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Abstract

Behavioral traits are rarely considered in task-evoked functional magnetic resonance

imaging (MRI) studies, yet these traits can affect how an individual engages with the

task, and thus lead to heterogeneity in task-evoked brain responses. We aimed to

investigate whether interindividual variation in behavior associates with the accuracy

of predicting task-evoked changes in the dynamics of functional brain connectivity

measured with functional MRI. We developed a novel method called multi-timepoint

pattern analysis (MTPA), in which binary logistic regression classifiers were trained to

distinguish rest from each of 7 tasks (i.e., social cognition, working memory, language,

relational, motor, gambling, emotion) based on functional connectivity dynamics mea-

sured in 1,000 healthy adults. We found that connectivity dynamics for multiple pairs

of large-scale networks enabled individual classification between task and rest with

accuracies exceeding 70%, with the most discriminatory connections relatively

unique to each task. Crucially, interindividual variation in classification accuracy sig-

nificantly associated with several behavioral, cognition and task performance mea-

sures. Classification between task and rest was generally more accurate for

individuals with higher intelligence and task performance. Additionally, for some of

the tasks, classification accuracy improved with lower perceived stress, lower aggres-

sion, higher alertness, and greater endurance. We conclude that heterogeneous

dynamic adaptations of functional brain networks to changing cognitive demands can

be reliably captured as linearly separable patterns by MTPA. Future studies should

account for interindividual variation in behavior when investigating context-

dependent dynamic functional connectivity.
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1 | INTRODUCTION

Functional brain connectivity inferred from functional magnetic reso-

nance imaging (fMRI) is dynamic in both space (Iraji, Miller, Adali, &

Calhoun, 2020; Kottaram et al., 2018) and time (Hutchison,

Womelsdorf, Allen, et al., 2013; Hutchison, Womelsdorf, Gati, et al.,

2013; Preti, Bolton, & Van De Ville, 2017; Zalesky, Fornito, Cocchi,

Gollo, & Breakspear, 2014). These dynamics underpin the rapid reor-

ganization of functional brain networks in response to changing cogni-

tive demands (Calhoun, Kiehl, & Pearlson, 2008; Cole, Bassett, Power,

Braver, & Petersen, 2014; Linden et al., 1999) as well as endogenous

fluctuations in network architecture during rest (Biswal, Van Kylen, &

Hyde, 1997; Fox & Raichle, 2007; van den Heuvel & Hulshoff Pol,

2010). Endogenous and task-evoked dynamics in functional connec-

tivity are typically studied separately and salient differences in func-

tional network dynamics between these two conditions remain

unclear (Meer, Breakspear, Chang, Sonkusare, & Cocchi, 2020). While

time-averaged, or static, functional network architecture appears to

be highly similar between rest and task, subtle task-specific reorgani-

zation is evident within particular circuits (Cole et al., 2014) and recent

studies suggest that complex topological properties such as network

hubs (Bolt, Nomi, Rubinov, & Uddin, 2017) and modularity (DeSalvo,

Douw, Takaya, Liu, & Stufflebeam, 2014; Tomasi, Wang, Wang, &

Volkow, 2014) reorganize in response to changing cognitive demands.

However, the extent to which time-averaged analyses of functional

brain networks can adequately characterize network reorganization is

limited by the use of an inherently static representation of the brain.

Elucidating the temporal and spatial dynamics of functional brain

network organization is likely to provide further insight into the

salient differences in network architecture between rest and task

engagement (Mill, Ito, & Cole, 2017). The dynamics of functional con-

nectivity can be investigated at the scale of individual regions, individ-

ual connection between a pair of regions, or at the whole-brain scale,

in terms of putative brain states encompassing multiple regions.

Dynamic brain states that represent temporally recurring functional

network configurations have been mapped using approaches such as

k-means clustering (Allen et al., 2014) and hidden Markov models (Ou

et al., 2015). At the scale of individual connections, connectivity

dynamics have been quantified using measures such as standard devi-

ation (SD) and coefficient of variation (Fong et al., 2019; Kucyi &

Davis, 2014). Dynamics associated with individual regions have been

mapped by estimating summary graph theory estimates, such as nodal

efficiency, on successive time-varying functional connectivity mea-

sures (Zalesky et al., 2014).

Classification of rest and task-evoked functional connectivity

dynamics is typically approached by identifying recurring patterns of

functional connectivity that emerge during task performance. For

instance, Zhang et al. (2013) applied a supervised dictionary learning

technique to identify distinct spatial connectome patterns rep-

resenting rest and task states. Individuals with overlapping rest and

task connectome patterns were found to have poor compliance with

the task paradigm. A study by Xie et al. (2019) used three different

tasks and employed a combination of spatial independent

components analysis, sliding window correlations and k-means clus-

tering to extract distinct spatial patterns of functional connectivity

representing task and rest. For the working memory task, they found

that individuals with misclassified network patterns also showed poor

task performance. Similarly, distinct connectivity patterns dis-

tinguishing rest and task were identified by Denkova, Nomi, Uddin,

and Jha (2019) and Cheng et al. (2018) using k-means clustering of

time-resolved functional connectivity. Few studies have sought to dif-

ferentiate task and rest using functional connectivity dynamics

between individual pairs of regions. Moreover, unlike the state-based

approach which primarily utilizes spatial patterns of functional con-

nectivity, edge-based approaches have not considered the complete

temporal patterns of connectivity and instead relied mostly on single

variability measures. For instance, analyzing dynamics using sliding

window functional connectivity, Elton and Gao (2015) found that task

engagement leads to reduced connectivity variability compared to

rest, and task performance significantly associates with this variability

(Elton & Gao, 2015; Fong et al., 2019).

While some of these previous studies control for the impact of

in- and out-of-scanner task performance on task-evoked changes in

functional connectivity dynamics, few studies have considered the

impact of behavioral traits. Although methods have been recently

developed to investigate the dynamic relationship between behavior

and functional connectivity in the context of naturalistic stimulus,

their focus is not on time-resolved connectivity (Finn et al., 2020). It

remains unknown whether temporal patterns of dynamic functional

connectivity (DFC) can be used to differentiate task from rest, even if

these factors are controlled. Interindividual variation in personality

and behavior could potentially impact how an individual engages with

a task, thus leading to heterogeneity in task-evoked connectivity

dynamics and impacting the ability to differentiate these dynamics

from endogenous activity. Despite evidence of an association

between the dynamic properties of functional connectivity and inter-

individual variation in emotion, personality, and cognitive performance

(Bolton & Ville, 2020; Cohen, 2018; Gonzalez-Castillo & Bandettini,

2018; Shi et al., 2018; Tobia et al., 2017; Viviano et al., 2017; Wu

et al., 2019), it remains unclear whether these behavioral measures

also associate with the extent to which rest and task can be differenti-

ated based on connectivity dynamics.

To address this gap, we propose a novel multivariate and model-

free approach called multi-timepoint pattern analysis (MTPA), which is

distinct from established multi-voxel pattern analysis (MVPA)

methods. In MVPA, a supervised technique is applied to learn linearly

or nonlinearly separable spatial patterns of voxel activity that differen-

tiate experimental conditions (Norman et al., 2006). On the contrary,

in MTPA, we employ supervised logistic regression to learn linearly

separable temporal patterns in functional connectivity dynamics that

can be used to predict whether an individual is engaged in a task or

resting. The logistic regression classifier not only enables out-of-

sample prediction but also provides a means to investigate the influ-

ence of behavioral measures on these predictions. To avoid arbitrary

window size selection, retain maximum information from each para-

digm as well as maximize the number of timepoint features available
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for MTPA, we estimated DFC using a high-resolution frame-wise

method called flexible least squares (FLS; Kalaba & Tesfatsion, 1989;

Liao, Wu, et al., 2014). Moreover, this is one of the first studies to

investigate the dynamics of resting-state and task-evoked functional

connectivity in a large sample of more than 1,000 healthy adults.

The aims of this study are twofold. First, we aimed to identify

functional connections whose temporal dynamics could accurately

classify between rest and each of seven tasks using the new MTPA

method. We applied MTPA to unravel differences between connectiv-

ity associated with rest and task after mean task activation was

removed. We hypothesized that relatively few connections would

enable accurate out-of-sample classification, that these connections

would be unique to each task and that their dynamic properties would

yield higher classification accuracies than conventional time-averaged

functional connectivity. These hypotheses are supported by recent

evidence suggesting that network reorganization between rest and

different tasks can be characterized more accurately by functional

connectivity dynamics (Cheng et al., 2018; Denkova et al., 2019; Fong

et al., 2019; Xie et al., 2019; Zhang et al., 2013). Second, we aimed to

investigate whether interindividual variation in behavioral measures,

including emotion, alertness, and cognitive performance, explain inter-

individual variation in classification accuracies. Although it is well

established that an individual's in-scanner task performance is an

accurate predictor of the ability to distinguish task from rest (Fong

et al., 2019; Gonzalez-Castillo & Bandettini, 2018; Xie et al., 2019;

Zhang et al., 2013), we hypothesized that behavioral measures not

directly related to the task would also influence classification accu-

racy. This hypothesis is motivated by mounting evidence suggesting

that physiological states (i.e., drowsiness, etc.) and psychological traits

(i.e., anxiety and stress, etc.) can impact functional connectivity

(Denkova et al., 2010; Liégeois et al., 2019; Liston et al., 2009;

Luettgau et al., 2018; Nair et al., 2020; Tobia et al., 2017). Our find-

ings provide new insight into the functional connectivity dynamics

associated with task engagement and draw attention to the impor-

tance of modeling behavioral characteristics in task fMRI experiments.

2 | MATERIALS AND METHODS

2.1 | Data and experimental design

Minimally preprocessed resting-state and task-evoked fMRI data were

obtained from the Human Connectome Project (HCP). Data were

acquired during rest (resting-state fMRI) and seven tasks (task-evoked

fMRI) using a 3 T Connectome Skyra MRI scanner with TR = 720 ms;

TE = 33.1 ms; flip angle = 52�; BW = 2,290 Hz/Px; in-plane

FOV = 208 � 180 mm; 72 slices; 2.0 mm isotropic voxels, with a

multiband acceleration factor of 8. In this study, data acquired with

left-to-right phase encoding was used for all analyses. The duration of

acquisition varied between tasks, ranging between 2 and 5 min. For

all seven tasks, minimally preprocessed data were available for about

1,000 healthy adults ranging in age between 22 and 37 years. Mini-

mally preprocessed left-to-right phase-encoded resting-state fMRI

data for the same individuals was also obtained. Spatial preprocessing

of task and resting-state fMRI data included gradient unwarping,

motion correction, spatial distortion correction, field bias reduction,

registration to structural T1-weighted scans, nonlinear registration to

MNI152 space, grand-mean intensity normalization and brain mas-

king. Experimental designs, data acquisition parameters, and

preprocessing pipelines are described in detail elsewhere (Glasser

et al., 2013; Smith et al., 2013). The seven tasks analyzed in this study

were social cognition (shapes move socially or randomly); working

memory (zero-back and two-back); language (story comprehension or

math); relational processing (pattern relation or pattern matching);

motor (move hands, feet, or tongue); emotion processing (match faces

with expressions, or shapes); and gambling (guessing and winning/los-

ing). All tasks followed a block design, where each block comprised

one of multiple task conditions. Supplementary Table ST1 provides a

brief summary of the task design and individuals included for

each task.

We also performed some additional preprocessing steps on the

minimally preprocessed data to account for head motion and physio-

logical fluctuations. Specifically, we corrected for head motion by

regressing out the variance associated with the frame-wise displace-

ment (FD) measure from both the task and resting-state fMRI data of

each individual. Effects due to physiological confounds prevalent in

resting-state fMRI data were removed by regressing out the variance

associated with the average ventricular and white matter signals. To

separate the effects of dynamic connectivity from first-order time-

locked co-activation (Laumann et al., 2017), we also regressed out the

variance associated with the respective block designs of each task,

prior to connectivity calculations. Specifically, this involved running

general linear models (GLMs) for each individual with their respective

FD and canonical HRF-convolved task regressors, and estimating con-

nectivity from the resulting residuals. Therefore, this allowed us to

investigate the residual differences in the DFC between task and rest.

Supplementary Analysis SA1 discusses the results of the same analysis

without the above-mentioned steps, that is, head motion correction,

physiological correction, and mean task activation removal.

2.2 | DFC estimation

We used the DynamicBC toolbox (Liao, Wu, et al., 2014) to estimate

frame-wise whole-brain DFC. Frame-wise DFC estimates time-

resolved functional connectivity at the temporal resolution of the

fMRI acquisition (i.e., TR). DFC was computed using a time-varying

regression approach known as FLS (Kalaba & Tesfatsion, 1989; Liao,

Wu, et al., 2014). FLS uses a state-modeling based filtering approach

and estimates a state (i.e., beta coefficient) for each individual time

point by minimizing the errors associated with (a) discrepancies

between the actual and estimated observation at each time point

(measurement fit error), and (b) discrepancies due to incorrect specifi-

cations of the state transition equations (dynamic error). Both errors

are characterized by ordinary least squares estimation. This is in con-

trary to static linear regression, where a single β coefficient is obtained
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by minimizing the residual fit error between two signals (Kalaba &

Tesfatsion, 1989). The measurement fit error is given by

r2M β,Tð Þ¼
XT

t¼1
y tð Þ�x tð Þβ tð Þð Þ2, ð1Þ

where x(t) and y(t) represent the values of two individual fMRI time-

series at time t, T is the total number of time points in the given time-

series, and β denotes the model fit coefficient vector. Dynamic error

is given by

r2D β,Tð Þ¼
XT�1

t¼1
β tþ1ð Þ�β tð Þð Þ2, ð2Þ

The errors in Equations (1) and (2) are combined into a single

cost-incompatibility function weighted by a Lagrange multiplier μ, thus

enabling multicriteria optimization. This function is minimized to esti-

mate the β coefficient sequence, formally:

C β,μ,Tð Þ¼ μ:r2D β,Tð Þþ r2M β,Tð Þ, ð3Þ

where μ denotes the weighting parameter (Lagrange multiplier)

between the measurement fit error, rM
2, and the dynamic error, rD

2.

The incompatibility cost function was minimized with ordinary least

squares estimation, permitting the β(t) coefficients to vary over time.

Therefore, each FLS estimate (i.e., β(t) coefficient) demonstrates how

the state vector could have evolved over time in a manner that mini-

mizes the cost incompatibility function thereby maximizing the true-

ness of the priors defined in Equations (1) and (2). The weighting

parameter μ arbitrates a trade-off between erratic solutions with large

dynamic errors (i.e., small μ) and solutions that tend toward the static

linear regression solution (i.e., large μ) (Kalaba & Tesfatsion, 1989).

Here, we used the default setting of μ = 100 since this produced opti-

mal variation in the β sequence, as shown by Liao, Wu, et al. (2014).

Note that this default setting is independent of the temporal resolu-

tion of fMRI acquisition (i.e., TR) and none of the equations governing

FLS depend on the interval between time points. Furthermore, FLS

does not make any assumptions about the probability distribution of

the data. It is a data-driven and distribution-free method of estimating

frame-wise DFC, given an optimal TR-independent μ of 100 (Kalaba &

Tesfatsion, 1989; Liao, Wu, et al., 2014). As a result, FLS is not limited

by requirements of prior window length specifications associated with

the commonly used sliding-window DFC, where an optimal choice of

window length is arbitrary (Hutchison, Womelsdorf, Allen, et al.,

2013; Hutchison, Womelsdorf, Gati, et al., 2013; Preti et al., 2017;

Zhuang et al., 2020).

Frame-wise DFC was computed separately for each individual

and each task-evoked and resting-state fMRI acquisition, after the

additional preprocessing steps as described above (see Supplementary

Analysis SA1 for details of the analysis repeated with the minimally

preprocessed version, without the additional steps). To this end,

regionally averaged fMRI time-series were determined for each of

150 regions comprising an established volumetric parcellation atlas of

the cortex (Craddock et al., 2012). For each individual, frame-wise

DFC was computed for each of the 11,175 distinct pairs of regions

using the FLS method described above. This produced a

150 � 150 � T matrix of frame-wise DFC estimates (i.e., β(t) coeffi-

cients) for each individual and each task-evoked and resting-state

fMRI acquisition, where T is the total number of time points compris-

ing the acquisition. To match the time length of resting-state data

with that of task data, the time series of resting-state DFC estimates

were trimmed to only include the first T frames. MTPA was then per-

formed on the resulting DFC estimates.

2.3 | Static functional connectivity estimation

Time-averaged functional connectivity was computed between each

pair of regions using the Pearson correlation coefficient. Correlation

coefficients were determined for the same regionally averaged,

trimmed and additionally preprocessed fMRI time-series described

above. This yielded a 150 � 150 matrix of static functional connectiv-

ity estimates for each of the seven tasks and rest per individual.

2.4 | Multi-timepoint pattern analysis

Linear logistic regression classifiers were trained to distinguish rest

from each of the seven tasks based on either time-resolved

(i.e., dynamic) or time-averaged (i.e., static) functional connectivity. A

separate classifier was trained for each pair of regions, yielding

11,175 independent classifiers for each of the seven tasks. Logistic

regression is computationally efficient and enables individual-level

prediction. We implemented L2-regularized linear logistic regression

using the LIBLINEAR tool (Fan et al., 2008), as formulated in Supple-

mentary Methods SM1. Note that the classification model outputs a

probability estimate value for each prediction. This represents the

probability of a time course of DFC β(t) coefficients belonging to one

label or the other. For probability estimates ≥0.5, the assigned label is

1 (task) and otherwise 0 (rest).

2.4.1 | Dynamic functional connectivity

The 150 � 150 � T DFC matrices comprising all unique region pairs

from each individual were rearranged into separate two-dimensional

DFC matrices per region pair (one region pair � all individuals). Train-

ing and test sets were formed by randomly assigning 70% of all indi-

viduals to the training set and the remaining 30% to the test set. A

separate model was trained for each of the 11,175 pairs of regions.

The feature space comprised T frame-wise DFC estimates (i.e., β(t)

coefficients). We thus trained a total of 78,225 (11,175 pairs � 7

tasks) binary linear classification models. Subsequently, 10-fold cross-

validation was performed on the training set to avoid model over-

fitting and provide a robust estimate of the accuracy with which rest

could be distinguished from task. The accuracy of the model was
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further assessed by applying the trained models to individuals com-

prising the test set and generating out-of-sample predictions. Figure 1

provides a schematic of the overall workflow.

Each pair of regions for each of the seven tasks was associated

with an out-of-sample estimate of prediction accuracy reflecting the

accuracy with which the task could be differentiated from rest intrin-

sically. The prediction accuracies were rearranged to form a

150 � 150 symmetric matrix for each task. Using the large-scale net-

work atlas developed by Yeo et al. (2011), the matrix elements were

further grouped into 17 canonical networks. For regions that could

not be unequivocally assigned to a network, we demarcated three

additional network categories; namely, “subcortical,” “cerebellum,”
and “hippocampus/para hippocampus,” based on labels comprising

the Harvard-Oxford anatomical atlas distributed with FSL (http://

www.fmrib.ox.ac.uk/fsl/). To reduce dimensionality and improve inter-

pretability, we then averaged the prediction accuracies of pairs of

regions within each network boundary to enable interpretation at the

scale of broad networks. This resulted in a 20 � 20 matrix of predic-

tion accuracies for each task.

Henceforth, we use connections to refer to pairs of regions com-

prising the parcellation atlas and internetwork connections to refer to

connections between the 20 large-scale networks. Intranetwork con-

nections refer to connections within a given large-scale network.

2.4.2 | Static functional connectivity

Classification of task and rest was also undertaken using conventional

time-averaged functional connectivity. Analogous to the classifiers

trained using DFC, 11,175 linear logistic regression classifiers were

trained to classify between task and rest from a one-dimensional fea-

ture space comprising the static functional connectivity for each pair

of regions. Thereafter, using the same approaches as above, a

20 � 20 matrix of prediction accuracies was obtained for each task,

enabling explicit comparison with the corresponding matrices

for DFC.

2.5 | Associations with behavior and other
measures

We investigated 192 behavioral, psychiatric, and biological measures

available in the HCP. The behavioral measures evaluated include in-

scanner task performance, cognition, emotion, alertness, personality,

motor ability, and alcohol use. The biological measures include age,

sex, zygosity, and brain structure. We also investigated family history

of psychiatric illness. To explore the role of emotion and personality

on task-rest discriminability, we included all emotion measures and

F IGURE 1 Schematic of the overall workflow for classifying task and rest using multi-timepoint pattern analysis applied to dynamic functional
connectivity. (a) Resting-state and task-evoked functional magnetic resonance imaging (MRI) data were analyzed for 7 tasks in more than 1,000
individuals. Dynamic functional connectivity was estimated between pairs of regions comprising an established parcellation atlas for each task.
(b) For each pair of regions, a linear logistic regression model was trained to classify each of the seven tasks from rest based on dynamic
functional connectivity. Training was performed using 10-fold cross-validation on 70% of the participants and classification accuracy was
evaluated using an independent test set comprising 30% of the participants. Note that each prediction is accompanied by a corresponding
probability estimate, represented by percentages here
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summary scores associated with the top five personality types, that is,

neuroticism, agreeableness, openness, conscientiousness, and extra-

version. Since the level of alertness could influence task engagement,

we also included all the sleep quality scores, while excluding most of

the specific questionnaire responses. In addition, measures indicating

amount of alcohol consumption over 7 days were also included.

Finally, to explore the possibility of influence by brain structure in task

modulation of brain dynamics, we included measures of average gray

matter and white matter volumes. Supplementary Table ST2 lists the

full set of measures that were investigated.

We used the Pearson partial correlation coefficient to test for

associations between prediction accuracies (task vs. rest) and inter-

individual variation in each of the above 192 measures, partialling out

the effect of age and sex. We corrected for multiple comparisons in

each task category across the 192 tests using Bonferroni correction

(p < .05/192). Significant associations with an effect size of r > j.1j
were reported. Supplementary analyses were undertaken in which

key measures of cognitive performance and in-scanner task perfor-

mance were also partialled out, in addition to age and sex (see Supple-

mentary Methods SM2).

3 | RESULTS

3.1 | Classifying task and rest using functional
connectivity dynamics

We investigated the extent to which the dynamics of functional con-

nectivity differed between rest and seven tasks after regressing out

their respective mean task activation: social cognition, working mem-

ory, language, relational processing, motor, emotional processing, and

gambling. To this end, linear logistic regression classification was used

to classify and predict between each of the seven tasks and rest,

based on functional connectivity dynamics. An independent classifier

was trained for each of 11,175 distinct connections using a 10-fold

cross-validation procedure. Subsequently, the dimensionality was

reduced by summarizing these connections into internetwork and

intranetwork connections from 20 large-scale canonical networks

(Yeo et al. 2011), enabling meaningful network level interpretation for

each task.

Prediction accuracies varied markedly between tasks and connec-

tions. We considered accuracies exceeding 70% for further analysis.

While this threshold is somewhat arbitrary, we found that it enabled a

reasonable balance between sensitivity and specificity. Using a lower

threshold of 60% provided low specificity with more than 51% of the

network connections exceeding the threshold on average across all

seven tasks, whereas a higher threshold of 80% provided low sensitiv-

ity with fewer than 0.3% of connections exceeding the threshold on

average. Moreover, a similar trend was observed for data that were

not additionally preprocessed through motion and physiological cor-

rections or removal of mean task activation (see Supplementary Anal-

ysis SA1). All accuracies reported here were estimated out of sample.

However, the classification accuracies estimated in the training set

using 10-fold cross-validation were comparable, indicating successful

pattern classification without model overfitting. The initial parcellation

into 150 distinct volumetric regions from the Craddock atlas was per-

formed to enable classification on data derived from functionally

homogenous brain regions with minimal loss of information due to

averaging (Craddock et al., 2012). Note that 2 out of the 150 regions

largely overlapped with the brain stem and hence were removed from

analysis.

The left panel of Figure 2 shows the 148 � 148 matrices

of out-of-sample classification accuracies prior to summarizing

(i.e., downsampling) in terms of the 20 established canonical networks,

while the right panel of Figure 2 shows circular graph representations

of the summarized 20 � 20 matrix of averaged out-of-sample classifi-

cation accuracies for each task with at least one network connection

exceeding the threshold, that is, (a) working memory, (b) social cogni-

tion, (c) language, and (d) motor tasks. The accuracy matrices of the

remaining tasks are shown in Supplementary Figure SF5. Each net-

work connection in isolation was capable of an accuracy exceeding

70% on average. Possible interactions between multiple network con-

nections were not considered.

Although the other three tasks, that is, relational, gambling and

emotion, did not exceed the threshold when summarized into large-

scale brain networks, significant connections were evident at the

scale of specific pairs of regions. For instance, in the relational task,

the lateral occipital complex (LOC) showed widespread connections

with the other visual occipital regions as well as the frontal pole and

gyri. However, few connections were declared significant for the

gambling and emotion tasks. For information about the region-to-

region connections with the largest effect sizes for the remaining

tasks, refer to Supplementary Results SR1, and Supplementary Figu-

res SF2 and SF3.

When summarized into large-scale networks, significant connec-

tions were found for four tasks. As shown in Figure 2, some networks

were observed across multiple tasks. Internetwork connections asso-

ciated with the visual subnetworks (A&B) were prominent in all the

tasks except the language task, which was administered auditorily.

The DMN subnetwork B, mainly comprising the superior and middle

temporal gyri, also participated in three of the tasks (working memory,

social cognition, and language) given its functional versatility in high-

level cognition and self-referential processing (Gallagher & Frith,

2003; Howard et al., 2000; Schurz et al., 2014). Connectivity dynam-

ics associated with the control subnetworks (B&C) that subserve

executive processing were altered in all the three tasks requiring high-

level cognitive engagement, that is, working memory, social cognition,

and language.

Some of the observed network connections were uniquely associ-

ated with specific tasks, consistent with the cognitive demands of the

task. The dynamics of connectivity between the frontoparietal net-

work and visual subnetworks were modulated in tasks necessitating

high-level visual attention and memory processes, that is, working

memory (70.4% accuracy with visual B) and social cognition (71.3%

accuracy with visual A and 70.3% accuracy with visual B). Dynamic

connectivity between salience subnetwork A, dominated by insular
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regions, and DMN subnetworks was substantially altered in tasks that

specifically involved high-level emotional and socio-cognitive

processing, that is, social cognition (71.2% accuracy with DMN B) and

language tasks (71% accuracy with DMN A and B). The dynamic cou-

pling of temporoparietal network, associated with theory-of-mind

processing and object recognition, with the visual and DMN

F IGURE 2 Accuracy of classifying
between tasks and rest using dynamic
functional connectivity. Left panel—
Matrices of prediction accuracies
(148 � 148) prior to downsampling to
canonical networks for (a) working
memory task, (b) social cognition task,
(c) language task, and (d) motor task.
Regions are delineated based on the

Craddock volumetric atlas, with two
regions of the brain stem removed. They
are grouped according to canonical
networks demarcated by magenta
boundaries and indicated by labels. Each
yellow square within a matrix represents
a region-to-region connection whose
prediction accuracy exceeded the set
threshold. Right panel—Circular graph
representations (using toolbox from
https://github.com/paul-kassebaum-
mathworks/circularGraph) of
internetwork and intranetwork
connections yielding average prediction
accuracies exceeding the predefined
threshold for four tasks, that is,
(a) working memory task, (b) social
cognition task, (c) language task, and
(d) motor task. Each node represents an
intranetwork connection while each
edge represents an internetwork
connection. The edge weights and edge
colors (indicated by color bars) represent
out-of-sample classification accuracy.
Yellow nodes represent intranetwork
connections whose dynamics enable
prediction with accuracy exceeding 70%,
while pink nodes represent intranetwork
connections whose dynamics enable
weaker prediction at below-threshold
accuracies
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subnetworks was distinct in both working memory (70.2% accuracy

with DMN B, 73.8% with visual A and 73.9% with visual B) and social

cognition tasks (70.5% accuracy with DMN B, 74.3% with visual A

and 75.1% with visual B), compared to rest.

In the working memory task, the temporoparietal network, pre-

dominantly comprising the LOC, showed widespread task-induced

alterations in connectivity dynamics. Specifically, the dynamics of

functional connectivity with itself (71.6% intranetwork accuracy), as

well as with the visual, DMN, control (73% accuracy with control B,

72.9% with control C) and frontoparietal (70.4% accuracy) networks

were distinct from those during rest. In the social cognition task, both

the subnetwork B of DMN and the temporoparietal network showed

dynamic alterations in their connectivity with each other, as well as

with the visual subnetworks (74.3% DMN B—visual A, 73.6% DMN

B—visual B) and salience subnetwork A (70.2% temporoparietal—

salience A). On the other hand, alterations of DFC in the language task

were only evident in the salience subnetwork A, through its connec-

tions with the DMN subnetworks A&B, somatomotor subnetwork B

(71.6% accuracy), control subnetwork C (71% accuracy), and limbic

subnetwork B (70.7% accuracy). In the cognitively less demanding

motor task, only the connectivity between the somatomotor

subnetwork A, dominated by supplementary motor areas, and the

low-level visual processing subnetwork A (70.6% accuracy) exhibited

altered dynamics compared to rest.

To quantitatively analyze the similarity between the network con-

figurations showing task-altered DFC in each of the four tasks, we cal-

culated the dice similarity coefficient between the thresholded

network-level matrices (above 70% accuracy) of every pair of tasks

(Figure 3). A dice index of 0 indicates no overlapping connections

between two tasks, which was observed for all tasks with the cogni-

tively less demanding motor task. Similarly, the network configuration

of the auditorily presented language task hardly shared any similarity

with the visually presented social cognition (dice index = 0.09) and

working memory (dice index = 0) tasks, despite comparable cognitive

requirements. On the other hand, there was a substantial overlap

between the network configurations of working memory and social

cognition tasks (dice index = 0.56), both of which involved higher-

order cognitive and memory processing while simultaneously attend-

ing to objects presented on a screen.

3.2 | Classifying task and rest using static
functional connectivity

To evaluate and compare the discriminability between task and rest

enabled by dynamic and static functional connectivity measures, we

performed MTPA on each static functional connection and followed

the same approach as DFC (see Sections 2.4.1 and 2.4.2). The

148 � 148 matrices of prediction accuracies of all seven tasks prior to

summarizing (i.e., downsampling) in terms of the 20 established

canonical networks can be found in Supplementary Figure SF6. Net-

work connections with a prediction accuracy exceeding 70% were not

found for any of the tasks in the case of static functional connectivity.

Furthermore, we also compared the absolute mean prediction accura-

cies obtained from dynamic and static functional connectivity by aver-

aging across the whole 20 � 20 matrix of each task (Figure 4). We

found that the average discrimination by static functional connectivity

was comparable to chance level (50%) in every task. Additionally, the

distribution of accuracies was largely centered around 50% (see Sup-

plementary Figure SF7) for every task, thus indicating that static func-

tional connectivity is not substantially different between task and

rest, in the context of MTPA. This is consistent with previous studies

that demonstrate only subtle differences between resting-state and

task-based functional connectivity, despite intact task activation

effects (Cole et al., 2014; Fair et al., 2007).

3.3 | Impact of behavior on classifying task and
rest using functional connectivity dynamics

Having found that task and rest can be accurately classified for four

of the seven tasks based on dynamic connectivity, we next sought to

investigate whether prediction accuracy was impacted by behavior

and other individual-specific measures. To this end, we computed the

F IGURE 3 Similarity between
network configurations enabling
classification between task and rest using
DFC. Similarity was assessed using the
Dice similarity index computed between
every pair of thresholded 20 � 20
network matrices of prediction
accuracies. Note that the other three
tasks, that is, relational, emotion, and
gambling, were not included in this
analysis as they did not produce any
network connections that exceeded the
prediction accuracy threshold
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task identifiability measure for each individual and each task by aver-

aging individual prediction probability estimates across all the region-

to-region connections included in the thresholded network configura-

tion. From the HCP dataset, we then selected 192 measures belong-

ing to broad categories such as in-scanner task performance of the

four tasks, cognition, emotion, personality, and so forth. The Pearson

partial correlation coefficient was used to test whether interindividual

variation in each measure associated with classification performance,

while controlling for the effects of age and sex. This was tested inde-

pendently for each task and each measure. The Bonferroni correction

was applied to correct for multiple comparisons across the 192 tests

for each task.

For three of the tasks, that is, working memory, social cognition,

and language, we found a significant relationship between the task

identifiability measure and several behavioral measures associated

with five distinct behavioral categories, namely in-scanner task perfor-

mance, cognition, emotion, alertness, and motor ability. Figure 5

shows boxplots for the significant correlations between prediction

accuracy and behaviors (p < .05/192) with an effect size of jrj > .1.

The boxplots are color coded by the category of the behavioral mea-

sure and the word clouds at the bottom provide a qualitative repre-

sentation of the box plots. The complete summary of all the

192 measures can be found in Supplementary Table ST2 and sca-

tterplots of some notable associations are also presented in Supple-

mentary Figure SF8.

We found that task performance, intelligence, emotional attri-

butes, and alertness significantly influenced the ability to discrimi-

nate between task and rest based on DFC in three cognitively

demanding tasks, that is, working memory, social cognition, and

language.

The working memory task identifiability measure was associated

with its overall task performance accuracy (r = .28, p = 2 � 10�20) as

well as with accuracy of each task condition, such as zero-back tool

(r = .28, p = 1.5 � 10�20); two-back face (r = .21, p = 4.9 � 10�12);

and so forth. Similarly, we also found negative associations with

reaction time during the overall task (r = �.11, p = 2.4 � 10�4) and

during individual zero-back conditions like body (r = �.13,

p = 1.4 � 10�5); place (r = �.17, p = 3.3 � 10�8); and so forth. From

the cognition category, total cognition (r = .19, p = 5.6 � 10�10); fluid

cognition (r = .17, p = 2.7 � 10�8); executive functioning (r = .17,

p = 7.6 � 10�8); and cognition speed (r = .12, p = 1.8 � 10�4) were

some of the measures significantly associated with the task

identifiability measure. Motor abilities such as manual dexterity

(r = .15, p = 2.1 � 10�6) and physical endurance (r = .15,

p = 5.5 � 10�7) were other associated measures. In addition, we

found that individuals with traits linked to aggression (r = �.14,

p = 3.8 � 10�6) showed weaker modulation of FC dynamics during

the task compared to rest.

The social cognition task identifiability measure was significantly

associated with its task performance accuracy (r = .12, p = 2.5 �
10�4) and total cognition (r = .13, p = 3.2 � 10�5). It was also associ-

ated with accuracy in the working memory task (r = .12,

p = 2.3 � 10�4) as well as its two-back face condition (r = .12,

p = 1.1 � 10�4). Furthermore, individuals with lower levels of alert-

ness were found to engage poorly with this task, as indicated by a

negative association with sleep quality scores, assessed by the Pitts-

burgh sleep quality index (PSQI) (r = �.14, p = 1.1 � 10�5). Note that

a greater PSQI score indicates poorer quality of sleep.

The language task identifiability measure was significantly corre-

lated with its task performance accuracy (r = .2, p = 5.5 � 10�11) as

well as working memory task accuracy (r = .18, p = 1.4 � 10�8). Indi-

viduals who perceived greater difficulty in the story (r = .17,

p = 3.5 � 10�8) and math (r = .17, p = 8.8 � 10�8) conditions of the

task may have tried to engage more, thereby leading to stronger

positive associations with the identifiability measure. Significant

associations were also found with crystallized cognition (r = .12,

p = 7.8 � 10�5); fluid intelligence (r = .16, p = 1.7 � 10�7); language

and reading abilities (r = .13, p = 4.7 � 10�5); episodic memory

(r = .12, p = 7.8 � 10�5); and physical endurance (r = .12,

p = 1.2 � 10�4) among others. One emotion measure, that is,

F IGURE 4 Average accuracy of
discriminating between task and rest
based on time-averaged (orange) and
dynamic (blue) functional connectivity
computed from all the region-to-region
connections. The mean out-of-sample
prediction accuracy is shown for each of
seven tasks. The standard deviation (SD)
across connections is indicated by the

vertical line along the top of each bar
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perceived stress (r = �.11, p = 2.4 � 10�4) was negatively correlated

with the identifiability measure, indicating that greater susceptibility

to stress may diminish task engagement, thereby producing weaker

modulation of FC dynamics compared to rest.

To further account for the influence of intelligence and task per-

formance on the associations, we performed partial correlation by

regressing out the top principal components of cognition and task per-

formance for each task (see Supplementary Methods SM2), in

F IGURE 5 Qualitative and
quantitative representations of the
significant associations between
behavioral measures and task
identifiability measures. 1) Boxplots
showing statistically significant
correlations (p < .05, jrj > 0.1,
Bonferroni corrected), with 75%
confidence interval, between individual

task identifiability measures and
behavioral measures from (a) working
memory task, (b) social cognition task,
and (c) language task, after controlling
for the influence of age and gender. 2)
The word clouds at the bottom provide
a qualitative representation of the
correlations for (a) working memory
task, (b) social cognition task, and
(c) language task. The size of the word
represents correlation strength, and the
color represents behavioral category.
Note that the font color in the word
clouds matches the category colors
defined for the boxplots. NT, nontarget
trials; T, target trials; WM—working
memory
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addition to age and gender. Although the number of surviving mea-

sures was reduced, the top associations were still retained. Supple-

mentary Figure SF1 shows the boxplot graphs and corresponding

word clouds of statistically significant correlations (with 75% confi-

dence interval) observed after controlling for the influence of age,

gender, cognition and task performance, and the Bonferroni correc-

tion (p < .05/192) with effect size threshold (jrj > 0.1).

4 | DISCUSSION AND CONCLUSION

In this study, we developed a novel methodology known as MTPA and

applied it for the first time to 7 different tasks, each performed by

more than 1,000 healthy adults, to discriminate task from rest based

on DFC specifically calculated from fMRI signals predominantly evoked

by internal cognitive states with minimal influence from external stim-

uli. By employing linear logistic regression, MTPA successfully classi-

fied the multivariate temporal patterns of time-varying functional

connectivity from rest and task with greater than 70% accuracy at the

brain region level in all the seven tasks, when mean task activation was

removed. When these prediction accuracies were summarized into a

lower dimension of large-scale brain networks, they exceeded the

threshold in four of the tasks, that is, working memory, social cogni-

tion, language, and motor. As a result, these tasks were underpinned

by relatively unique functional network architectures. We also demon-

strate using MTPA that DFC outperforms static functional connectivity

in distinguishing between the cognitive states of task and rest. Fur-

thermore, MTPA enabled the identification of several behavioral mea-

sures such as intelligence, perceived stress, aggression, and alertness

that were significantly associated with interindividual variation in the

discriminability between task and rest based on DFC.

4.1 | MTPA to discriminate between task and rest

One of the most notable advantages of multivariate classification in

fMRI is its increased sensitivity to detect distinct cognitive states from

multiple features such as voxels (Haxby et al., 2001; Norman et al.,

2006). However, this approach had so far not been applied to decode

cognitive states based on temporal patterns of activity. Therefore,

when we performed multivariate classification in the temporal

domain, it provided us with the sensitivity required to address an

important challenge in fMRI research: to unequivocally characterize

functional connectivity differences between distinct cognitive states.

Moreover, the added sensitivity allowed us to explore the feasibility

of distinguishing between the naturally endogenous resting-state and

an intrinsic version of task-state from which explicit task activation

effects are removed. Specifically, MTPA enabled us to establish that

distinct cognitive states underlying resting-state and task engagement

can be decoded with greater sensitivity using DFC, compared to time-

averaged connectivity. Importantly, for four of the tasks, we were also

able to summarize the results in the spatial domain as task-specific

spatial network configurations formed by above-threshold

intranetwork and internetwork dynamic connections (see Section 3.1,

Figure 2—right panel). Furthermore, the probability estimate value of

each individual prediction from logistic regression facilitated compari-

son between DFC and individual behavioral measures.

4.2 | Network configurations enabling successful
discrimination between task and rest based on DFC

Using DFC estimates, MTPA produced several internetwork and intra-

network connections with above-threshold out-of-sample classifica-

tion accuracies in four tasks. Together, they produced distinct

task-dependent spatial network architectures that successfully dis-

criminated between functional connectivity dynamics of each task

and rest, after mean task activation was removed. Distinct cognitive con-

straints are imposed during task and rest, which lead to differences in the

stability of functional connectivity dynamics (Cohen, 2018). Such alter-

ations in stability likely translate to distinct patterns of time-varying con-

nectivity in the temporal domain. Our current results further suggest that

some of these pattern differences stem intrinsically from underlying cog-

nitive states associated with rest and task beyond the brain response pro-

duced by the explicitly defined task conditions.

Performing a task involves several interactions in the brain sub-

serving low-level stimulus processing as well as high-level complex

cognitive processing. While some of these interactions may be time-

locked to task stimuli, others may be occurring intrinsically at different

times throughout the task state. Our current analysis likely captures

the latter. Connections between visual subnetworks, mainly compris-

ing occipital and fusiform areas, and other high-level networks in the

visual-based tasks were likely responsible for relaying visual informa-

tion (Grill-Spector & Malach, 2004) for the cognitive synthesis of stim-

uli. In the auditorily presented language task, this function was likely

assumed by the auditory areas within the superior and middle tempo-

ral lobes (Howard et al., 2000; Xu et al., 2019) covering parts of the

DMN subnetwork B. Areas within these temporal lobes have also

been implicated in memory, theory of mind, and self-referential

processing (Gallagher & Frith, 2003; Schurz et al., 2014; Xu et al.,

2019), thereby explaining their widespread connections in the work-

ing memory, social cognition and language tasks. Task performance

necessitates executive processing, response selection, and memory,

which was likely represented in the connectivity dynamics of the con-

trol subnetworks encompassing precuneus and frontotemporal

regions (Cavanna & Trimble, 2006; Seeley et al., 2007), in the three

cognitively demanding tasks.

Meeting the distinct requirements of each task may have been

achieved through dynamic alterations of some specialized connec-

tions. The working memory task involved remembering various tools,

places, faces, and body parts. This was likely facilitated by the wide-

spread connections of the temporoparietal network with the cognitive

subcomponents of the default mode, control, and frontoparietal net-

works. Objective stimuli recognized in the LOC of the temporoparietal

network were likely directed by attentional resources (frontoparietal)

toward contextual memory processing subsequently leading to
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appropriate response selection (control network and DMN). In the

social cognition task, processing of animations in the theory-of-mind

context was likely facilitated by connections associated with the

DMN subnetwork B and temporoparietal network (Gallagher & Frith,

2003; Schurz et al., 2014; Xu et al., 2019). Given the role of the

salience network in bottom-up filtering (Menon & Uddin, 2010), their

connections with the salience subnetworks may have enabled social

inferences via the salient visual features identified from the presented

animation. In the language task, the salience subnetwork A, mainly

comprising fronto-insular regions, was the central hub connecting to

DMN, somatomotor, control and limbic subnetworks. In this task, par-

ticipants were required to either perform mental mathematical opera-

tions or listen to a story and make high-level inferences, both of

which involve internal contextual processing (DMN) using language

and semantics (somatomotor). Furthermore, connections with the lim-

bic subnetwork likely facilitated the identification and auditory cogni-

tion of salient emotional components within stories presented during

the task (Dixon et al., 2017; Jackson et al., 2018). In the motor task,

following cues to move may have evoked the connection between

the primary somatomotor and primary visual subnetworks. No other

connections exceeded the threshold in this task since it did not neces-

sitate cognitive complexity.

Although the network configurations of language and motor tasks

were unique, the extensive involvement of the temporoparietal net-

work in sharing visual information with high-level cognitive networks

explains the overlap of network configurations between the social

cognition and working memory tasks, that is, the only successful tasks

with visual stimuli.

4.3 | Comparison between dynamic and static
functional connectivity in discriminating between task
and rest

To discriminate between task and rest based on region-to-region

static functional connectivity, we performed one-dimensional MTPA

with logistic regression where the number of timepoint features was

equal to one. No network configurations could be recovered for any

task and DFC outperformed static functional connectivity in discrimi-

nating task from rest (see Section 3.2, Figure 4). Although this differ-

ence in performance could also be attributed to larger number of

features in MTPA using DFC, our findings are consistent with previ-

ous work by Cole et al. (2014) and Fair et al. (2007) where it was dem-

onstrated that static functional network configurations undergo only

subtle changes from resting-state to task-engagement. Therefore,

brain networks most likely accommodate varying task demands by

adjusting their functional connectivity dynamics, but this may not nec-

essarily translate to an equivalent alteration in time-averaged func-

tional connectivity.

However, unlike DFC, the underlying neurophysiological mecha-

nisms (e.g., slow timescale Hebbian synaptic strength processes)

potentially supporting time-averaged connectivity are better known

(Mill et al., 2021; Newbold et al., 2020; Petersen & Sporns, 2015). The

neurophysiological basis of DFC remains an open issue, despite sev-

eral recent studies in this area. Recent evidence suggests correlative

links between BOLD dynamic FC and transient neuronal synchrony

tracking resting as well as task arousal at various time-scales using dif-

ferent imaging modalities in animal and human studies (Chang et al.,

2016; Hutchison, Womelsdorf, Allen, et al., 2013; Hutchison,

Womelsdorf, Gati, et al., 2013; Keilholz, 2014; Majeed et al., 2009;

Thompson et al., 2013). Notably, transient EEG microstates have been

shown to reliably predict dynamic FC of large-scale brain networks

inferred from concurrent 7 T fMRI-EEG imaging, thus revealing poten-

tial electrophysiological biomarkers of distinct recurring FC states

(Abreu et al., 2021). Neuropsychiatric and neurological conditions,

including schizophrenia and epileptic seizures, have also been charac-

terized by aberrant fMRI connectivity dynamics (Hutchison,

Womelsdorf, Allen, et al., 2013; Hutchison, Womelsdorf, Gati, et al.,

2013; Kottaram et al., 2018; Liao, Zhang, et al., 2014). Moreover,

some studies suggest that entropy changes in neuronal processing

complexity (Wang et al., 2018) and neuronal avalanches occurring at

discrete time points (Tagliazucchi et al., 2012) may subserve fast-scale

dynamics of functional connectivity. These may be more effectively

captured by a TR-level approach such as FLS. Nonetheless, until there

is more definitive empirical evidence explaining the neurophysiologi-

cal correlates of dynamic connectivity, its apparent superiority in dis-

criminating between task and rest over its comparatively well-

established static counterpart needs to be considered with caution.

4.4 | Influence of behavior on discriminating
between task and rest based on functional
connectivity dynamics

Previously, it has been shown that better task performance associates

with lower ambiguity in distinguishing between contexts based on

DFC (Fong et al., 2019; Gonzalez-Castillo & Bandettini, 2018; Xie

et al., 2019; Zhang et al., 2013). Consistent with these observations,

we found that task performance was significantly correlated with the

task identifiability measures of three tasks, that is, working memory,

social cognition, and language. While interindividual variation in

resting-state DFC can capture the variance in several HCP behavioral

measures including intelligence (Liégeois et al., 2019), Schultz and

Cole (2016) observed that better task performance and intelligence

led to smaller differences between time-averaged task and rest func-

tional networks due to more efficient network reconfigurations. Con-

trarily, we found several intelligence measures that were significantly

and positively correlated with distinguishability in the three tasks. A

likely explanation is that greater intelligence and task performance are

characterized by minimal static network reconfigurations because the

dynamics of functional connectivity undergo highly efficient temporal

pattern modifications with respect to resting state.

Some of the measures were crucial to specific tasks. For instance,

attributes like cognition processing speed and fluid intelligence may

have been crucial for quick encoding and recall in the working mem-

ory task, while crystallized intelligence, episodic memory and language
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abilities likely determined success in accurately inferring about stories

and performing mental math. Additionally, task-rest discrimination in

all the three tasks was associated with the performance in the work-

ing memory task, highlighting the task's close relationship with general

cognitive capabilities. Specifically, the influence of the two-back face

condition's accuracy on the social cognition task portrays how the

ability to remember human faces closely connects with inferring about

mental states.

In addition to influencing DFC during task (Tobia et al., 2017),

psychosocial stress, negative emotions, and anxiety negatively impact

attention (Liston et al., 2009), working memory performance

(Luettgau et al., 2018), problem solving (Nair et al., 2020) and execu-

tive functioning (Denkova et al., 2010). Therefore, the significant neg-

ative correlation between perceived stress and distinguishability

between rest and the language task could be explained by the poten-

tial interference of stress in the emotional processing components of

the story condition. Similarly, individuals prone to aggression may

have displayed greater frustration upon increasing cognitive complex-

ity and failure to remember accurately, thereby leading to a significant

negative correlation of aggression in the working memory task. In the

social cognition task, low levels of alertness based on sleep quality

likely interfered with effectively disambiguating social interactions

(Gordon et al., 2017), thus explaining the significant negative correla-

tion. We also found that physical endurance was significantly associ-

ated with task-rest distinction in the working memory and language

tasks, both of which involved sustained concentration. Physical endur-

ance is closely related to mental toughness (Crust & Clough, 2005),

thereby explaining why individuals low on endurance may have

“given-up” earlier in such tasks leading to deteriorating engagement

over time, reflected by weaker modulation of FC dynamics.

Therefore, intelligence, task performance, stress, aggression,

alertness, and endurance, among others significantly contribute to

interindividual variation in the discriminability between task and rest

based on functional connectivity dynamics, after the removal of mean

task activation. Together, this suggests that greater intelligence and

emotional stability lead to stronger engagement with task and hence

greater discrimination from rest. This also points toward the potential

for using context-dependent alterations in functional connectivity

dynamics to identify individuals with greater susceptibility to neuro-

psychiatric conditions.

4.5 | Limitations and future scope

Although MTPA provides a promising avenue for distinguishing

between task and rest DFC, this work has some limitations. Summa-

rizing the connections reduced the overall prediction accuracy and

resolution of interpretation at the cost of robustness. Despite no

above-threshold network-level connections in the gambling, emotion,

and relational tasks, we found successful region-level connections.

For instance, in the relational task, connections between the visual

processing occipital and high-level frontal regions may have facilitated

the visual cognition necessary to match intricate patterns. On the

contrary, there were very few surviving connections in the emotion

and gambling tasks. Greater task complexity producing larger inter-

individual variability in DFC could be a possible cause. Di and Biswal

(2019) similarly failed to find any statistically significant group-level

connections that were dynamically modulated by the condition blocks

of these same HCP tasks through psychophysiological interactions

(PPI). Additionally, our initial 150-region parcellation did not include

all subcortical structures since we mainly focused on cortical dynam-

ics. As a result, we may have missed some crucial connections per-

taining to tasks like emotion processing where the amygdala plays a

key role (Barch et al., 2013). The overall performance of MTPA could

improve further with higher fMRI signal to noise ratio, nonlinear pat-

tern separation and differences in classifier, parcellation scheme or

method of DFC estimation. Therefore, we recommend that future

studies explore MTPA with different parameters and tasks to assess

its reliability. Although we find that dynamic FC outperforms static FC

with MTPA, the substantial difference in the feature dimensionalities

between the two could be a major factor driving the difference in

classification performance. Moreover, a cautious interpretation is

essential given that the neurophysiological underpinnings of dynamic

FC remain unclear. Future work involving invasive animal studies with

naturalistic stimuli could further elucidate the neurophysiological cor-

relates of dynamic FC. In general, time-resolved connectivity readily

lends itself to analyses like the MTPA, compared to its more rigid

time-averaged counterpart. The TR-level approach is one of many

available methods used to estimate dynamic FC in fMRI (Preti et al.,

2017). Although we have used this approach in our current MTPA

work, there is scope for future work to explore MTPA with other

established dynamic FC methods, including sliding-window analyses,

where successive window FC estimates are used as classification fea-

tures. This also highlights the flexibility of our proposed MTPA

method. Furthermore, the reliability of MTPA depends on sample size.

While it is suitable for large datasets, the amount of training data

might be insufficient to produce reasonable out-of-sample prediction

with smaller sample sizes that are typical of fMRI acquisitions.

Distinguishing between the temporal patterns of dynamic FC

associated with two different tasks (task A vs. task B) would be an

interesting future avenue of investigation and may enable characteri-

zation of similarities and distinctions between tasks. Similarly, connec-

tions enabling discrimination between DFC patterns associated with

healthy and pathological populations could offer further insights into

biomarkers and treatments. Instead of regressing task activation based

on the conventional HRF-convolved GLM, finite impulse response

modeling should be considered in future studies, given that it may be

able to better model task activations (Cole et al., 2019). Although we

have briefly explored the classification weights from MTPA to analyze

their relationship with task conditions (see Supplementary Results

SR2), there is still scope to investigate further in this regard. Similarly,

investigating the specific behaviors underlying the classification in

individual region-to-region or network-to-network connections

instead of using an average task identifiability measure is another

interesting direction worth exploring. Finally, we have also explored

the utility of MTPA as a predictive tool with minimally preprocessed
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data uncorrected for confounds and task activation effects (see Sup-

plementary Analysis SA1). Following this predictive approach, MTPA

can be flexibly adopted in the future to investigate the relative sensi-

tivity of functional connections to neural signals and nonneural con-

founds in terms of their dynamics in specific contexts. Similarly,

individual-specific behaviors most susceptible to neural and nonneural

dynamics can be delineated, and cautiously considered while rec-

ruiting for future task paradigms. The predictive utility of MTPA could

also lead to the development of diagnostic capabilities in neuropsychi-

atry research.

4.6 | Conclusion

Changing cognitive contexts associated with resting-state and task

engagement are characterized better by dynamic adaptations of func-

tional brain networks than static characterizations. Through our pro-

posed method of MTPA, these dynamic adaptations can be reliably

captured as linearly separable temporal patterns from large sample

sizes in multiple tasks. Notably, tasks modulate functional connectivity

dynamics to varying extents across individuals and an individual's

intelligence, alertness, endurance, and emotional stability can influ-

ence the extent of this modulation. This highlights the importance of

modeling interindividual variation in behavioral measures when inves-

tigating context-dependent DFC in future task fMRI studies.
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