated with increased mRNA 
expression levels of SLC2A6 in either additive or dominant models 
(P = 0.0357 and 0.0129, respectively, Figure 3C,D). We also found 
that the rs17458086 C (risk) allele was significantly correlated with 
higher mRNA expression levels of SLC2A13 compared with the T 
(protective) allele (P = 0.026 in both the additive model and the dom-
inant model due to lack of CC homozygote (Figure 3H,I). eQTL results 
for SNP rs1630747 were not significant in these lymphoblastoid cell 
lines in either of the genetic models (Figure S4C,D).

We attempted to use data from the Genotype‐Tissue Expression 
Project (GTEx) database (http://www.gtexp​ortal.org/home/) and the 
data from 127 Europeans in the TCGA‐PDAC Project to query the 

eQTL results and assessed the correlations. Imputation of the geno-
type of the three SNP based on the current quality control of these 
databases was not successful. In addition, we assessed the differences 
in mRNA expression levels of SLC2A6, SLC2A13, and SLC5A3 between 
adjacent normal pancreatic tissues and pancreatic tumor tissues from 
the Oncomine database. We found that compared with the expres-
sion in normal pancreatic tissues, both SLC2A6 and SLC2A13 mRNA 
levels in tumor tissues were significantly increased (P = 5.43 × 10−4 
and P  =  0.027) (Figure  3E,J), whereas no statistical difference in 
SLC5A3 mRNA expression levels was found (P = 0.954) (Figure S4E).

4  | DISCUSSION

In the present study of the NRF2‐pathway‐based approach analysis 
of published GWAS datasets, we identified 13 loci to be associated 
with PanC risk, including three novel loci (ie, SLC5A3 rs1630747, 
SLC2A13 rs17458086 and SLC2A6 rs3124761), which merit addi-
tional follow‐up investigations for their functional mechanisms un-
derlying the observed associations.

The first genetic variant rs3124761 to be addressed is located 
in the intron of SLC2A6 on Chr9q34. The rs3124761 T allele was 

F I G U R E  2   Screening for pancreatic cancer (PanC) risk‐associated single nucleotide polymorphisms (SNP). A, Manhattan plot of the 
association results of 31 583 SNP in 164 nuclear factor erythroid2‐related factor2 (NRF2) signaling pathway genes and PanC risk in the 
meta‐analysis of three genome‐wide association study (GWAS) datasets. Red horizontal line indicates P = 0.05 and blue horizontal line 
indicates false discovery rate (FDR) = 0.15. B‐D, Each panel shows the regional association results for the meta‐analysis of PanScan I, 
PanScan II + III, and PanC4 (purple diamonds). Also shown are results for chromosomes 9q34 (B), 12q12 (C), and 21q22.11 (D)

http://www.gtexportal.org/home/
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identified to be associated with an increased PanC risk compared 
with the corresponding wild‐type C allele. The base change from C 
to T is predicted to reduce the DNA‐binding ability with the RARG 
motif. Therefore, SLC2A6 expression should be activated when the 
RARG motif with a suppressing role loses its binding ability to the 

C locus. eQTL data from 373 lymphocyte cells further highlighted 
that the substitution of rs3124761 C to T significantly enhanced 
mRNA expression of SLC2A6. The 9q34 region is one of the most 
frequently altered regions in human cancers.10,20 A series of SNP 
located in the ABO gene tagged by rs505922 and rs630014 in this 

SNP rs# and 
genetic model

Group

OR (95% CI)a  P‐valueGenotype Case (%) Control (%)

rs3124761

Additive CC 5851 (68.61) 5168 (72.59) 1.00 –

CT 2435 (28.55) 1798 (25.26) 1.17 (1.09‐1.26) <0.0001

TT 242 (2.84) 153 (2.15) 1.34 (1.09‐1.65) 0.0058

Trend test       <0.0001

Dominant CT+TT 2677 (31.39) 1951 (27.41) 1.19 (1.11‐1.27) <0.0001

Recessive CC+CT 8286 (97.16) 6966 (97.85) 1.00 –

TT 242 (2.84) 153 (2.15) 1.28 (1.04‐1.57) 0.0191

Rs17458086b 

Additive TT 8167 (96.38) 6752 (97.24) 1.00 –

TC 304 (3.59) 190 (2.73) 1.37 (1.14‐1.65) <0.001

CC 3 (0.03) 2 (0.03) 1.29 (0.21‐7.75) 0.785

Trend test       0.004

Dominant TC+CC 307 (3.62) 192 (2.76) 1.36 (1.14‐1.64) <0.001

rs1630747

Additive AA 4757 (56.14) 3725 (53.64) 1.00 –

AC 3182 (37.55) 2732 (39.35) 0.91 (0.85‐0.97) 0.004

CC 535 (6.31) 487 (7.01) 0.85 (0.75‐0.97) 0.018

Trend test       0.002

Dominant AC+CC 3717 (43.86) 3219 (46.36) 0.89 (0.84‐0.96) 0.001

Recessive AA+AC 7939 (93.69) 6457 (92.99) 1.00 –

CC 535 (6.31) 487 (7.01) 0.88 (0.77‐0.99) 0.0433

–, reference; CI, confidence interval; OR, odds ratio; SNP, single nucleotide polymorphism.
aObtained from logistic regression models with adjustment for age, gender, and the top 5 signifi-
cant principal components. bRecessive model was not shown as a result of small size of homozy-
gote CC.

TA B L E  2   Analysis of associations 
between pancreatic cancer risk and 
the three SNP in the merged dataset of 
PanScan and PanC4 studies

NUG

Group

OR (95% CI)b  P‐valueCase (%) Control (%)

0 2479 (29.08) 2327 (32.69) 1.00 –

1 4384 (51.42) 3652 (51.30) 0.89 (0.83‐0.96) 0.0013

2 1605 (18.82) 1110 (15.59) 1.19 (1.09‐1.31) <10−4

3 58 (0.68) 30 (0.42) 1.61 (1.103‐2.51) 0.0361

Trend test       <10−4

Dichotomized

 0‐1 6863 (80.49) 5797 (83.99) 1.00 –

 2‐3 1163 (19.51) 1140 (16.01) 1.26 (1.16‐1.37) <10−4

–, reference; CI, confidence interval; NUG, number of unfavorable genotypes; OR, odds ratio.
aRisk genotypes were rs3124761 CT+TT, rs17458086 TC+CC, and rs1630747 AA. bAdjusted for 
age, gender, and the top 5 significant principal components.

TA B L E  3   Associations between the 
combined genetic score (NUG) and risk of 
pancreatic cancer
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region have been reported by a GWAS to be related to PanC sus-
ceptibility.20 Another recently published associated SNP located in 
the ABO gene was rs687289, which was identified by GTEx func-
tional prediction.21 However, our linkage disequilibrium (LD) analysis 
showed that SLC2A6 rs3124761 was in low LD with any of the three 
ABO SNP previously reported.

The second genetic variant rs17458086 is located in the intron 
of SLC2A13 on Chr12q12. We found, for the first time, that carri-
ers of the SLC2A13 rs17458086 C allele had a 1.38‐fold increased 
PanC risk compared with TT carriers. The change from T allele to C 

allele is predicted to reduce the DNA‐binding ability with the BCL2 
motif. Therefore, SLC2A13 expression should be increased when 
the BCL2 motif, which is predicted to suppress expression of the 
gene, binds to SLC2A13 rs17458086 C instead of the T allele. eQTL 
data further demonstrated that the substitution of rs17458086 
T to C significantly enhanced the mRNA expression of SLC2A13. 
In addition, we noticed that the frequency of the rare allele C of 
SLC2A13 rs17458086 was just above the level of the inclusive cri-
teria (1.0%‐1.6%), which reinforces that the functions of this class of 
subpolymorphic risk alleles (ie, those with rare risk allele frequencies 

F I G U R E  3   Functional analysis of SLC2A6 rs3124761 and SLC2A13 rs17458086. A,F, rs3124761 at 9q34 is shown as well as overlapping 
RefSeq genes on chr9: 136,338,500‐136,341,000 (NCBI GRCh37/Hg19) (A). rs17458086 at 12q12 is shown as well as overlapping 
RefSeq genes on chr12: 40,427,000‐40,430,500 (NCBI GRCh37/Hg19) (F). ENCODE data for histone modification marks (H3K4me1) are 
indicated by colored density plots. DNase clusters and binding of transcription factors (TF ChIP) are indicated by horizontal bars. Numbers 
next to each bar indicate the number of different transcription factors bound across all tested cell lines. The panel is adapted from the 
UCSC Genome Browser. B, Analysis of the effects of rs3124761 on transcriptional factor motifs: The rs3124761 risk allele T may alter a 
predicted DNA‐binding motif for RARG. C,D, Expression quantitative trait loci (eQTL) analyses of rs3124761 in 373 Europeans from the 
1000 Genomes Project: additive model, P = 0.0357 (C); dominant model, P = 0.0129 (D). E, mRNA expression of SLC2A6 in normal tissues 
(1, n = 16) and tumor tissues (2, n = 26): P = 5.43 × 10−4. G, Analysis of the effects of the rs17458086 on transcriptional factor motifs: The 
rs17458086 risk allele C may alter a predicted DNA‐binding motif for BCL2. H,I, eQTL analyses of rs17458086 in 373 Europeans from the 
1000 Genomes Project: additive model, P = 0.026; dominant model, P = 0.026. J, mRNA expression of SLC2A13 in normal tissues (1, n = 39) 
and tumor tissues (2, n = 39): P = 0.027
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<1%) have not been thoroughly investigated.36 Both SLC2A6 and 
SLC2A13 belong to SLC family members and encode GLUT6 and 
GLUT13, respectively. GLUT6, a hexose transporter in liposomes, is 
expressed predominantly in the brain, spleen and peripheral leuko-
cytes, whereas GLUT13 is an H+/myoinositol cotransporter that is 
stimulated by a decrease in the extracellular pH is expressed pri-
marily in the brain.37 SLC proteins, which are primarily involved in 
the uptake of small molecules into cells, belong to a superfamily of 
transporters.

There are 395 membrane‐spanning SLC transporters that are 
organized into 52 families in humans. More than 80 SLC transport-
ers have been implicated in monogenic disorders, and many genetic 
variants in the SLC transporter genes associated with common dis-
eases have been identified through genotype analysis of candidate 
genes, or from GWAS.38 The 14 human GLUT proteins, encoded by 
the SLC2 gene, have various substrate specificities and are involved 
in the transport of several hexoses in addition to myoinositol.39 
GLUT proteins in the digestive system serve as important mediators 
in maintaining normal functions, including the absorption of nutri-
ents and ions, excretion of bile acids, and metabolism of toxins.40-42 
Dysregulation of the SLC2 gene is likely to be associated with car-
cinogenesis, tumor progression, metastasis, and chemoresistance. 
Changes in expression and regulation of the GLUT family proteins, 
including GLUT13/HMIT, were observed in neoplasms of the diges-
tive system and in breast cancer cells.43,44 Thus far, there are no 
detailed reports of biological functions of SLC2A6 in human cells. 
As for SLC2A13, it is an H+/myoinositol symporter, whereas all of 
the other members of the GLUT family are facilitative transporters. 
There are neither reported data about glucose transport activity for 
GLUT13/HMIT, nor any available information about the expression 
of the facilitative glucose transporter family in cancer.37 Genetic 
alterations of SLC2A13 were observed to be prevalent in the early 
stage of lung cancer in Serbians, suggesting that structural changes 
of SLC2A13 could play a role in the development of non‐small cell 
lung cancer.45

Additionally, several SNP in SLC2A13 were found to be closely 
related to Parkinson's disease independently or dependently at 
a genome‐wide significance level.46,47 SLC5A3 encodes a sodium 
myoinositol transporter involved in the response to hyperosmotic 
stress, and the sequence of SLC5A3 lies completely within that of 
MRPS6 that encodes a subunit of the mitochondrial ribosome.48 
SLC5A3/MRPS6 rs9982601 was previously identified to have a ge-
nome‐wide association with early‐onset myocardial infarction.49 
This SNP was also found to be associated with mRNA expression 
of MRPS6 in blood, with the risk C allele correlated with an in-
creased mRNA expression.48 We observed, for the first time, that 
the SLC5A3 rs1630747 C allele was associated with a reduced 
PanC risk compared with the corresponding wild‐type allele. 
However, the eQTL data did not show any difference in mRNA 
expression levels between the two alleles, and we did not find any 
other available dataset from either GTXe or TCGA databases for 
further analysis. Therefore, the functional relevance of this SNP 
remains unknown.

However, we failed to identify any variants in the NRF2 gene 
to be associated with PanC risk. All three genes identified in the 
present study were members of the SLC family, and their encoded 
proteins were reported to be responsible for transporting hexose, 
H+/myoinositol, or sodium myoinositol. All three identified variants 
are located in the intron regions of these genes instead of in the 
promoter sites coupled with antioxidant response element for NRF2 
binding. These regions were found with a potential enhancer region 
with histone modification marker (H3k4me1) and/or the predicted 
binding sites for DNase or transcription factors. Although we do not 
have direct evidence to show that NRF2 regulates mRNA expression 
of these genes, it is known that NRF2 regulates the expression of 
BCL2,50 and that retinoic acid inhibits NRF2 expression.51 Therefore, 
it is possible that NRF2‐BCL2 interaction and RARG‐NRF2 interac-
tion may indirectly modify the PanC risk. Whether and how NRF2 
indirectly affects the binding of the motifs of RARG, BCL2 and ZN84 
proteins warrant additional mechanistic studies.

Nevertheless, there are some limitations in the present study. 
First, there were no control data in the PanScan III GWAS which 
might have caused the merged PanScan II/III GWAS datasets to be 
somewhat heterogeneous. Second, we had no access to other risk 
factors, such as family history, smoking history, alcohol‐drinking 
history as well as other clinical data in publicly available datasets, 
which could have biased PanC risk assessment without adequate ad-
justment for these covariates in the risk evaluation model. Finally, 
our analysis was limited to evaluate whether a particular SNP had 
biological functions only by using the available online tools and the 
in silico‐based eQTL. Additional mechanistic investigations are war-
ranted to provide direct functional evidence to support our findings.
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