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Abstract
The perinucleolar compartment (PNC) is a subnuclear stucture forming predominantly in can-

cer cells; its prevalence positively correlates with metastatic capacity. Although several RNA-

binding proteins have been characterized in PNC, the molecular function of this compartment

remains unclear. Here we demonstrate that the cyclin–dependent kinase 13 (CDK13) is a

newly identified constituent of PNC. CDK13 is a kinase involved in the regulation of gene

expression and whose overexpression was found to alter pre-mRNA processing. In this study

we show that CDK13 is enriched in PNC and co-localizes all along the cell cycle with the PNC

component PTB. In contrast, neither the cyclins K and L, known to associate with CDK13, nor

the potential kinase substrates accumulate in PNC.We further show that CDK13 overexpres-

sion increases PNC prevalence suggesting that CDK13 may be determinant for PNC forma-

tion. This result linked to the finding that CDK13 gene is amplified in different types of cancer

indicate that this kinase can contribute to cancer development in human.

Introduction
The cyclin–dependent kinases (CDKs) are a set of 20 ATP-dependent serine-threonine protein
kinases acting in the integration of extracellular and intracellular signals to regulate cell-cycle
progression and gene expression (for reviews see [1,2]). As transcription-related CDKs, CDK7,
8 and 9 act to regulate transcription initiation and elongation. Each of these kinases is part of a
multisubunit complex, TFIIH, Mediator and pTEFB respectively. CDK8 and 10 phosphorylate
transcription factors affecting their stability and activity [3,4], CDK11 (p110) participates in
the regulation of alternative splicing [5,6] and CDK12 and 13, more recently characterized, are
thought to have a role in transcription and RNA processing.

CDK12 and 13 evolved by duplication of a common gene ancestor, a single paralog being
found in non-vertebrates deuterostomes [7,8]. In mammalian cells, both kinases operate in
separate complexes, which could have different functions [9]. While both kinases were shown
to participate in maintaining self-renewal ability in murine embryonic stem cells [10] or to
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regulate axonal elongation in mice [11], CDK12 but not CDK13 contributes to facilitate tran-
scription by promoting Ser2 phosphorylation at the carboxyl-terminal domain of RNA poly-
merase II (CTD) and to preserve genome stability [9,12,13]. Two types of regulatory subunits,
K and L-type cyclins, have been shown to interact with CDK13. Cyclin L1 α&ß co-precipitate
with CDK13 in cell lines over-expressing both proteins whereas the cyclin K subunit has been
detected by mass-spectrometry in immunoprecipitated HA-tagged CDK13 complexes [9,14].
The CDK13 N-terminal domain contains Arginine and Serine-rich (RS) motifs generally
involved in protein interactions and mainly found in splicing regulators [15]. We have previ-
ously shown that CDK13 is localised in the nucleus and particularly in speckles, the storage site
for splicing factors [16]. We also demonstrated that CDK13 plays a role in splicing regulation
by controlling the phosphorylation status and the activity of splicing factors [16]. Indeed, over-
expressing CDK13 in mammalian cells alters constitutive and alternative pre-mRNA splicing.
More recently, CDK13 depletion was shown to lead to defects in RNA processing [17]. Fur-
thermore, CDK13 interacts with p32 a protein associating with the splicing factor SRSF1 (also
known as ASF/SF2). Through its association with p32 and by phosphorylating SRSF1, CDK13
increases the mRNA splicing of human immunodeficient virus type 1 (HIV-1) and its overex-
pression, suppresses virus production [18]. Preliminary results also suggested Clk2 as putative
CDK13 substrate in mRNA splicing regulation [16]. Clks as well as SRPK and topoisomerase I
are protein kinases capable of phosphorylating RS motifs in splicing factors (review in [19]).
This Clk-dependent phosphorylation regulates subnuclear partitioning of SR proteins [20,21]
and can be controlled by cell signalling [21–24].

The nucleus is a highly dynamic organelle that contains distinct compartments, or nuclear bod-
ies, not enclosed by membranes. These compartments include on the one hand nucleoplasmic
domains such as speckles, Cajal bodies, gems, promyelocytic (PML) bodies, and on the other hand
nucleoli and structures predominantly positioned at their periphery such as Sam68 nuclear bodies
(SNB) and perinucleolar compartments (PNCs) (for review see [25]). These two last structures are
present in transformed cells and nearly absent in normal cells [26–28]. PNC prevalence is consid-
ered as a potential prognostic marker for breast cancer [29]. A unique group of RNA binding pro-
teins, members of the STAR family (Signal Transduction and activation of RNA) and including
Sam68, SLM-1 and T-STAR, are localized to the SNB also containing YT521-B, a splicing factor
known to associate with Sam68 [30]. SNBs have been suggested as potential nuclear sites for the
regulation of RNA processing by signalling pathways [31]. The PNC is found to nucleate on
unidentified DNA locus or loci [32]. It contains newly synthesized RNAs transcribed by RNA
polymerase III such as MRP, RNase P, human Y, Alu and SRP/7SL RNAs and a set of RNA-bind-
ing proteins including PTB, CUG-BP1, KSRP, Raver1, Raver2, Rod1, PSF and p54nrb and nucleo-
lin. Several of these proteins are primarily implicated in pre-mRNA processing [33–37]. However,
the complete molecular composition and the function of PNC are yet to be revealed.

While CDK13 is present in the nucleoplasm and enriched in speckles, we also observed a
strong accumulation of CDK13 close to the nucleolus. As several data demonstrate protein
exchange between nucleolus, or nucleolar periphery, and speckles [38,39], we investigated
CDK13 peri-nucleolar localization in HeLa cells. Here we demonstrate that CDK13 is a constit-
uent of PNC but not its associated cyclins. We further show that CDK13 overexpression
increases PNC prevalence suggesting that CDK13 may be determinant for PNC formation.

Materials and Methods

Cell Culture and Transfection
HeLa and U2OS cells (ATCC) were cultured in Dulbecco’s MEM (Life Technologies) supple-
mented with 10% fetal bovine serum, 1mM sodium pyruvate, 100 units/ml penicillin, and
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100 μg/ml streptomycin, at 37°C with 5% CO2. Cell were transfected with plasmids using jet
PEI (Polyplus transfection) according to manufacturer’s instructions. For each gene a range of
plasmid concentrations was tested to select for moderate protein expression as visualized by
immunofluorescence. The following plasmids were generous gift of: D.L. Spector, pGFP-PTB;
O. Bensaude, pGFP-Cyclin K; G.E. Landreth pEBG-Clk2, P. Loyer pMSCV, HA-Cyclin L1 and
L2. The full-length CDK13 protein was expressed from pCDNA or pEGFP plasmids, as men-
tioned in figure legends. The N-terminal and C-terminal domains of CDK13 were expressed
from pCDNA plasmids containing respectively nucleotide sequences 1 to 706 and 1006 to
1452 fused with an HA tag in 5’.

Immunofluorescence
HeLa and U2OS cells were seeded onto coverslips in 100 mm plates and transiently transfected
with 8 μg plasmid. Cells were rinsed in PBS 48 h after transfection and fixed in 4% paraformal-
dehyde for 20 min at room temperature. Cells were permeabilized with 0.2% Triton X-100 for
5 min. For blocking step, cells were incubated in PBS-5% goat serum over night at 4°C. Primary
antibodies diluted in PBS-BSA 1%, were added for 2 h at RT. Cells were rinsed with PBS, and
incubated with secondary antibodies diluted in PBS-BSA for 1 h at RT. Cells were washed 3
times and mounted with Mowiol medium (40–88 Aldrich) containing 2% Dabco antifading
(Sigma), and observed with a confocal laser-scanning microscope (Olympus).

Antibodies
Immunofluorescence experiments were conducted with antibodies raised against the C-termi-
nal peptide sequence of CDK13 [16] at a working concentration of 0.1 mg/ml. Antibodies
against HA and Sam68 were mouse monoclonal antibodies (sc-7392 and sc-1238 respectively)
purchased from Santa Cruz Biotechnology and used at working dilution 1:50. Mouse monoclo-
nal antibodies against SRSF2 (S4045) were purchased from Sigma and used at 1:5000. Mouse
monoclonal antibodies against nucleolin (7G2) (gift of Dr. Pinol Roma) and fibrillarin (a gift of
Dr. Hernandez-Verdun) were used respectively at 1:1000 and 1:500. Mouse monoclonal anti-
bodies against PTB (gift of C. Gooding), polyclonal anti-cyclin K (Sigma HPA000645), anti-
cyclin L1 and L2 (gift of P. Loyer) were used at 1:50. Secondary antibodies were purchased
from Sigma. Texas red-conjugated anti-mouse antibody was used at a 1:500 dilution and
FITC- and TRITC-conjugated rabbit antibody were used at 1:250.

RNA Interference
SiRNA oligonucleotides were synthesized by Quiagen (Hs_CDC2L5_2_HP siRNA-SI00055055
and Hs_CDC2L5_5_HP validated siRNA). 7 x 105 cells seeded in 10 cm plates were transfected
with 10nM siRNA using interferin. Cells were harvested 48h later and western blot [16] and
immunofluorescence analyses were performed.

Statistical Analysis
Data are presented as mean ± SD. Statistical significance was determined by a Student two-
tailed t-test with comparison to control group and differences were considered statistically sig-
nificant for a P� 0.05. Statistical analyses were performed using Microsoft Excel (Microsoft,
Redmond, WA, USA).
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Results

CDK13 Is a Component of the Perinucleolar Compartment
We previously showed that CDK13 is a nuclear protein enriched in speckles in interphase cells
[16]. However, in about 30% of interphase HeLa cells, we observed one to four brighter spots at
the nucleolus periphery (Fig 1A and 1B, arrows). In M-phase, CDK13 surrounds condensed
chromosomes (Fig 1C and 1D), a localization that is maintained until early telophase (Fig 1E
and 1F). In later telophase, CDK13 reappears as dots within the chromosome mass (Fig 1G
and 1H, arrow heads). Furthermore, the CDK13 positive dots observed in interphase at the
vicinity of the nucleolus do not co-localized with the splicing factor SRSF2 (also known as
SC35), a marker of the speckles (Fig 1I–1K). A similar localization close to the nucleolus but
outside of the SRSF2 enriched sites was also observed in U2OS cells (Fig 1L–1N). In addition,
confocal optical sections clearly show that the bright CDK13 labelling in nucleolus area is
located outside the nucleolin (Fig 2A–2C) and fibrillarin (Fig 2D–2F) positive sites respectively
delineating the granular-fibrillar and fibrillar compartments of the nucleolus [40–42]. These
images indicate that CDK13 does not accumulate in the nucleolus core suggesting a perinu-
cleolar localization. Furthermore, the expression of the truncated CDK13 protein in HeLa cells
shows that the C-terminal domain is sufficient to support this localization at the vicinity of the
nucleolus core, while the N-terminal domain induces an accumulation of the protein in patches
in the nucleoplasm (Fig 3).

Fig 1. Distribution of CDK13 during cell cycle.Confocal images of HeLa (A-H) cells in which DNA is
stained with SYBR green (A,C,E,G) and CDK13 was detected by immunolabeling using anti-CDK13 antibody
(B,D,F,H). In interphase (A,B), arrows highlights brighter spots of CDK13 close to the nucleoli. CDK13
distribution is further described in metaphase (C,D), early (E,F) and late telophase (G,H). During mitosis,
arrowheads highlight accumulation of CDK13 close to the chromatin (D) and show CDK13 localized in dots in
late telophase (H). A co-labelling of CDK13 and SRSF2 (I-N) shows the enrichment of CDK13 in speckles
(SRSF2 positive spots) and in dots negative for SFSF2 (arrows in K,N) in the nucleolar area of HeLa (I-K) and
U2OS (L-N) cells. Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g001
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The SNBs and PNCs are two perinucleolar bodies closely associated to the nucleolus. They
are respectively enriched in Sam 68 and PTB proteins. We used anti-Sam 68 and anti-PTB anti-
bodies to specifically stain these nuclear domains. Fig 4 shows that CDK13 colocalized with
PTB (A-C) and not with Sam 68 (D-F). Expression of GFP-PTB combined with Sam 68 immu-
nolabelling confirmed that both structures are strictly distinct (G-I). In our hands, PNC preva-
lence in HeLa cells varies from 30 to 60%, gradually increasing with the cell passages. All

Fig 2. Localization of CDK13, nucleolin and fibrillarin during interphase. In HeLa cells, the localization of
CDK13 (A,C,D,F), nucleolin (B,C) and fibrillarin (E,F) were detected using rabbit anti-CDK13 and mouse anti-
nucleolin or anti-fibrillarin antibodies. A poor (C) or absent (F) colocalization of CDK13 with these nucleolar
markers demonstrates that CDK13 is located in a perinucleolar structure. Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g002

Fig 3. The C-terminal domain of CDK13 contributes to the doted perinucleolar localization of the
protein. The HA tagged C-terminal (A-C) and N-terminal (D-F) domains of CDK13 were expressed in HeLa
cells. Localization of the truncated CDK13 proteins (A, D) and nucleolin (B,E) were detected using rabbit anti-
HA and mouse anti-nucleolin antibodies respectively. Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g003
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perinucleolar CDK13 containing domains are also PTB positive and less than 10% of PNCs
(perinucleolar PTB positive dots) do not exhibit apparent CDK13 labelling. The location of
endogenous CDK13 in PNC was confirmed by transfection of GFP-PTB and co-labelling with
anti-CDK13 antibodies (Fig 4J–4L). Moreover, co-transfected GFP-PTB and Ha-CDK13

Fig 4. Colocalization of CDK13 with perinucleolar structures in interphase. Endogenous CDK13 (B,D),
PTB (A) and Sam68 (E) immunolocalizations in HeLa cells are shown in confocal optical sections and
colocalization appeared in yellow in merge images (C,F). The CDK13 dots correspond to the PTB
localization. Pictures G-I confirmed that PTB, expressed as a GFP-fusion protein, and Sam 68 are localized
in different subnuclear domains. Overexpressed GFP-PTB (J,M) was co-localized with the endogenous (K)
or overexpressed (N) CDK13 as visualized in the respective merge images (L,O). Arrows indicate the PNC in
the merge optical sections (O). Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g004
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colocalized in PNC (Fig 4M–4O). From the above results we conclude that the CDK13 kinase
is a component of the PNC in interphase cells.

CDK13, Like PNC Components, Remains Located in Close Proximity to
Reforming Nucleoli at Mitosis Output
CDK13 (Fig 1), like PTB [26], becomes diffusely distributed around condensed chromosomes
in mitosis. Indeed, PNC has been shown to dissociate as cells enter mitosis and to reassemble
during telophase in areas spatially linked with re-establishing nucleoli in daughter cells [26].
As fibrillarin is early associated with re-establishing nucleoli at nucleolar organizing region
(NOR) [43], we compare CDK13 and fibrillarin localizations during the output of mitosis (Fig
5). In early telophase, the CDK13 dots located within the chromosome mass, partially over-
lapped with fibrillarin foci (Fig 5A–5C), while residing in the same subnuclear area. In late telo-
phase, when nucleoli began to reform around the NORs, CDK13 and fibrillarin labelling
remain partly associated. However, while fibrillarin stays in condensed dots, CDK13 starts to
diffuse in the newly formed nucleus (Fig 5D–5F). A double labelling of CDK13 and PTB in
telophase HeLa cells showed a colocalization of the two proteins, which confirms their

Fig 5. Localization of CDK13, fibrillarin and PTB during the nucleolus formation at the output of
mitosis. The localization in HeLa cells of endogenous CDK13 (A,D) and fibrillarin (B,E) were detected using
the corresponding specific antibodies. Co-localization of both proteins was observed respectively in merge
images during early and late telophase (C,F). Colocalization of CDK13 (G) with PTB (H) in telophase
confirmed that the dots (arrowheads) correspond to the PNC. Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g005
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simultaneous assembly in the reforming PNC (Fig 5G–5I). Therefore we can conclude that
CDK13 remains spatially associated with PTB and in close proximity to reforming nucleolar
apparatus during output of mitosis as described for PNC components [26].

Neither CDK13 Associated Cyclins nor Identified Substrates
Accumulate in PNC
Cyclin K and cyclin L have been shown to interact with CDK13 [9,14], which was further con-
firmed in S1 Fig where CDK13-associated cyclins were shown enriched in nuclear foci contain-
ing CDK13. We thus investigated whether Cyclin K and cyclin L would also be located at PNC.
Cyclin K and two isoforms of cyclin L (L1α and L2α) were respectively co-expressed with
CDK13 in HeLa cells and the localisation of these proteins and of PTB were compared by
immunofluorescence analysis (Fig 6). Only a faint co-labelling was occasionally detected for
cyclin K and PTB in PNC (Fig 6A–6C), while cyclin L1α was clearly excluded from this com-
partment (Fig 6D–6F) and cyclin L2 was not coincident with PTB (Fig 6G–6I). This strongly
suggests that the CDK13/cyclin complexes are mainly localized outside the PNC and raises the
question of a possible accumulation of the kinase as an inactive monomer in PNC. To consider

Fig 6. Localization of Cyclins K and L in interphase.GFP-cyclin K and HA-cyclins L1 and L2 were
expressed in HeLa cells and their localizations were analysed by fluorescence microscopy using respectively
GFP-cyclin K (A) or immunofluorescence with anti-cyclin L1 (D) and L2 (G) antibodies. Localizations were
compared with the one of endogenous PTB (B,E,H). Respective merge images (C,F,I) show an absence or a
very poor co-localization of cyclins with CDK13 in PNC. An increased magnification of merge labelling is
inserted in C and I. Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g006
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this hypothesis we further investigated the localization of CDK13 potential substrates. CDK13
has been shown to phosphorylate SRSF1 [18] and the CTD of RNA-polII [12], two proteins
that do not localize in PNC. A third protein, Clk2, was reported to be phosphorylated by
CDK13 [16], a trait we confirmed (S2 Fig) before exploring Clk2 localisation in HeLa cells.
Clk2 was expressed in nuclear foci containing CDK13 (Fig 7A–7C); however, Clk2 was not
found in PTB-labelled PNC (Fig 7D–7F), indicating that Clk2 is unlikely a substrate of CDK13
in this structure. While we cannot exclude that an unknown protein would be phosphorylated
by CDK13 in PNC, this result is again in agreement with the presence of the inactive monomer
in this structure.

Overexpression of CDK13 Increases PNC Prevalence
The percentage of PNC containing cells varies with the degree of malignancy of each cell popu-
lation [44]. Furthermore, CDK13 gene has been shown to be amplified in several cancers [45].
Therefore, we examined whether increased expression of CDK13 alone, or one of its associated
cyclins (K, L1 or L2), or co-expression of CDK13 with each of its cyclins could modify the
occurrence of PNC in HeLa cells. As reported in Fig 8, a decrease in PNC prevalence was
observed when cyclins were overexpressed, with or without CDK13. In contrast, the overex-
pression of the CDK13 catalytic subunit alone increases the percentage of PNC containing
cells. It is possible that cyclin overexpression, by decreasing the amount of free CDK13, reduces
PNC prevalence. In agreement with this hypothesis, we showed that when CDK13 expression
is decreased by siRNA gene silencing, PNC occurrence is also reduced (Fig 8B). These data
reinforce the idea that CDK13 may accumulate in an inactive, non cyclin-associated form, in
PNC. This also put forward a critical role of CDK13 in PNC formation.

Discussion
We previously described CDK13 as a nuclear kinase displaying higher concentration in speck-
les and involved in splicing [16]. Here we demonstrate that CDK13 also exhibits a noteworthy
accumulation in PNCs. This result is, as far as we know, the first demonstration of a kinase as

Fig 7. Clk2 is not present in PNC.Clk2, revealed with antibodies to the GST-tag (B,D) and GFP-CDK13 (A)
localized in common foci in the nucleoplasm as shown in merge picture (C) while Clk2 is not present in PNC
as visualized with PTB colabelling (D-F). Scale bar: 5μm.

doi:10.1371/journal.pone.0149184.g007
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component of this perinucleolar structure. Furthermore, CDK13 can be added to the PNC pro-
teins involved in pre-mRNA processing including PTB, KSRP and CUG-BP1. This finding fur-
ther argues for a relationship between PNC function and splicing mechanisms. We further
show that CDK13 is present in PNCs without any of its known substrates and without simulta-
neous accumulation of the regulating subunits suggesting that only the inactive form of
CDK13 would be present in PNCs. Additionally, we observed that CDK13 overexpression
increased PNC prevalence a feature associated with cancer malignancy.

We first show that endogenous as well as overexpressed CDK13 colocalize with the PTB
protein, a marker for PNC; this CDK13-PTB colocalization is observed in interphase as well as
in mitotic cells. Until now, all of the proteins found in PNCs were RNA binding proteins. This
is the case for PTB that contains four RNA recognition motifs (RRM) [46,47]. CDK13 neither
displays any RRM, nor other common single-stranded RNA binding domain. However

Fig 8. Increased CDK13 complexes expression decreases PNC prevalence. (A) GFP-tagged cyclins
were expressed with or without HA-CDK13 in HeLa cells and the level of protein expression was controlled by
GFP fluorescence or immunofluorescence. PNC prevalence was measured by immunofluorescence labelling
with anti-PTB antibodies. Percentages (± SD) of transfected (GFP-positive) and non-transfected (nt) cells
containing nuclear PTB-positive dots were evaluated by counting for each condition 500 cultured cells in
three different transfection experiments. In those experiments, 30% of non-transfected HeLa cells were PTB-
positive. **P<0.001. (B) HeLa cells were treated with (or without) siRNAs targeting CDK13. SiRNA2 only
faintly diminished CDK13 expression levels and did not significantly altered PNC prevalence. In contrast,
siRNA5 strongly altered CDK13 expression, leading to a significant decrease in PNC prevalence. In this set
of experiments, 50% of control cells (w/o siRNA) were PTB-positive. *P<0,05.

doi:10.1371/journal.pone.0149184.g008
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CDK13 includes three characteristic domains involved in protein-protein interaction: an N-
terminal arginine/serine (RS) dipeptide-rich region frequently found in splicing factors and
regulators of RNA processing [48] and two proline-rich motifs (PRMs) in the N- and C-termi-
nal regions respectively [15,49]. These PRMs may serve as binding sites for SH3, WW or profi-
lin domain containing proteins [50]. While the N-terminal area of CDK13 directs the protein
to speckles ([16] and Fig 3), the C-terminal domain is sufficient for the localization in PNC
(Fig 3). Thus, CDK13 C-terminal PRMmight participate in interaction with RNA-binding
proteins contained in PNC. Recently CDK13 has been demonstrated to interact with numerous
RNA processing factors and to preferentially regulate the expression of diverse classes of small
non-coding RNA genes [17]. As PNC are enriched in small non-coding RNAs transcribed by
polymerase III [51,52], it would be interesting to know if CDK13 is required for the proper
expression or localization of the RNAs identified in PNC.

The question then arises as to whether cyclin regulatory subunits are associated with
CDK13 in PNC. Cyclins K, L1 and L2 have been shown to form complexes with CDK13 in the
nucleus [9,14]. However, as shown in Fig 6, these regulatory subunits are absent (Cyclin L1 and
L2) or poorly represented (cyclin K) within PNC, suggesting that only the catalytic subunit,
CDK13, would accumulate in this compartment. Likewise, none of the characterized CDK13
substrates, SRSF1 [18], CTD [12] or Clk2 (Fig 7) is present in PNC. These results suggest that
CDK13 could be sequestered in PNC in an inactive form, which could be a way to control the
kinase accessibility to its nucleoplasmic regulatory subunits and/or substrates. Furthermore,
CDK13, by phosphorylating Clk2, might regulate splicing factor localisation and accessibility
to spliceosome and consequently the splicing efficiency. Therefore, CDK13 segregation in PNC
could be a way to regulate RNA processing.

The PNCs have been predominantly detected in solid tissue derived cancer cells or cell lines
and are rarely present in normal cells [26,28]. In breast, colon or ovary cancers, PNC preva-
lence correlates with disease progression and tumor aggressiveness reaching near 100% for dis-
tant metastases. Therefore, PNC prevalence has been proposed to be a good prognostic marker
for cancer [29,44]. On the other hand, several recent studies have pointed out evidences that
CDK13 could be involved in cancer. More precisely, a SNP-chip based study showed aberrant
higher copy numbers of CDK13 gene correlated with increased expression in primary hepato-
cellular carcinomas (HCCs) and colorectal cancer [45]. The same authors also show a high clo-
nogenicity of CDK13 when stably expressed in NIH3T3 cells. In addition, the abundance of
CDK13 protein was found to be increased in pancreatic cancers [53]. In this context, it is inter-
esting to find that CDK13, a kinase involved in splicing, is localized in PNC and that CDK13
overexpression increases PNC prevalence. Indeed, there is now ample evidence that aberrations
of alternative splicing are frequent in cancer [54] and that altered RNAs lead to the synthesis of
proteins with tumorigenic functions. Sequestering CDK13 in PNC could be one of the mecha-
nisms of splicing alteration in tumour cells. Thus CDK13 could play a major role in cancer and
could be used as a cancer marker.

Supporting Information
S1 Fig. Cyclins K and L are enriched in non-PNC nuclear foci. GFP-cyclin K and HA-cyclins
L1 and L2 were co-expressed in HeLa cells with respectively HA- or GFP-CDK13. Localisation
of cyclins was analyzed using respectively GFP fluorescence for cyclin K (B) or immunofluores-
cence with anti-cyclin L antibodies for cyclins L1 (E) and L2 (H) and compared with CDK13
localization visualized through HA- (B) or GFP- (D,G) tags. Co-labellings was observed both
in nucleoplasm and in nuclear foci (C,F,I).
(TIF)
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S2 Fig. In vitro phosphorylation of Clk2 N-terminal domain by CDK13.HeLa cells were
transfected as indicated either with the empty pCDNA3 vector or pCDNA3-HA-CDK13. Pro-
teins (1 mg) from transfected cells were immunoprecipitated with anti-HA antibodies and
assayed for kinase activity with the GST-tagged N-terminal domain of either Clk1 or Clk2, as
described in supplementary material and methods.
(TIF)

S1 File. Methods and Results of in vitro CDK13 kinase assays on Clk substrates.
(DOCX)
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