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Background We aimed to develop a deep learning-based segmentation system for rapid on-site cytopathology evalu-
ation (ROSE) to improve the diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-
FNA) biopsy.

Methods A retrospective, multicenter, diagnostic study was conducted using 5345 cytopathological slide images
from 194 patients who underwent EUS-FNA. These patients were from Nanjing Drum Tower Hospital (109
patients), Wuxi People’s Hospital (30 patients), Wuxi Second People’s Hospital (25 patients), and The Second Affili-
ated Hospital of Soochow University (30 patients). A deep convolutional neural network (DCNN) system was devel-
oped to segment cell clusters and identify cancer cell clusters with cytopathological slide images. Internal testing,
external testing, subgroup analysis, and human�machine competition were used to evaluate the performance of the
system.

Findings The DCNN system segmented stained cells from the background in cytopathological slides with an F1-
score of 0¢929 and 0¢899�0¢938 in internal and external testing, respectively. For cancer identification, the DCNN
system identified images containing cancer clusters with AUCs of 0¢958 and 0¢948�0¢976 in internal and external
testing, respectively. The generalizable and robust performance of the DCNN system was validated in sensitivity
analysis (AUC > 0¢900) and was superior to that of trained endoscopists and comparable to cytopathologists on our
testing datasets.

Interpretation The DCNN system is feasible and robust for identifying sample adequacy and pancreatic cancer cell
clusters. Prospective studies are warranted to evaluate the clinical significance of the system.
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Research in context

Evidence before the study

Rapid on-site cytopathology evaluation (ROSE) is an
effective modality to improve the efficiency of endo-
scopic ultrasound-guided fine-needle aspiration (EUS-
FNA) biopsy for the pathological diagnosis of pancreatic
masses, but the lack of cytopathologists has limited the
application of this modality. Deep convolutional neural
network (DCNN) models have shown promising results
in analyzing medical images, and several studies used
deep learning for the classification of pancreatic lesions,
including pancreatic cystic lesions, autoimmune pancre-
atitis, pancreatic benign tumors, and malignant tumors,
under endoscopic ultrasound. Three recent conference
abstracts reported deep learning-based cytopathic eval-
uation for EUS-FNA of pancreatic masses. However, no
original studies have reported the utilization of deep
learning-based segmentation algorithms for ROSE of
EUS-FNA samples of pancreatic masses.

Added value of the study

In the present study, we attempted to develop a deep
learning-based segmentation system for ROSE. To the
best of our knowledge, we included the largest sample
size of cytopathological slide images from multiple insti-
tutions. The deep learning-based system could evaluate
the adequacy of stained cell clusters and identify pan-
creatic cancer clusters with outstanding generalization
and robustness on our testing datasets. The study also
demonstrated that performance of the deep learning-
based system can be superior to that of the trained
endoscopists, and comparable to the cytopathologists
on our testing datasets.

Implications of all the available evidence

The well-established deep learning-based system may
assist endoscopists in conducting rapid on-site cytopa-
thology evaluations during EUS-FNA of pancreatic
masses without the presence of cytopathologists. The
system could potentially improve the diagnostic yields
of EUS-FNA of pancreatic masses by reducing diagnostic
variation among endoscopists and may promote the
coverage of EUS-FNA in various hospitals, especially in
community hospitals.
Introduction
An accurate pathological diagnosis of pancreatic masses
is essential to establish an optimal treatment strategy.1,2

The therapeutic plans and prognoses of pancreatic
malignancies (pancreatic cancer) are quite different
from those of benign pancreatic lesions (such as pancre-
atic neuroendocrine tumors and solid pseudopapillary
tumors).2,3 However, it is a major challenge to make a
correct pathological diagnosis of pancreatic masses
under conventional imaging techniques.

Endoscopic ultrasound-guided fine-needle aspiration
(EUS-FNA) has been demonstrated to be an integral
modality for the diagnosis and staging of pancreatic
masses.4 Recent meta-analyses showed that EUS-FNA
could achieve a reliable pathological diagnosis of pan-
creatic masses with an accuracy of 80�86¢2%.5,6 How-
ever, substantial variance was observed in the diagnostic
yield of EUS-FNA, with a sensitivity for pancreatic
malignancies ranging from 64% to 96%.7 Several fac-
tors, such as the number of needle passes, needle type
and size, and the experience of endoscopists, were asso-
ciated with the diagnostic efficiency of EUS-FNA.5,6

Rapid on-site cytopathology evaluation (ROSE) has been
considered as an effective modality to increase the diag-
nostic efficiency of EUS-FNA by providing immediate
feedback on the characteristics and adequacy of the tis-
sue samples.8,9 Previous reports demonstrated that
ROSE could improve the diagnostic yield of EUS-FNA
by 10�30% by increasing the adequacy of tissue sam-
ples for cytopathological evaluation.10�12 However, the
lack of on-site cytopathologists and suboptimal agree-
ment among cytopathologists have limited the wide-
spread use of EUS-FNA in most hospitals.

Artificial intelligence (AI) systems based on deep
convolutional neural network (DCNN) models have
shown promising results in analyzing medical images.13

Previous studies have found that DCNN shows satisfac-
tory diagnostic performance based on pathological
images and cytopathological slides in prostate cancer,
cervical cancer, and breast cancer.14�16 Three prelimi-
nary conference abstracts have implemented deep learn-
ing in the pathological classification of pancreatic solid
masses using a relatively small sample size of cytopa-
thological slides from EUS-FNA and achieved limited
diagnostic performance in single-center validation.17�19
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However, it is more clinically applicable for a deep
learning-based system to be capable of segmenting the
cell clusters and be validated on datasets from multiple
hospitals. To the best of our knowledge, no study has
adopted DCNN-based segmentation algorithms for eval-
uating sample adequacy and identifying cancer cell clus-
ters in cytopathological slides from EUS-FNA.

In this study, we developed a DCNN-based segmen-
tation model to differentiate stained cells from the back-
ground to ensure the adequacy of the samples and to
identify pancreatic malignant cell clusters in cytopatho-
logical slides. We validated the DCNN system in the
identification of pancreatic cancer cell clusters with
internal and external validation datasets at per-image
and per-patient levels. We also compared the diagnostic
outcomes of the DCNN system with those of trained
endoscopists and cytopathologists to assess the transfor-
mative potential of the DCNN system in clinical applica-
tion.
Methods

Study design and participants
This retrospective multicenter diagnostic study was per-
formed in four institutions in China: Nanjing Drum
Tower Hospital (NJDTH), Wuxi People’s Hospital
(WXPH), Wuxi Second People’s Hospital (WXSPH),
and The Second Affiliated Hospital of Soochow Univer-
sity (SAHSU). The participants included in this study
and the clinical baseline characteristics of the patients
are shown in Table 1. For pancreatic cancer group, we
included the following patients from January 2016 to
January 2019: patients who underwent EUS-FNA, had
histologically confirmed adenocarcinoma based on eval-
uation of resected specimens or cytopathologically con-
firmed adenocarcinoma based on evaluation of EUS-
FNA specimens, and cytopathological slides with at
least 1 cell cluster were available. For patients who
underwent more than one EUS-FNA, only the data
from the latest surgery with or before the final diagnosis
was included. For the non-cancer group, patients who
underwent EUS-FNA with cytopathological diagnosis of
mild atypical lesions, other tumors (including pancre-
atic neuroendocrine tumor and solid pseudopapillary
tumor), or no tumors (including chronic pancreatitis
and autoimmune pancreatitis) from January 2016 to
January 2019 were included. All the patients in the non-
cancer group were confirmed with no malignant find-
ings by two experienced certificated cytopathologists
and underwent at least 12 months of follow-up with no
rapid progression of the pancreatic disease. After selec-
tion, a total of 110 malignant cases and 84 non-cancer
patients were included. Among the included patients,
109 patients (64 pancreatic cancer patients and 45 non-
cancer patients) were from NJDTH, 30 patients (14 pan-
creatic cancer patients and 16 non-cancer patients) were
www.thelancet.com Vol 80 Month June, 2022
from WXPH, 25 patients (16 pancreatic cancer patients
and 9 non-cancer patients) were from WXSPH, and the
rest 30 patients (16 pancreatic cancer patients and 14
non-cancer patients) were from SAHSU.
Datasets distribution
All the available cytopathological slides of the included
patients which were stained with hematoxylin and eosin
(H&E) staining or Liu's (modified Romanowsky stain)
staining were collected and photographed with a camera
(Olympus DP73, Olympus Corporation, Tokyo, Japan)
mounted on the microscope (Olympus BX40, Olympus
Corporation) at 400 £ magnification by an experienced
certificated cytopathologist (JY.Z). All the images were
delineated along the margin of the cell clusters, and the
regions were labeled (annotated) to be cancer, non-cancer
and background at pixel level by the experienced certificated
cytopathologist (JY.Z). After data annotation, the dataset
from NJDTH was randomly split into training, validation,
and internal testing datasets (Fig. S1). The datasets from
three other centers were considered as external testing data-
sets. Patients were independent in different datasets.

(1) Training dataset: 1434 images from 37 patients
with pancreatic cancer and 732 images from 29 patients
in the non-cancer group from NJDTH were used to
train the DCNN system.

(2) Validation dataset: 384 images from 10 patients
with pancreatic cancer and 311 images from 6 patients
in the non-cancer group from NJDTH were used to vali-
date the model and select the optimal hyperparameters.

(3) Internal testing dataset: 865 images from 17
patients with pancreatic cancer and 297 images from 10
patients in the non-cancer group from NJDTH were
used to test the model internally.

(4) The external testing dataset: 737 images from 46
patients with pancreatic cancer and 585 images from 39
patients in the non-cancer group from three other hospi-
tals were used to test the model externally. Specifically,
238 images from 14 patients with pancreatic cancer and
290 images from 16 non-cancer patients were contributed
by WXPH, 266 images from 16 patients with pancreatic
cancer and 99 images from 9 non-cancer patients were
contributed by WXSPH, and 233 images from 16 patients
with pancreatic cancer and 196 images from 14 non-can-
cer patients were from SAHSU.

(5) Human�machine competition dataset 1 (ran-
domly selected from the internal testing dataset): 422
images from 6 patients with pancreatic cancer and 158
images from 4 patients in the non-cancer group from
NJDTH were used to compare the performance of the
DCNN system and the reports by trained endoscopists
and cytopathologists.

(6) Human�machine competition dataset 2 (ran-
domly selected from the external testing dataset): 200
images from 45 patients with pancreatic cancer and
200 images from 36 patients in the non-cancer group
3



Total, n = 194 Training dataset, n = 66 Validation dataset, n = 16 Internal testing dataset, n = 27 External testing datasets

WXPH, n = 30 WXSPH, n = 25 SAHSC, n = 30

Age (year), mean§sd 62¢1§ 11¢6 63¢8§ 10¢2 59¢5 § 14¢4 62¢1§ 12¢5 60¢0 § 11¢2 64¢6§ 10¢5 59¢9 § 13¢2
Sex, n (%)

Male 116 (59¢8%) 34 (51¢5%) 12 (75¢0%) 14 (51¢9%) 21 (70¢0%) 17 (68¢0%) 18 (60¢0%)

Female 78 (40¢2%) 32 (48¢5%) 4 (25¢0%) 13 (48¢1%) 9 (30¢0%) 8 (32¢0%) 12 (40¢0%)

Size (cm), mean§sd 3¢3 § 1¢1 3¢2 § 1¢1 3¢3 § 0¢9 3¢2 § 1¢1 3¢3§ 1¢0 3¢7 § 1¢7 3¢2 § 1¢0
Location, n (%)

Head 114 (58¢8%) 41 (62¢1%) 6 (37¢5%) 16 (59¢3%) 19 (63¢3%) 13 (52¢0%) 19 (63¢3%)

Body 45 (23¢2%) 14 (21¢2%) 7 (43¢8%) 7 (25¢9%) 7 (23¢3%) 5 (20¢0%) 5 (16¢7%)

Tail 35 (18¢0%) 11 (16¢7%) 3 (18¢8%) 4 (14¢8%) 4 (13¢3%) 7 (28¢0%) 6 (20¢0%)

Cytopathological diagnosis, n (%)

No tumorsa 47 (24¢2%) 17 (25¢8%) 3 (18¢8%) 5 (18¢5%) 9 (30¢0%) 4 (16¢0%) 9 (30¢0%)

Mild atypia 23 (11¢9%) 7 (10¢6%) 2 (12¢5%) 3 (11¢1%) 4 (13¢3%) 4 (16¢0%) 3 (10¢0%)

Cancer 113 (58¢2%) 40 (60¢6%) 10 (62¢5%) 17 (63¢0%) 14 (46¢7%) 16 (64¢0%) 16 (53¢3%)

Other tumorsb 11 (5¢7%) 2 (3¢0%) 1 (6¢2%) 2 (7¢4%) 3 (10¢0%) 1 (4¢0%) 2 (6¢7%)

Table 1: Baseline characteristics of the training, validation, and testing datasets.
WXPH, Wuxi People’s Hospital; WXSPH, Wuxi Second People’s Hospital; SAHSC, The Second Affiliated Hospital of Soochow University.

a No tumors included chronic pancreatitis (n = 37) or autoimmune pancreatitis (n = 10).
b Other tumors included pancreatic neuroendocrine tumors (n = 7) and solid pseudopapillary tumors (n = 4).

A
rticles

4
w
w
w
.th

elan
cet.com

V
ol80

M
on

th
Jun

e,2022



Articles
from the external testing datasets were used to compare
the performance of the DCNN system and the reports
by trained endoscopists and cytopathologists.

Figure 1 shows the flow chart of our study design.
Training DCNN for cell image segmentation
All the images were resized to 1024 £ 1024 pixels before
feeding into a UNet-based DCNN system.20 The UNet
architecture consisted of an encoder and a decoder to
extract and combine different levels of features for predic-
tion. For the encoder, the ResNet101 network was chosen
as the backbone, which consisted of 4 convolutional blocks
with 9, 12, 69 and 9 convolutional layers.20 For the
decoder, 4 convolutional blocks and 4 bilinear interpola-
tion upsampling layers were used. Skip connections were
used for merging features from different layers. Finally,
the model mapped each pixel to a vector, and the predicted
class of each pixel was defined by the index of the highest
value (Figure S2). An early stopping strategy was used to
prevent overfitting (Figure S3a & S3b). Several data aug-
mentation strategies were used to improve the diversity of
the training dataset and overcome the overfitting. Specifi-
cally, random rotations, horizontal flips, vertical flips,
brightness changes, and hue transformations were per-
formed on the training images.
Testing of the DCNN system and comparison with
trained endoscopists and cytopathologists
Firstly, the internal and external testing datasets were
used for the assessment. Secondly, sensitivity analysis
was conducted to evaluate the DCNN system for cancer
identification according to sex, age, lesion location and
lesion size on the internal testing dataset. Thirdly, the
human�machine competition datasets were used to
compare the performance of the system in cancer iden-
tification with those of five endoscopists with six-month
cytopathological training and three cytopathologists
with two-year experience. The endoscopists and cytopa-
thologists were asked to differentiate between cancer
and non-cancer images in the slide images from the
human�machine competition datasets, which are ran-
domly shown on the computer screen. The endoscopists
and cytopathologists were not involved in the selection
and annotation of all the datasets, and were masked to
the clinical characteristics, endoscopic features, and
pathological results of patients on the testing datasets.
Outcomes
The primary outcome was the area under the receiver
operating characteristic curve (AUC) in cancer identifi-
cation. The optimal proportion of segmented cancer in
the entire segmented areas was determined by the high-
est Youden index (Figure S3c). For the diagnosis of
malignant lesions in each patient, we used three posi-
tive images as the threshold. The accuracy, sensitivity,
www.thelancet.com Vol 80 Month June, 2022
specificity, positive predictive value (PPV) and negative
predictive value (NPV) were also calculated to assess the
performance in distinguishing cancer images from
non-cancer images.

In addition, we evaluated the diagnostic adequacy of
the slides according to the results of stained cell segmenta-
tion. The segmentation performance of the DCNN system
was assessed using intersection over union (IoU), accu-
racy, precision, recall, and F1-score. We then calculated
precision and recall at per-patient level by setting an opti-
mal IoU and accuracy of segmented images to imitate
clinical scenarios. All the details and formula involved
were listed in supplementary materials.
Statistical analysis
A two-sided McNemar test was conducted to compare
the differences in accuracy, sensitivity, and specificity.
Generalized score statistics were utilized to compare the
discrepancies in PPV and NPV. The kappa value was
calculated to evaluate the diagnostic consistency of the
DCNN system, endoscopists, and cytopathologists. All
statistical analyses were conducted using R (version
4¢1¢2; https://www.r-project.org).
Ethics
The study protocol was reviewed and approved by the
Medical Ethics Committee of Nanjing Drum Tower
Hospital (IRB no. 2020-044-01). Informed consent
was waived since only deidentified data were retro-
spectively included. The study was registered in the
WHO Registry Network’s Primary Registries
(ChiCTR2000032664).
Role of the funding source
The funders played no role in study design, data collec-
tion, data analyses, interpretation, or writing of the arti-
cle. The corresponding authors had full access to all the
data generated in the study.
Results

Performance of cell cluster segmentation
Several deep-learning algorithms were used to segment
all stained cell clusters and cancer cell clusters. The
results showed that UNet along with the ResNet101
encoder achieved the best segmentation performance
compared with other deep-learning algorithms on the
validation dataset, with a mean IoU of 0¢875 for all
stained cell clusters (Figure S4, Table S1). Moreover, the
results showed that the IoU of the DCNN in segment-
ing all stained cell clusters (irrespective of cell types)
was 0¢867 on the internal testing dataset and
0¢817�0¢883 on the external testing datasets (Table S2).
The accuracy, precision, recall, and F1-score of the
5
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Figure 1. The flow chart of study design. (a) All the images of cytopathological slides with original resolutions were resized to a stan-
dard resolution (1024 £ 1024 pixels). (b) The resized images were annotated with delineation along the margin of the cell clusters
and addition of the corresponding labels on the delineated cell clusters. (c) A deep convolutional neural network model was devel-
oped using the training dataset and optimal hyperparameters were selected with the validation dataset. (d) The performance of the
established deep-learning system was evaluated using the internal and external testing datasets and then compared with those of
endoscopists and cytopathologists. DCNN=Deep convolutional neural network. AI=Artificial intelligence.
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DCNN system in segmenting all cell clusters were
0¢964, 0¢927, 0¢931, and 0¢929, respectively, on the
internal testing dataset (Table S2). On the external test-
ing datasets, the accuracy, precision, recall, and F1-score
of the DCNN system in segmenting all cell clusters
were 0¢947�0¢969, 0¢889�0¢940, 0¢891�0¢936, and
0¢899�0¢938, respectively (Table S2).

To evaluate the DCNN system in assessing cell ade-
quacy, we calculated recall (cell adequacy rate) by setting
an optimal threshold of IoU at per-image and per-
patient level. The results showed that the recall was
0¢842 in internal testing and 0¢821 in external testing at
per-image level (Table S3). Notably, the recall of the
DCNN system could reach 0¢963 in internal testing and
0¢906 in external testing at per-patient level (Table S4).
Collectively, these results indicated that the DCNN sys-
tem can delineate the margins of cell clusters in cytopa-
thological slides with high accuracy and substantial
robustness.
Performance of the DCNN system in identifying
pancreatic cancer
We next evaluated the performance of the DCNN sys-
tem in identifying pancreatic cancer in cytopathological
slides at per-image level. Representative predictions of
the DCNN system are shown in Figure 2. The results
showed that the DCNN system identified pancreatic
cancer with an accuracy of 0¢944 (95% CI,
0¢929�0¢956), sensitivity of 0¢940 (95% CI,
0¢917�0¢963), specificity of 0¢946 (95% CI,
0¢930�0¢962), PPV of 0¢901 (95% CI, 0¢873�0¢930),
and NPV of 0¢968 (95% CI, 0¢955�0¢980) on the inter-
nal testing dataset (Table S5). Moreover, the DCNN sys-
tem also showed satisfactory performance in pancreatic
cancer identification on the external testing datasets
with an accuracy of 0¢912�0¢958, sensitivity of
0¢928�0¢944, specificity of 0¢875�0¢971, PPV of
0¢897�0¢928, and NPV of 0¢930�0¢971 (Table S5).
The AUC of the DCNN system on the internal testing
www.thelancet.com Vol 80 Month June, 2022



Figure 2. Visualization of DCNN performance in segmenting pancreatic cancer cell clusters and noncancer cell clusters. (a) Representative prediction results of the DCNN system for pancre-
atic cancer cell cluster segmentation. (b) Representative prediction results of the DCNN system for noncancer cell cluster segmentation. (c) Representative prediction results of the DCNN sys-
tem for pancreatic cancer and noncancer cell cluster segmentation in a single visual field. DCNN=Deep convolutional neural network. IoU=Intersection over Union.
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dataset was 0¢958, and the AUCs on the external testing
datasets were 0¢948�0¢976 (Table S5, Figure 3a & b).

Since one patient may have more than two slides in
the datasets, we evaluated the performance of our
DCNN system in pancreatic cancer identification at per-
patient level to further verify the effectiveness of our
DCNN system. On the internal testing dataset, the accu-
racy, sensitivity, specificity, PPV, and NPV of the DCNN
system in distinguishing cancer from noncancer cytopa-
thology were 0¢889 (95% CI, 0¢719�0¢961), 1¢000
(95% CI, 1¢000�1¢000), 0¢700 (95% CI,
0¢416�0¢984), 0¢850 (95% CI, 0¢694�1¢000), and
1¢000 (95% CI, 1¢000�1¢000), respectively (Table S5).
Notably, the DCNN system also showed generalizable
and robust performance on the external testing datasets
with an accuracy of 0¢920�0¢967, a sensitivity of
0¢929�1¢000, a specificity of 0¢778�0¢938, a PPV of
0¢889�0¢941, and an NPV of 0¢938�1¢000 (Table S5).
The AUC of the DCNN system on the internal testing
dataset was 0¢982, and the AUCs on the external testing
datasets were 0¢993�1¢000 (Table S5, Figure 3c & d).

To further validate the promising performance of the
DCNN system, we performed sensitivity analysis
according to different ages, sexes, lesion locations, and
lesion sizes. The results showed that the AUCs of the
model were 0¢949�0¢969 for different ages,
0¢936�0¢982 for different sexes, 0¢937�0¢958 for
Figure 3. DCNN performance in identifying pancreatic cancer on in
for pancreatic cancer on the internal testing dataset. (b) Image-lev
on the external testing datasets. (c) Patient-level receiver operating
dataset. (d) Patient-level receiver operating characteristic curves for
receiver operating characteristic curves for pancreatic cancer in the
age (e), sex (f), lesion location (g), and lesion size (h). DCNN= Deep co
ating characteristic curve. NJDTH=Nanjing Drum Tower Hospital. WX
pital. SAHSC=The Second Affiliated Hospital of Soochow University.
different locations and 0¢936�0¢993 for different sizes
(Table S6, Figure 3e�h).
Performance comparison among the DCNN system,
endoscopists, and cytopathologists
Subsequently, we compared the performance between
the DCNN system and the cytopathologists. The results
showed that the DCNN system achieved a higher accu-
racy (0¢945, 95% CI, 0¢933�0¢955) than the cytopathol-
ogists (0¢917, 95% CI, 0¢903�0¢930, P = 0¢001) on the
human-machine competition dataset 1 (Figure 4a,
Tables S7�S9). Notably, the sensitivity (0¢987, 95% CI,
0¢969�1¢000) and NPV (0¢995, 95% CI,
0¢988�1¢000) of the DCNN system were significantly
higher than those of the cytopathologists (sensitivity:
0¢922, 95% CI, 0¢898�0¢947, P < 0¢001; NPV: 0¢970,
95% CI, 0¢961�0¢980, P < 0¢001) (Table S7�S9). The
specificity (0¢930, 95% CI, 0¢905�0¢954) and PPV
(0¢835, 95% CI, 0¢781�0¢889) of the DCNN system
were comparable to those of the cytopathologists (speci-
ficity: 0¢915, 95% CI, 0¢900�0¢931, P = 0¢175; PPV:
0¢798, 95% CI, 0¢764�0¢832, P = 0¢064) (Table
S7�S9). Consistently, the DCNN system also showed a
comparable performance with the cytopathologists with
relatively higher sensitivity and NPV (P < 0.01), and a
lower specificity and PPV (P < 0.001) in the human-
ternal and external testing datasets. (a) Image-level ROC curves
el receiver operating characteristic curves for pancreatic cancer
characteristic curves for pancreatic cancer on the internal testing
pancreatic cancer on the external testing datasets. Image-level
subgroup analysis of the internal testing dataset according to
nvolutional neural network. AUC=Area under the receiver oper-
PH=Wuxi People’s Hospital. WXSPH=Wuxi Second People’s Hos-

www.thelancet.com Vol 80 Month June, 2022



Figure 4. Comparison of the diagnostic performance of the DCNN system and doctors. (a) Comparison of the diagnostic perfor-
mance of the DCNN system, trained endoscopists, and cytopathologists on human-machine competition dataset 1. (b) Comparison
of the diagnostic performance of the DCNN system, trained endoscopists, and cytopathologists on human-machine competition
dataset 2. DCNN=Deep convolutional neural network. AUC=Area under the receiver operating characteristic curve.
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machine competition dataset 2 (Figure 4b, Tables
S10�S12).

Since cytopathologists were not available in the field
of EUS-FNA for most hospitals, several studies trained
endoscopists to increase the diagnostic performance of
EUS-FNA.21,22 Thus, we compared the performance of
the DCNN system and trained endoscopists. Interest-
ingly, the accuracy, sensitivity, specificity, PPV, and
NPV of the DCNN system were all significantly better
than those of trained endoscopists on both human-
machine competition datasets (P < 0¢001) (Figure 4,
Table S7�S12). Similarly, the diagnostic consistency of
cytopathologists (k: 0¢616�0¢670) was higher than that
of endoscopists (k: 0¢162�0¢333) (Table S13, Figure
S5a). Moreover, the consistency between the DCNN sys-
tem and cytopathologists (k: 0¢683�0¢754) was also
higher than that between the DCNN system and endo-
scopists (k: 0¢286�0¢505) (Table S13, Figure S5b).
Discussion
In this study, we developed a novel DCNN system to
render ROSE during EUS-FNA. The DCNN system
showed promising performance in differentiating
stained cells from the background to ensure the ade-
quacy of the samples and in identifying pancreatic
malignant cell clusters from benign cell clusters with
cytopathological slides. The system also showed gener-
alizable and robust performance on the internal dataset,
external datasets, and subgroup analysis. The diagnostic
performance of the DCNN system could be comparable
to that of cytopathologists and was superior to that of
trained endoscopists. To the best of our knowledge, this
study was the first and largest to establish a deep learn-
ing-based system for segmenting stained cell clusters
and identifying pancreatic cancer in ROSE during EUS-
FNA, which might be used to improve the diagnostic
performance of EUS-FNA.
www.thelancet.com Vol 80 Month June, 2022
It is pivotal to evaluate the diagnostic adequacy of
EUS-FNA samples since only sufficient high-quality
samples can be concluded with a preliminary diagno-
sis.23 Several studies have demonstrated the efficacy of
ROSE in improving the diagnostic adequacy of EUS-
FNA.24 However, the lack of cytopathologists in many
hospitals, especially rural hospitals, has refrained the
wide use of ROSE. Although on-site cytotechnicians
could improve the diagnostic adequacy of EUS-FNA,
cytotechnicians without sufficient training could only
achieve moderate diagnostic adequacy (70%).25 Several
studies assessed the performance of endoscopists or
endosonographers in assessing the diagnostic adequacy
of EUS-FNA samples and demonstrated a higher diag-
nostic adequacy among these endoscopists or
endosonographers.21,26,27 However, the training curric-
ulums varied in different studies, leading to a consider-
able inconsistency between endoscopists and
cytopathologists.28 To the best of our knowledge, no
studies have implemented deep learning in assessing
the diagnostic adequacy of EUS-FNA. Here, our DCNN
system achieved IoUs of 0¢817�0¢883 and F1-scores of
0¢899�0¢938 in segmenting all the stained cell clusters
on the internal and external testing datasets. In clinical
practice, the DCNN system could be used to evaluate
the adequacy of cytopathological samples by setting a
suitable threshold of IoU to achieve satisfactory perfor-
mance.

Three preliminary studies have implemented deep
learning in pancreatic cancer identification. Hashimoto
et al. established a deep learning model with 800 adeno-
carcinoma and 400 benign images and found that the
deep learning model achieved a slightly lower accuracy
than the cytopathologists.17 Patel et al. found that their
deep learning model achieved an accuracy of 0¢87 in
pancreatic cancer identification and ranked 4th among
the included 19 observers.18 Notably, they found that
the deep learning model outperformed all 6
9
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interventional gastroenterologists. Thosani et al. also
developed a deep learning-based classification model for
pancreatic cancer diagnosis.19 However, the specificity
of the DCNN system was relatively low, which indicated
substantial false positive classifications and might con-
fuse endoscopists in real clinical scenarios. All the previ-
ous DCNN systems could only classify pancreatic
malignancy images from non-malignancy images but
could not show the exact location of the stained malig-
nant cells. Here, our DCNN system showed generaliz-
able and robust performance in identifying pancreatic
cancer cell clusters in EUS-FNA cytopathology at both
per-image level and per-patient level. Moreover, we also
found that the DCNN system showed stable diagnostic
performance in several subgroups, including different
ages, sexes, lesion locations, and lesion sizes. Based on
the outstanding performance of our DCNN system, we
developed a workstation that integrated the DCNN sys-
tem into the diagnostic workflow of ROSE during EUS-
FNA (Figure S6, Video S1). Prospective studies will be
conducted to further evaluate the assistant value of the
DCNN system in the diagnostic yield of EUS-FNA in
real clinical practice.

The present DCNN system was set with a relatively
high sensitivity to reduce potential missing lesions. In
comparison with trained endoscopists and cytopatholo-
gists, the performance of the DCNN system was signifi-
cantly higher than that of the trained endoscopists, and
was comparable to that of the cytopathologists on our
testing datasets. This indicated that the system could
assist the EUS-FNA process reliably.

Hikichi et al. conducted a comparative study on the
diagnostic accuracy of ROSE by trained endoscopists
and cytopathologists.21 The results showed that the diag-
nostic accuracies of endoscopists and cytopathologists
were 94¢7% and 94¢3%, respectively. However, Savoy
et al. compared trained endoscopists and cytotechnolo-
gists in determining the sample adequacy and diagnos-
ing a malignancy of EUS-FNA specimens.22 They
found that endoscopists achieved a very low sensitivity
(56�60%) in the diagnosis of EUS-FNA specimens.
This indicated that although endoscopists trained with
cytopathology may be capable of establishing an accu-
rate diagnosis of EUS-FNA specimens, the performance
of the endoscopists showed obvious variance. Here, the
diagnostic performance of our DCNN system was com-
parable and concordant with that of cytopathologists
and was much better than that of trained endoscopists.
Combined with high sensitivity and PPV, our DCNN
system could be deployed in clinical scenes to assist
endoscopists for increasing the diagnostic yield of EUS-
FNA.

Although this study has achieved promising results,
there still exist several limitations in this study. First,
this was a retrospective study, which may contain selec-
tion bias. The excellent performance of the DCNN sys-
tem cannot reflect its clinical application in the real
world. We will collect more data from variant sources to
enhance the generalizability of the DCNN system. We
will design a multicenter prospective validation trial,
and a randomized controlled trial to further validate the
applicability of this DCNN system. Second, only high-
quality images were used in this study. Although it is
easy to control the quality of images in real clinical
applications, we still plan to collect more images of dif-
ferent qualities to further enhance the generalization of
our DCNN system.

In conclusion, we developed a DCNN system to
assist endoscopists in rendering ROSE during EUS-
FNA. The DCNN system showed outstanding perfor-
mance in evaluating diagnostic adequacy and identify-
ing pancreatic cancer cell clusters, and the performance
of the DCNN system was superior to the trained endo-
scopists, and comparable to the cytopathologists on our
testing datasets. Prospective validation and intervention
studies are needed to provide high-level evidence for the
clinical significance of the DCNN system in real clinical
practice. We believe that this system can assist endo-
scopists in performing ROSE by themselves when cyto-
pathologists are not available, with increased diagnostic
yield during EUS-FNA for pancreatic cancer.
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