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Summary
Background Crohn’s disease and ulcerative colitis are the two major forms of infl ammatory bowel disease; treatment 
strategies have historically been determined by this binary categorisation. Genetic studies have identifi ed 
163 susceptibility loci for infl ammatory bowel disease, mostly shared between Crohn’s disease and ulcerative colitis. 
We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of infl ammatory 
bowel disease with the goal of further understanding the biological relations between diseases.

Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. 
We applied the Montreal classifi cation system of infl ammatory bowel disease subphenotypes to 34 819 patients 
(19 713 with Crohn’s disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for 
genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining 
information from all known infl ammatory bowel disease associations to summarise the total load of genetic risk for 
a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn’s disease, ileal Crohn’s 
disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a 
mismatch between clinical diagnosis and genetic risk profi le.

Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn’s disease, 12 597 with 
ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of infl ammatory 
bowel disease, mainly disease location (essentially fi xed over time; median follow-up of 10·5 years). Little or no 
genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on 
disease location and age at onset. The genetic risk score representing all known risk alleles for infl ammatory bowel 
disease showed strong association with disease subphenotype (p=1·65 × 10–⁷⁸), even after exclusion of NOD2, MHC, 
and 3p21 (p=9·23 × 10–¹⁸). Predictive models based on the genetic risk score strongly distinguished colonic from ileal 
Crohn’s disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk 
profi les who were signifi cantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10–⁴).

Interpretation Our data support a continuum of disorders within infl ammatory bowel disease, much better explained 
by three groups (ileal Crohn’s disease, colonic Crohn’s disease, and ulcerative colitis) than by Crohn’s disease and 
ulcerative colitis as currently defi ned. Disease location is an intrinsic aspect of a patient’s disease, in part genetically 
determined, and the major driver to changes in disease behaviour over time.
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Introduction
Crohn’s disease and ulcerative colitis, the two major 
forms of infl ammatory bowel disease, aff ect about 
one in 200 people in developed countries, with a rising 
incidence and prevalence in developing countries.1 
Many patients with infl ammatory bowel disease have a 
lifetime of debilitating physical symptoms (eg, urgent 
diarrhoea, rectal bleeding, vomiting, anorexia, and 
lethargy), which frequently lead to poor psychosocial 
wellbeing with wide ranging consequences for academic 

attainment, employment, relationships, and sexual 
health.2 Furthermore, the fi nancial costs of infl ammatory 
bowel disease are substantial and are estimated at more 
than US$2·2 billion per year in the USA alone.3

Infl ammatory bowel disease is characterised by an 
exaggerated mucosal immune response to luminal gut 
contents in genetically susceptible individuals.4 In Crohn’s 
disease, infl ammation can occur in any part of the 
gastrointestinal tract, whereas ulcerative colitis is typically 
confi ned to the colon. The universally adopted Montreal 
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classifi cation distinguishes clinical subphenotypes in 
Crohn’s disease by disease location and behaviour, and 
age of onset, and in ulcerative colitis by disease extent and 
age of onset.5–11 Molecular studies have suggested that ileal 
and colonic Crohn’s disease are distinct entities because 
variants in NOD2 are associated with small bowel disease 
and HLA alleles with colonic disease.12–19 However, current 
recommendations do not advocate the use of these 
established markers in making treatment decisions, nor 
for choosing patients for clinical trials.20–29 The natural 
history and clinical course of infl ammatory bowel disease 
is very heterogeneous: up to 20% of patients with 
ulcerative colitis need colectomy for medically refractory 
disease, and more than 50% of patients with Crohn’s 
disease need surgery within 10 years of diagnosis;30 
however, up to 50% of patients with ulcerative colitis and 
30% with Crohn’s disease will have a fairly indolent 
disease course without the need for immunosuppression 
or surgery.31,32

Infl ammatory bowel disease has been at the vanguard 
of progress in understanding the genetic framework of 
complex diseases, with 163 susceptibility loci identifi ed 
so far.33 Most infl ammatory bowel disease loci confer 
risk of both ulcerative colitis and Crohn’s disease, but 
typically show distinct eff ect sizes in the two disorders. 
These fi ndings suggest that genetic variation might 
defi ne molecular subtypes independent of traditional 
and clinically defi ned diagnostic entities, allowing new 
insights into the molecular basis of these subphenotypes. 

Our international study of around 30 000 patients 
with infl ammatory bowel disease genotyped by 
microarray is the largest genotype–subphenotype study 
in the disease done so far. We have used genetic risk 
scores to study genetic heterogeneity underpinning the 
natural history of infl ammatory bowel disease. This 

analysis rejects the current binary classifi cation of 
Crohn’s disease and ulcerative colitis as distinct and 
homogeneous clinical entities in favour of a continuum 
of illness better fi t by a three-category model (ie, ileal 
Crohn’s disease, colonic Crohn’s disease, and ulcerative 
colitis). We show that these risk scores have clinical 
potential (although they are currently only weak 
predictors), and believe they might have widespread 
applicability in other diseases.

Methods
Study design and patients
We acquired phenotype data for 34 819 patients, 
including 19 713 with Crohn’s disease and 14 683 with 
ulcerative colitis. The cohort included all patients in 
diff erent centres over the years who had infl ammatory 
bowel disease as per Lennard-Jones' criteria.34 All 
inclusion criteria are included in appendix A. After 
quality control (appendix A), the primary analysis 
included 29 838 patients (16 902 with Crohn’s disease, 
12 597 with ulcerative colitis, 255 with indeterminate 
colitis, and 84 missing an exact diagnosis). This study 
includes patients from population-based registries, and 
secondary and tertiary-referral centres at 49 sites in 
16 countries in Europe, North America, and Australasia, 
most of which have been previously described 
(appendix B).33 Confi rmation of diagnosis of infl am-
matory bowel disease and assignment of clinical 
subphenotypes were done by clinicians specialising in 
infl ammatory bowel disease or trained phenotypers 
through case note reviews of clinical, radiological, 
histopathological, and endoscopic reports, and classifi ed 
per the Montreal classifi cation criteria (see appendix A 
for details).8,9 For behaviour and surgery in Crohn’s 
disease, and colectomy in ulcerative colitis, Kaplan-Meier 

Research in context

Evidence before this study
We searched PubMed for genotype–phenotype association 
studies in infl ammatory bowel disease, published between 
Jan 1, 1996, and Oct 17, 2014, with the search terms 
“infl ammatory bowel disease” AND “genotype phenotype” AND 
“genetic association” AND (“disease course” or “disease extent” 
or “location behaviour”). We found 31 studies with sample sizes 
of 66 to 2804 patients, and studying between one and 
163 genetic variants. Most of these studies implicated NOD2 
and HLA in subphenotypes of infl ammatory bowel disease. 
Many studies, especially the early ones, studied only NOD2 and 
HLA, and none included genetic variants not previously 
implicated in risk for infl ammatory bowel disease.

Added value of this study
This study is the largest genotype–phenotype study of 
infl ammatory bowel disease by at least a factor of ten, and is 
among the largest studies of genetic determinants of clinical 
subphenotypes of any complex disease. We have refi ned the 

known associations (for instance, the eff ect of NOD2 on disease 
behaviour is entirely driven by its association with disease 
location) and discovered one new associated locus (3p21/MST1 
with age at diagnosis) . We have explored the genetic relations 
between subtypes of infl ammatory bowel disease with genetic 
risk scores for the fi rst time, and have shown that ileal and 
colonic Crohn’s disease are at least as genetically distinct from 
each other as they are from ulcerative colitis.

Implications of all the available evidence
Established genetic factors can only explain a small fraction of 
the variability in subphenotype of infl ammatory bowel disease, 
but genetic risk scores that capture all this information could be 
used to identify misdiagnosed patients. Future translational 
and clinical research should move away from a binary 
classifi cation of infl ammatory bowel disease into ulcerative 
colitis and Crohn’s disease, instead considering ileal and colonic 
Crohn’s disease as separate disease entities. 
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survival curves, stratifi ed by location of Crohn’s disease 
and extent of ulcerative colitis, were drawn to estimate 
time to fi rst event (see appendix A for details).

The ethical boards of each separate recruiting centre 
approved the study. All patients included in this study 
gave written informed consent.

Procedures
All cases were genotyped with the Immunochip array 
(Illumina, San Diego, CA, USA; appendix B) as 
previously described.33 Briefl y, the Immunochip is a 
195 806-polymorphism genotyping platform comprising 
variants identifi ed from association studies of 
immune-related disorders including Crohn’s disease 
and ulcerative colitis. Extensive quality control was 
performed on the dataset (appendix A), leaving 
29 838 cases and 156 154 markers available for analyses. 
Variants in the MHC, including 23 HLA alleles that have 
been implicated in infl ammatory bowel disease, were 
imputed as described in appendix A.35

All association tests were done on all genotyped 
variants, conditional on the fi rst fi ve principal 
components to account for population structure. Age of 
onset was analysed for Crohn’s disease and ulcerative 
colitis separately and then meta-analysed; time to 
surgery was analysed with parametric survival-time 
regression models; and upper gastrointestinal involve-
ment and perianal disease were analysed with binary 
logistic regression (see appendix A). For multicategory 
phenotypes (disease location, behaviour, and extent) we 
used model selection to pick the most appropriate 
genetic model for the phenotype (appendix A). The 
model selection indicated a multinomial model for 
Crohn’s disease location (ie, three unordered categories), 
an ordinal logistic model for Crohn’s disease 
behav iour (three ordered categories, B3 penetrating>B2 
stricturing>B1 infl ammatory), and a binary model for 
disease extent of ulcerative colitis (two categories: E3 
extensive disease vs E2 left-sided disease and E1 
proctitis). To distinguish direct associations from 
indirect (ie, driven by an association with a correlated 
phenotype), we also adjusted all regression models for 
the other phenotypes (age of onset, location, and 
behaviour for Crohn’s disease; age of onset and disease 
extent for ulcerative colitis). Genome-wide signifi cance 
(p<5 × 10–⁰⁸) was required for individual single nucleotide 
poly morphisms (SNPs) and HLA types.

All signals that showed suggestive association 
(p<1 × 10–⁵) with any of the disease subphenotypes were 
assessed in an independent cohort genotyped on a range 
of diff erent genome-wide association study (GWAS) 
chips. These samples have also undergone rigorous 
quality control and imputation.33 Phenotype data for an 
additional and independent 2453 patients with Crohn’s 
disease and 3729 patients with ulcerative colitis were 
available for these analyses. See appendix A for additional 
information about the replication cohort.

To learn about the relative phenotypic variance 
explained by diff erent risk factors in adult infl ammatory 
bowel disease, we fi tted a model to predict Crohn’s 
disease location that included both demographic 
predictors (smoking status, age at diagnosis, and year) 
and genetic predictors (SNPs at NOD2, MST1, and the 
HLA cluster as well as the genetic risk score). Variance 
explained on the logit scale by each predictor was 
calculated with the McKelvey–Zavoina pseudo R². 
Centres with a high proportion (>60%) of missing data 
for smoking status were removed. To reduce the eff ect of 
changes in clinical practice and smoking rates, only 
patients born between 1955 and 1985 were included.

In addition to looking at single SNPs, we also combined 
information from 193 SNPs and 23 HLA types previously 
associated with infl ammatory bowel disease to generate 
genetic risk scores (appendix A), which provide better 
predictive accuracy than individual SNPs. To assess 
classifi cation accuracy, we re-ran the risk score analyses 
with a cross-validation strategy, in which models were 
fi tted in non-UK origin samples and assessed by how 
well they classifi ed UK samples.

To assess if the risk score can be used to identify 
misclassifi ed patients, we selected 97 outlier patients that 
fell in the extreme tail of the scores for the opposite 
phenotype (log Crohn’s disease versus ulcerative colitis 
[CD vs UC] score ≤–2 for Crohn’s disease outliers and log 
CD vs UC score ≥2 for ulcerative colitis outliers), as well 
as 95 randomly selected cases with non-outlier scores 
matched by recruitment centre. Clinicians from each 
centre were then asked to re-phenotype both outlier and 
non-outlier patients in a masked fashion. The CD versus 
UC risk score was chosen for this experiment because it 
had the strongest association with Crohn’s disease 
location and behaviour.

Statistical analysis
The median eff ect size of known infl ammatory bowel 
disease risk variants33 was about OR 1·1, with a median 
minor allele frequency of roughly 30%. The sample size of 
our study gave us high power to detect an eff ect of 
equivalent magnitude of Crohn's disease location (power of 
67% for ileal vs non-ileal disease), Crohn's disease behaviour 
(94% for complicated vs non-complicated disease) and 
ulcerative colitis disease extent (84% for extensive vs non-
extensive disease) at genome-wide signifi cance. Binary and 
linear genotype–phenotype analyses were done with PLINK 
version 1.07,36 and multinomial and ordinal regression with 
a custom program, Trinculo version 0.4 (appendix A). 
Survival analysis and risk prediction were done with 
R-2.15.1 using the packages “survival” and “Mangrove”,37 
respectively. Data handling and plotting was done with R. 

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. All authors had full access to all the 



Articles

www.thelancet.com   Vol 387   January 9, 2016 159

Paediatric Gastroenterology 
and Nutrition, Glasgow, UK 
(Prof D C Wilson); Division of 
Gastroenterology, University 
Hospital Gasthuisberg, Leuven, 
Belgium (Prof S Vermeire); 
Institute of Human Genetics, 
Newcastle University, 
Newcastle upon Tyne, UK 
(J Mansfi eld MD); Mount Sinai 
Hospital Infl ammatory Bowel 
Disease Centre, University of 
Toronto, Toronto, ON, Canada 
(M S Silverberg PhD); 
Infl ammatory Bowel Diseases, 
Genetics and Computational 
Biology, Queensland Institute 
of Medical Research, Brisbane, 
Australia 
(G Radford-Smith PhD); 
Department of 
Gastroenterology, Royal 
Brisbane and Women’s 
Hospital, and School of 
Medicine, University of 
Queensland, Brisbane, 
Australia (G Radford-Smith); 
and F Widjaja Foundation 
Infl ammatory Bowel and 
Immunobiology Research 
Institute, Cedars-Sinai Medical 
Center, Los Angeles, CA, USA 
(Prof D P B McGovern PhD) 

Correspondence to:
Dr Charlie W Lees, 
Gastrointestinal Unit, Western 
General Hospital, Crewe Road, 
Edinburgh EH4 2XU, UK
Charlie.lees@ed.ac.uk

or

Dr Jeff rey C Barrett, Wellcome 
Trust Sanger Institute, Hinxton, 
Cambridgeshire CB10 1SA, UK
barrett@sanger.ac.uk

See Online for appendix

data in the study and had fi nal responsibility for the 
decision to submit for publication.

Results
Our primary analyses were done on matched genotype 
and phenotype data from 29 838 patients of European 
ancestry (appendix A) with infl ammatory bowel disease 
(16 902 with Crohn’s disease, 12 597 with ulcerative 
colitis; table 1) with a total of 217 195 patient-years of 
follow-up (median per patient: 11 years for Crohn’s 
disease and 10 years for ulcerative colitis). Demographic 
features of the study population agreed with previously 
published results: patients with Crohn’s disease were 
more likely to be younger at diagnosis, female, smokers, 
and have aff ected family members than were patients 
with ulcerative colitis (table 1). Extensive disease was 
more common in those diagnosed at a younger age in 
both Crohn’s disease and ulcerative colitis, whereas 
disease behaviour was relatively unaff ected by age at 
diagnosis (appendix A). Reaffi  rming the progressive 
nature of Crohn’s disease, the proportion of patients 
with stricturing (B2) or penetrating (B3) disease 
increased from less than 30% (n/N) at diagnosis to 43% 
(n/N) at 5 years, 56% (n/N) at 10 years, and 74% (n/N) at 
30 years (fi gure 1, which shows the progression in B1, 
B2, and B3 disease individually [smoothed estimates 
over intervals]). By contrast, disease location showed 
little variation during the same period (fi gure 1). With 
the exception of the population-based cohorts from 
Scandinavia, survival analyses of time to development of 
complicated disease (B2, B3) or fi rst surgery in Crohn’s 
disease were highly consistent across the diff erent 
countries of origin despite diff erent health-care systems 
and methods of sampling (appendix A). In Crohn’s 
disease, time from diagnosis to progression (complicated 
disease or surgical inter vention) was signifi cantly 
shorter in purely ileal (L1) compared with ileocolonic 
(L3) or colonic (L2) disease (p<10¯¹⁰⁰; fi gure 1; 
appendix A). Overall, 7257 (52%) of 13 862 patients with 
Crohn’s disease had undergone surgery by the time of 
last follow-up. In ulcerative colitis, in which the overall 
rate of colectomy was 22% 10 years after diagnosis, time 
to surgery was shorter in patients with extensive disease 
(E3) than in those with left-sided disease (E2) or proctitis 
(E1; p=8 × 10¯⁸⁴; fi gure 1).

We tested genetic variants for association with age at 
diagnosis and time to surgery in all patients with 
infl ammatory bowel disease; disease location and 
behaviour in Crohn’s disease; and disease extent in 
ulcerative colitis (table 2 and table 3). Across all analyses, 
three loci achieved genome-wide signifi cance (p<5 × 10–⁸): 
3p21 (MST1), NOD2, and the MHC. No additional 
signals were noted after replication of suggestive loci 
(p<1 × 10–⁵) in an independent GWAS cohort (appendix B). 
Although NOD2 was strongly associated with Crohn’s 
disease location, behaviour, and age at diagnosis, 
adjustment for the other phenotypes showed that the 

Crohn’s 
disease 
(n=16 902)

Ulcerative 
colitis 
(n=12 597)

Infl ammatory 
bowel disease* 
(n=29 838)

Demographics

Sex

Male 7227 (44%) 6339 (51%) 13 738 (47%)

Female 9257 (56%) 6027 (49%) 15 448 (53%)

Missing 418 (3%) 231 (2%) 652 (2%)

Age at diagnosis 
(years)

Median (quartiles) 25 (19–36) 31 (22–24) 28 (20–40)

<17 (A1) 2568 (18%) 1233 (11%) 3903 (15%)

17–40 (A2) 9166 (64%) 6594 (58%) 15 854 (61%)

>40 (A3) 2626 (18%) 3469 (31%) 6141 (24%)

Missing 2542 (15%) 1301 (10%) 3940 (13%)

Family history

Yes 3471 (27%) 2232 (21%) 5778 (24%)

No 9575 (73%) 8260 (79%) 18 005 (76%)

Missing 3856 (23%) 2105 (17%) 6055 (20%)

Smoking status 21 718

Smoker 3319 (28%) 1162 (12%) 4512 (21%)

Ex-smoker 1665 (14%) 2739 (28%) 4436 (20%)

Non-smoker 6752 (58%) 5853 (60%) 12 770 (59%)

Missing 5166 (31%) 2843 (23%) 8120 (27%)

Phenotypes

Disease location†

Ileal (L1) 3878 (31%) ·· ··

Colorectal (L2) 2933 (24%) ·· ··

Ileocolonic (L3) 5520 (44%) ·· ··

Other 154 (1%) ·· ··

Upper GI (L4) 1695 (14%) ·· ··

Missing 2777 (18%) ·· ··

Disease extent†

Proctitis (E1) ·· 1271 (12%) ··

Left-sided (E2) ·· 4087 (38%) ··

Extensive (E3) ·· 5212 (48%) ··

Other ·· 205 (2%) ··

Missing ·· 1822 (14%) ··

Disease behaviour†

Infl ammatory (B1) 6196 (50%) ·· ··

Stricturing (B2) 3250 (26%) ·· ··

Penetrating (B3) 3054 (24%) ·· ··

Missing 2762 (18%) ·· ··

Surgery‡

Yes 7257 (52%) 1932 (18%) ··

No 6605 (48%) 8575 (82%) ··

Missing 3040 (18%) 2090 (17%) ··

GI=gastrointestinal. *Includes 255 patients with indeterminate colitis and 
84 patients with missing exact diagnosis. †Excludes data obtained with patient 
questionnaires (2658 patients). ‡Surgery in ulcerative colitis refers to colectomy. 
Denominators for data are: 12 485 for disease location (L1, L2, L3, and other); and 
11 717 for upper GI (L4) over non-missing information; and  12 485 for disease 
behaviour over non-missing B1, B2, and B3. 

Table 1: Phenotype distribution of primary cohort
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Figure 1: Evolution of clinical subphenotypes 
(A) Proportion of patients with Crohn’s disease who have infl ammatory (Montreal classifi cation B1), stricturing (B2), or penetrating (B3) disease over time from 
diagnosis to most recent follow-up. (B) Proportion of patients with Crohn’s disease who have ileal (L1), colonic (L2), or ileocolonic (L3) disease over time from 
diagnosis to most recent follow-up. (C) Survival plot of time from diagnosis of Crohn’s disease to resectional surgery stratifi ed by disease location. (D) Survival plot of 
time from diagnosis of ulcerative colitis to colectomy stratifi ed by disease extent (extensive disease, E3; non-extensive disease, E1 and E2).
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Penetrating (B3)

Ileocolonic (L3)
Ileal (L1)
Colonic (L2)
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Number at risk
Ileal

Colonic
Ileocolonic

Extensive
Non-extensive

2571
1613
3812

513
613

1006

147
204
275

27
46
66

6
11
15

2649
2166

978
936

354
339

120
90

38
23

MAF Age at diagnosis of IBD Age at diagnosis of Crohn’s disease Age at diagnosis of ulcerative colitis

p value β (SE) p value β (SE) p value β (SE)

3p21 (MST1)

rs35261698 0·306 6·34 × 10–12* –0·06 (0·01)* 3·65 × 10–07 –0·06 (0·01) 3·90 × 10–06 –0·06 (0·01)

rs2172252 0·288 1·35 × 10–12*† –0·06 (0·01)*† 2·93 × 10–08*† –0·07 (0·01)*† 9·51 × 10–06 –0·06 (0·01)

rs3197999 0·281 2·73 × 10–12* –0·06 (0·01)* 2·37 × 10–08* –0·07 (0·01)* 2·18 × 10–05 –0·06 (0·01)

6p21 (MHC)

rs3115674 0·116 3·42 × 10–02 –0·03 (0·01) ·· ·· 3·35 × 10–02 –0·04 (0·02)

rs4151651 0·034 ·· ·· ·· ·· 1·15 × 10–02 –0·07 (0·03)

rs3129891 0·209 1·15 × 10–06 –0·05 (0·01) ·· ·· 1·43 × 10–08*† –0·09 (0·02)*†

rs9268832 0·393 7·42 × 10–09*† –0·05 (0·01)*† 4·56 × 10–07† –0·06 (0·01)† 2·19 × 10–03 –0·04 (0·01)

rs482044 0·401 ·· ·· 1·51 × 10–02 0·03 (0·01) ·· ··

16q12 (NOD2)

rs2066844 (p.R702W) 0·045 3·58 × 10–07 –0·08 (0·02) 1·21 × 10–07 –0·1 (0·02) ·· ··

rs2066845 (p.G908R) 0·016 2·10 × 10–04 –0·1 (0·03) 5·50 × 10–03 –0·09 (0·03) 8·41 × 10–03 –0·15 (0·06)

rs2066847 (p.L1007fsX) 0·024 6·64 × 10–16*† –0·16 (0·02)*† 2·04 × 10–16*† –0·17 (0·02)*† ·· ··

Loci are listed by single nucleotide polymorphism. Age at diagnosis assessed by linear regression analysis on normalised data for Crohn’s disease and ulcerative colitis; 
IBD assessed by meta-analysis of Crohn’s disease and ulcerative colitis data. Eff ect size is given as standard deviation unit (standard error of eff ect). MAF=minor allele 
frequency. IBD=infl ammatory bowel disease. ··=non-signifi cant associations (pnominal<0·05). *Genome-wide signifi cant associations. †The most signifi cant association pews 
per subphenotype, if genome-wide signifi cant. 

Table 2: Associations between genotype and age at diagnosis achieving genome-wide signifi cance 
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association of NOD2 with behaviour was driven almost 
entirely by its phenotypic correlation with location and 
age at diagnosis (fi gure 2).

We noted complex and correlated HLA signals for 
susceptibility to infl ammatory bowel disease overall and 
age at onset, as well as Crohn’s disease location and 
behaviour, extent of ulcerative colitis, and surgery 
(fi gure 2; appendix A; appendix B). In-depth analysis of 
the MHC region including classical HLA alleles showed 
that the strongest signal for disease location was a 
colonic association with HLA-DRB1*01:03 (p=1·47 × 10–²³; 
ileal vs colonic odds ratio [OR] 0·32, 95% CI 0·29–0·41; 
ileocolonic vs colonic OR 0·47, 0·39–0·57), which is also 
the strongest shared risk allele for Crohn’s disease and 
ulcerative colitis,35 followed by HLA-DRB1*07:01 
(fi gure 2; appendix A). rs77005575 was independently 
associated with Crohn’s disease behaviour (p=1·56 × 10–⁰⁹; 
fi gure 2; appendix A). Notably, alleles associated with 
susceptibility to ulcerative colitis were better predictors 
of colonic disease location in Crohn’s disease than 
alleles associated with susceptibility to Crohn’s disease 

(appendix A). The top signal for extent of ulcerative 
colitis was rs3115674 (p=5·11 × 10–¹⁷; OR 0·70, 0·64–0·76; 
appendix A), which correlates with HLA-B*08 (R²=0·66), 
found mostly on the ancestral 8.1 HLA haplotype. 
HLA-DRB1*13:01 was the top signal for age at diagnosis 
of ulcerative colitis (3·50 × 10–⁰⁹; fi gure 2; appendix A).

On the basis of sample size, our primary analysis had 
similar power to detect associations to disease location 
(ileal vs colonic) as the fi rst International Infl ammatory 
Bowel Disease Genetics Consortium (IIBDGC) 
meta-analysis on Crohn’s disease.38 However, with the 
exception of NOD2, MHC, and MST1, we do not report 
signifi cant associations between subphenotypes and 
individual SNPs, including those robustly associated 
with disease susceptibility. We noted, however, that many 
known risk loci showed nominal evidence for association 
to a range of subphenotypes, so we posited that genetic 
risk scores representing the combined eff ect of many 
individually weak signals might be a more powerful 
approach to study the genetic underpinnings of 
subphenotypes for infl ammatory bowel disease. We 

MAF Crohn’s disease Ulcerative colitis

Disease location Disease behaviour Surgery Disease extent Colectomy

p value OR (95% CI), 
ileocolonic vs 
colonic

OR (95% CI), 
ileal vs colonic

p value OR (95%CI) p value HR (95% CI) p value OR (95% CI) p value HR (95% CI)

3p21 (MST1)

rs2172252 0·288 3·10 × 10–02 1·07 
(1·00–1·13) 

1·10 
(1·02–1·19)

·· ·· ·· ·· ·· ·· ·· ··

rs3197999 0·281 2·10 × 10–02 1·08 
(1·02–1·15)

1·10 
(1·02–1·19)

·· ·· ·· ·· ·· ·· ·· ··

6p21 (MHC)

rs3115674 0·116 3·00 × 10–03 0·88 
(0·80–0·97)

0·81 
(0·72–0·91)

4·00 × 10–03 0·89 
(0·82–0·96)

·· ·· 5·22 × 10–15*† 1·43 
(1·30–1·58)*†

·· ··

rs4151651 0·034 2·42 × 10–10* 0·71 
(0·62–0·81)*

0·58 
(0·50–0·68)*

2·50 × 10–02 0·87 
(0·77–0·98)

·· ·· ·· ·· 6·05 × 10–12*† 1·72 
(1·47–2·00)*†

rs6930777 0·112 8·13 × 10–23*† 0·68 
(0·62–0·75)*†

0·58 
(0·52–0·65)*†

2·00 × 10–03 0·89 
(0·82–0·96)

·· ·· ·· ·· 2·49 × 10–07 1·36 
(1·21–1·52)

rs3129891 0·209 ·· ·· ·· 8·00 × 10–03 0·92 
(0·87–0·98)

·· ·· 3·22 × 10–10* 1·24 
(1·17–1·32)*

·· ··

rs9268832 0·393 1·40 × 10–02 1·03 
(0·97–1·09)

0·94 
(0·87–1·02)

4·00 × 10–03 0·93 
(0·89–0·97)

1·45 × 10–02 0·95 
(0·90–0·99)

6·59 × 10–05 1·12 
(1·06–1·19)

·· ··

rs482044 0·401 2·38 × 10–09* 1·15 
(1·08–1·22)* 

1·25 
(1·16–1·35)*

8·46 × 10–06 1·11 
(1·07–1·15)

1·84 × 10–02 1·05 
(1·01–1·10)

1·57 × 10–05 0·88 
(0·83–0·93)

2·19 × 10–07 0·79 
(0·73–0·87)

rs77005575 0·439 1·00 × 10–15* 1·23 
(1·16–1·30)*

1·33 
(1·23–1·44)*

2·82 × 10–10*† 1·16 
(1·12–1·21)*†

9·20 × 10–04 1·08 
(1·03–1·12)

3·24 × 10–03 0·92 
(0·87–0·98)

1·55 × 10–04 0·85 
(0·78–0·93)

16q12 (NOD2)

rs2066844 
(p.R702W)

0·045 2·50 × 10–26* 1·61 
(1·43–1·81)*

1·94 
(1·72–2·18)*

1·76 × 10–06 1·21 
(1·12–1·31)

4·67 × 10–03 1·10 
(1·03–1·18)

·· ·· ·· ··

rs2066845 
(p.G908R)

0·016 2·77 × 10–09* 1·59 
(1·31–1·93)* 

1·82 
(1·50–2·21)*

7·17 × 10–05 1·28 
(1·14–1·44)

2·87 × 10–03 1·17 
(1·06–1·30)

·· ·· ·· ··

rs2066847 
(p.L1007fsX)

0·024 1·01 × 10–35*† 1·89 
(1·62–2·21)*†

2·50 
(2·14–2·92)*†

5·73 × 10–10*† 1·31 
(1·21–1·42)*†

2·04 × 10–13*† 1·31 
(1·22–1·40)*†

·· ·· 3·55 × 10–02 1·32 
(1·02–1·70)

Loci are listed by single nucleotide polymorphism. Disease location assessed by multinomial logistic regression analysis; disease behaviour by ordinal logistic regression analysis (eff ect size is odds ratio [95% CI] for B2 
versus B1, which is also equivalent to B3 vs B2+B1); and disease extent by binomial logistic analysis. Surgery and colectomy assessed by survival analysis under a Weibull distribution. MAF=minor allele frequency. 
OR=odds ratio. HR=hazard ratio. ··=non-signifi cant associations (pnominal<0·05). *Genome-wide signifi cant associations. †The most signifi cant association per locus per subphenotype, if genome-wide signifi cant. 

Table 3: Associations between genotype and disease location, behaviour, extent, surgery, and colectomy achieving genome-wide signifi cance
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calculated diff erent infl ammatory bowel disease risk 
scores constructed from all available data (strength and 
direction of association) on the lead SNPs from each of 
the 163 known infl ammatory bowel disease susceptibility 
loci. Although all of the risk scores were associated with 
Crohn’s disease and ulcerative colitis subphenotypes, the 
most powerful score used the diff erences between 
Crohn’s disease and ulcerative colitis (CD vs UC score; 
fi gure 2). Importantly, this CD versus UC score retained 
signifi cance even after NOD2, MHC, and MST1 were 
removed (appendix A), lending support to the notion that 
the genetic risk score off ers more information about the 
genetic substructure of infl ammatory bowel disease than 

individual SNP associations alone. The strongest 
correlations in our study were between the CD versus  
UC risk score and Crohn’s disease location and 
behaviour (fi gure 2; p=1·65 × 10–⁷⁸, or p=9·23 × 10–¹⁸ after 
genome-wide signifi cant loci were removed). Risk scores 
that incorporated imputed HLA types that have been 
implicated in risk for infl ammatory bowel disease 
signifi cantly improved the genetic risk scores compared 
with those using SNPs only (appendix A).

Having shown the genetic risk score to be a useful 
measurement of infl ammatory bowel disease sub-
phenotype, we used it to study the genetic relation 
between ileal Crohn’s disease, colonic Crohn’s disease, 

Figure 2: Eff ect of single nucleotide polymorphisms, HLA alleles, and polygenic risk scores on phenotypes of infl ammatory bowel disease
(A) Eff ect sizes for genotype–phenotype associations for risk of Crohn’s disease and ulcerative colitis (odds ratio relative to controls), Crohn’s disease location 
(odds ratio of ileal vs colonic disease), Crohn’s disease behaviour (proportional odds ratio), disease extent of ulcerative colitis (odds ratio of extensive vs non-extensive 
disease), and age at diagnosis (linear coeffi  cients) for MST1, MHC, and NOD2 variants. All eff ect sizes are per allele, and are adjusted for associations with correlated 
phenotypes by including them as additional predictors in the regression model, along with principal components to control for stratifi cation. See appendix A for 
more details on these regression models. Genome-wide signifi cant associations are depicted by fi lled circles, and error bars depict 95% CIs. (B) Eff ect sizes of genetic 
risk scores for disease location, disease behaviour, and age at diagnosis including all 163 susceptibility loci. Eff ect sizes are calculated by linear regression of the risk 
score against the phenotype, adjusted for the eff ect of the other phenotypes and for principal components, and error bars depict 95% CIs. Filled circles represent 
eff ects that are signifi cant after correcting for 15 phenotype-score combinations (p<0·003). Eff ect sizes are measured on scales standardised to unit variance 
(and thus represent the number of standard deviations that the mean phenotype increases by per standard deviation increase in the risk score).
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and ulcerative colitis. The CD versus UC risk score 
placed colonic Crohn’s disease between ileal Crohn’s 
disease and ulcerative colitis (fi gure 3). Several other risk 
scores supported this relation, and although partly driven 
by the highly location-specifi c NOD2 variants, a risk 
score with NOD2 removed showed a similar pattern 
(appendix A). Additionally, statistical model selection 
across SNPs and HLA types strongly favoured a model in 
which colonic Crohn’s disease is intermediate between 
ileal Crohn’s disease and ulcerative colitis over one that 
grouped both Crohn’s disease subphenotypes as a single 
category (appendix A). To test whether this fi nding 
extends to other subtypes of infl ammatory bowel disease, 
we applied the genetic risk score to two intermediate 
forms of the disease: ileocolonic Crohn’s disease (L3), in 
which the disease aff ects both small and large bowel, and 
colonic infl ammatory bowel disease unclassifi ed, in 
which the clinical and histological appearances are 
indistinguishable between Crohn’s disease and ulcerative 
colitis. The CD versus UC score placed ileocolonic 
Crohn’s disease as intermediate between ileal (L1) and 
colonic (L2) Crohn’s disease, and colonic infl ammatory 
bowel disease unclassifi ed between ulcerative colitis and 
colonic Crohn’s disease (fi gure 3).

Despite the statistical signifi cance of the associations 
between genetic risk score and subphenotype, the small 
eff ect sizes translated into fairly low predictive accuracy 
when tested by cross-validation (appendix A). The risk 

score that was most signifi cantly associated with location 
of Crohn’s disease in the primary analysis (CD vs UC) 
gave an area under the receiver-operating characteristic 
(ROC) curve of only 0·60 (95% CI 0·57–0·63) for 
distinguishing between colonic (L2) and ileal (L1) Crohn’s 
disease in cross-validation, and even a specifi cally 
constructed ileal versus colonic score achieved an area 

Figure 3: Violin plot showing the genetic substructure of infl ammatory bowel disease location
The violin represents the range of the log CD versus UC score for the indicated subphenotype (calculated with the R package “vioplot”), with dots representing the 
mean of that group and error bars the 95% CIs. Although the eff ects are small compared with the variation within groups, the mean eff ects can still be measured 
accurately (right side of the fi gure). It can be seen on this fi gure that the Crohn’s disease versus ulcerative colitis (CD vs UC) risk score placed colonic Crohn’s disease 
between ileal Crohn’s disease and ulcerative colitis. The plot also shows the positioning of the intermediate phenotypes (ileocolonic Crohn’s disease and infl ammatory 
bowel disease unclassifi ed [IBD-U]) in between ileal and colonic Crohn’s disease, and ulcerative colitis and colonic Crohn’s disease, respectively.

Ulcerative
colitis

Colonic
IBD-U

Colonic
Crohn’s
disease

Ileocolonic
Crohn’s
disease

Ileal Crohn’s
disease

Ulcerative
colitis

Colonic
IBD-U

Colonic
Crohn’s
disease

Ileocolonic
Crohn’s
disease

Ileal Crohn’s
disease

–3

–2

–1

0

1

2

3

4

Lo
g 

Cr
oh

n’
s d

ise
as

e 
vs

 u
lce

ra
tiv

e 
co

lit
is 

ris
k 

sc
or

e

Beta SE p value R²

Ever smoker –0·041 0·108 7·00 × 10–1 0·01%

Smoker at diagnosis 0·473 0·117 5·34 × 10–5 1·53%

Age at diagnosis –0·033 0·005 1·50 × 10–9 2·14%

Year of birth –0·010 0·005 6·94 × 10–2 0·19%

rs6930777 (MHC) –0·302 0·082 2·19 × 10–4 0·54%

rs77005575 (MHC) 0·190 0·055 5·21 × 10–4 0·55%

NOD2* 0·532 0·070 2·60 × 10–14 3·23%

Genetic risk score† 0·165 0·038 1·61 × 10–5 1·01%

Genetic parameters ·· ·· ·· 5·5%

Genetics and smoking ·· ·· ·· 6·8%

All parameters‡ ·· ·· ·· 8·03%

*Number of risk alleles at the three NOD2 hits. †Crohn’s disease versus ulcerative 
colitis (CD vs UC) genetic risk score (without NOD2 and MHC). ‡The total R² for 
these parameters, excluding the principal component used to account for 
population stratifi cation. In view of the correlation structure, this is not expected 
to be equivalent to the sum of R² obtained for each parameter. 

Table 4: Variance explained by demographic and genetic factors for 
disease location in adult onset of Crohn’s disease
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under the curve of only 0·63 (0·59–0·66; appendix A). 
Comparison of the clinical characteristics of patients 
with Crohn’s disease that fell into the extreme tails of the 
genetic risk score (low: log[CD vs UC] ≤–2; high: log[CD 
vs UC] ≥3) showed signifi cant diff erences in disease 

location and behaviour (appendix A), suggesting that 
although a genetic risk score might not be able to classify 
all patients, it could be informative at the extremes.

Overall, we can only explain a little of the phenotypic 
variance in the adult population with either classical or 
genetic predictors. The combination of smoking and the 
strongest genetic predictors explains only 6·8% of the 
variance for disease location in Crohn’s disease (table 4 
and table 5), and 1·1% for disease extent in ulcerative 
colitis (table 5).

To assess the possible clinical usefulness of the 
genetic risk score, we reassessed the cases of Crohn’s 
disease with a low CD versus UC risk score (more 
ulcerative colitis-like), and cases of ulcerative colitis 
with a high CD versus UC risk score (more Crohn’s 
disease-like; fi gure 4). Masked re-phenotyping of these 
cases raised doubts about the original diagnosis in 27% 
of the outlier cases compared with 8% of non-outlier 
cases (corrected for disease location, p=6·8 × 10–⁴; 
appendix A). This fi nding suggests that we can indeed 
use genetics to identify small numbers of misclassifi ed 
patients.

Discussion
The successful identifi cation of genetic variants 
associated with complex diseases such as infl ammatory 
bowel disease has raised the exciting possibility of a 
more personalised approach to clinical management. In 
infl ammatory bowel disease, this quest is particularly 
urgent because of the substantial heterogeneity in 
disease course, and individual response to therapy.39 
Past studies in infl ammatory bowel disease have 
established a genetic component of disease sub-
phenotype,14,16,18,40,41 but these studies have been limited to 
a handful of candidate regions in modest numbers of 
patients. Our study, involving the universal application 
of standardised phenotyping by trained personnel on 
nearly 30 000 patients with infl ammatory bowel disease 
from 49 centres worldwide, combined with matching 
genotypes from more than 150 000 variants, represents 
the defi nitive investigation to date into the genetic basis 
of subphenotypes of infl ammatory bowel disease.

The only genome-wide signifi cant associations we 
noted were between age of onset and disease location 
with variants at NOD2, MHC, and 3p21. Although the 
associations between ileal Crohn’s disease and NOD2, 
and those between colonic Crohn’s disease and the 
MHC, have been previously described,14–19 our study has 
dissected the phenotype–location associations for the 
fi rst time. Importantly, in Crohn’s disease, we showed 
that NOD2 is not associated with stricturing disease 
after accounting for disease location. These fi ndings, 
and the rarity of long-term change in disease location 
compared with behaviour, suggest that location is a 
fundamental biological aspect of a patient’s disease, 
whereas behaviour (like surgery or treatment history) is 
a marker of disease progression.

Beta SE p value R²

Ever smoking 0·1268 0·0856 1·38 × 10–1 0·12%

Current smoking 0·1229 0·1179 2·97 × 10–1 0·06%

Age at diagnosis –0·0234 0·0055 2·41 × 10–5 1·10%

Year of birth 0·0008 0·0055 8·79 × 10–1 0·00%

rs3115674 0·3795 0·0832 5·08 × 10–6 0·80%

Genetic risk score* 0·0784 0·0502 1·18 × 10–1 0·09%

Genetic parameters ·· ·· ·· 0·9%

Genetics and smoking ·· ·· ·· 1·1%

All parameters† ·· ·· ·· 2·39%

*Crohn’s disease versus ulcerative colitis (CD vs UC) genetic risk score (without 
NOD2 and MHC). †The total R2 for these parameters, excluding the principal 
component used to account for population stratifi cation. In view of the 
correlation structure, this is not expected to be equivalent to the sum of R² 
obtained for each parameter.

Table 5: Variance explained by demographic and genetic factors for 
disease extent in adult onset of ulcerative colitis

Figure 4: Histograms of Crohn’s disease versus ulcerative colitis (CD vs UC) genetic risk score in patients with 
infl ammatory bowel disease
Risk scores created from the 163 known infl ammatory bowel disease risk loci with per-locus contributions 
estimated to maximally distinguish all Crohn’s disease from ulcerative colitis. Distributions of ulcerative colitis 
samples are shown in blue, ileal Crohn’s disease samples in green, and colonic Crohn’s disease with hatched lines 
(middle area in dark green shows overlap of blue and green distributions). The overlap of all three distributions 
shows the shared genetic aetiology of infl ammatory bowel disease, and the intermediate position of colonic 
Crohn’s disease between ulcerative colitis and ileal Crohn’s disease shows that it is genetically distinct from the 
others. Vertical dashed lines show boundaries for outlier analysis: ulcerative colitis cases above 2 were selected as 
being likely Crohn’s disease and Crohn’s disease cases below –2 as likely ulcerative colitis.
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Our results for ulcerative colitis accord with the 
previously reported independent associations between 
the MHC and both extensive disease and colectomy.17,19 
Notably, the strongest associations with extensive 
ulcerative colitis are variants on the ancestral 8.1 HLA 
haplotype. This haplotype is a known recessive risk 
for primary sclerosing cholangitis,42,43 a disease often 
associated with an extensive but quiescent form of 
ulcerative colitis.44 Although variants associated with 
susceptibility to Crohn’s disease and those associated 
with susceptibility to ulcerative colitis are both predictive 
of disease location, the ulcerative colitis-associated 
variants are the most predictive. The variants associated 
with disease susceptibility are also slightly predictive of 
age at diagnosis.

Composite genetic risk scores from all 
163 independent susceptibility signals were strongly 
associated with all our main subphenotypes, and these 
fi ndings remained signifi cant after excluding NOD2 
and MHC. This result accords with a similar fi nding for 
genetic risk scores in bipolar disorder,45 and hints at the 
possibility that such approaches might be broadly 
applicable for studying clinical heterogeneity of 
common diseases. This fi nding suggests that many or 
most risk variants for infl ammatory bowel disease do 
contribute weakly to subphenotype. The relative 
dearth of individual single-nucleotide poly morphism 
associations with subphenotypes in our study, by 
contrast with those reported in similarly powered 
studies of infl ammatory bowel disease susceptibility, 
suggests that the genetic variants studied here have a 
small eff ect, and that environmental factors (such as 
diet, microbiota, and smoking) might be strong 
contributors to the subphenotypes. However, an 
intriguing possibility, supported by the notable absence 
of any functional or pathway enrichment in the 
components of the genetic risk scores, is that current 
phenotypic classifi cations do not correspond strongly to 
underlying molecular entities. Of particular note is the 
genetic distinction seen between ileal Crohn’s disease, 
colonic Crohn’s disease, and ulcerative colitis. These 
disease types were identifi ed as equally distinct entities 
on a genetic continuum: on multiple risk scores, 
colonic Crohn’s disease was genetically intermediate 
between ileal Crohn’s disease and ulcerative colitis, a 
fi nding that remained signifi cant after excluding 
NOD2. This result substantiates the view that colonic 
versus ileal disease, rather than disease extent, is the 
primary clinical unit of Crohn’s disease classifi cation, 
and is further supported by the fi nding that both the 
genetic risk score and clinical complication rate in 
patients with ileocolonic disease is intermediate 
between that of patients with ileal disease and colonic 
disease. It will be of great interest, and potential clinical 
use, to see if application of these risk scores helps to 
classify the 10% of patients who are currently designated 
colonic infl am matory bowel disease unclassifi ed.

The composite scores were also able to identify small 
numbers of patients with outlier scores who were much 
more likely to be misdiagnosed than a typical patient. 
These fi ndings support the possible clinical usefulness 
of composite scores of multiple genetic variants, each of 
small eff ect. For example, genetic outliers could be 
excluded or specifi cally targeted for clinical trials to 
select more homogeneous groups. If these data were 
readily available, they might aff ect clinical decisions or 
inform risk–benefi t discussions with patients. For 
example, the type of surgery off ered to patients with 
refractory colitis crucially depends on whether they have 
ulcerative colitis or colonic Crohn’s disease; poor 
outcomes (including pelvic sepsis, incontinence, and 
sexual dysfunction) of ileal pouch–anal anastomosis 
reconstruction surgery are much more common in 
patients with colonic Crohn’s disease. Use of genetic 
risk scores to identify possible misdiagnoses in this 
group of patients could help to reduce this problem. 
Our data also suggest that genetic risk scores could 
augment biomarkers, such as faecal calprotectin, 
currently used for patient stratifi cation in infl ammatory 
bowel disease.

A limitation of our study is that the genetic variants 
tested were restricted to those present (and that passed 
quality control) on the Immunochip platform, designed 
for replication and fi ne mapping of potential 
immune-mediated disease loci. Therefore, there still 
might be important loci that determine disease 
behaviour, location, and age at onset but are 
independent of those that confer risk for infl ammatory 
bowel disease (or other immune-mediated diseases), 
and had limited or absent coverage on the Immunochip. 
A high-powered GWAS, designed to assess possibly 
overlooked genetic determinants for these outcomes of 
phenotype expressivity, which uses our large collection 
of cooperatively phenotyped cases of infl ammatory 
bowel disease with genomic DNA (and the pre-existing 
Immunochip genotypes), will likely be of great value.46

In summary, our research represents the largest 
genotype–phenotype study in infl ammatory bowel 
disease done so far. Associations achieving genome-wide 
signifi cance were identifi ed at only three loci, suggesting 
that new clinical phenotypic classifi cations might need to 
be explored for infl ammatory bowel disease, and the 
relation examined between subphenotypes and other 
omic profi les and environmental factors, including the 
microbiota.47 However, our data suggest that on the basis 
of genetic factors, infl ammatory bowel disease is better 
classifi ed into three distinct groups (ileal Crohn’s disease, 
colonic Crohn’s disease, and ulcerative colitis), and we 
would recommend that clinicians adopt this nomenclature 
in regular practice. We also show that, although genetic 
risk scores do not yet have widespread clinical use, they 
are already valuable in some contexts in infl ammatory 
bowel disease, and their study in other complex disease 
phenotypes is warranted.
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