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Acute myocardial infarction has a high clinical mortality rate. The initial exclusion or
diagnosis is important for the timely treatment of patients with acute myocardial
infarction. As a marker, cardiac troponin I (cTnI) has a high specificity, high sensitivity
to myocardial injury and a long diagnostic window. Therefore, its diagnostic value is better
than previous markers of myocardial injury. In this work, we propose a novel aptamer
electrochemical sensor. This sensor consists of silver nanoparticles/MoS2/reduced
graphene oxide. The combination of these three materials can provide a synergistic
effect for the stable immobilization of aptamer. Our proposed aptamer electrochemical
sensor can detect cTnl with high sensitivity. After optimizing the parameters, the sensor
can provide linear detection of cTnl in the range of 0.3 pg/ml to 0.2 ng/ml. In addition, the
sensor is resistant to multiple interferents including urea, glucose, myoglobin, dopamine
and hemoglobin.
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INTRODUCTION

Troponin is a regulatory heteropeptide protein found in myogenic fiber filaments that plays a pivotal
role in the interaction between actin and myosin. It controls contraction and relaxation of skeletal
and cardiac muscles. Troponin is a complex that includes three subunits: ion-binding troponin
(cTnC), troponin that inhibits actin-myosin interaction (cTnI) and tropomyosin (cTnT), which is
used to bind the myosin complex to promyosin and promote myocardial contraction (Fan et al.,
2018; Miao et al., 2019; Phonklam et al., 2020). It has been demonstrated that cTnI is a specific
biomarker for myocardial injury in dogs, cats, horses, pigs, goats, mice and cattle. Damage to
myocardial cell integrity is followed by partial release of cTnI into the blood, and elevated cardiac
troponin concentrations in peripheral blood indicate myocardial cell damage (Palladino et al., 2018;
Karimi-Maleh et al., 2020a; Çimen et al., 2020). Since myocardial infarction is one of the most
important factors leading to myocardial cell destruction, monitoring of cTnI blood concentrations is
particularly important for the early detection of myocardial infarction (Ye et al., 2018; Lee et al., 2019;
Sun et al., 2019a; Karimi-Maleh et al., 2020b, 2021). There is evidence that even small elevations in
cTnI may be associated with poor prognosis. However, as with most other current assays, their most
significant shortcoming lies within the first few hours of acute myocardial infarction onset. Current
cTnI assays are not effective in detecting elevated blood concentrations and are not effective in
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monitoring changes in lower concentrations of cTnI. Therefore,
the development and application of next-generation cTnI assays
is imminent (Negahdary et al., 2017; Zhang et al., 2018; Fu et al.,
2019b; Sun et al., 2019b; Zhou et al., 2020).

Radioimmunoassay is a method by which an isotope-labeled
antigen is added to an unlabeled antigen to cause a competitive
inhibition reaction with the antibody. The radioimmunoassay is
equal to the advantages due to its good utility and specificity, as well
as its high sensitivity. However, the method has disadvantages such
as the existence of radioactive contamination and short half-life of
isotopes, which to a certain extent limit the development and
application of radioimmunoassay (Qiao et al., 2018;
Sarangadharan et al., 2018; Fu et al., 2019a; Wang et al., 2019;
Mokhtari et al., 2020; Xu et al., 2020). Fluorescent immunoassay is
mainly used for the diagnosis of infectious diseases due to its high
sensitivity, and it is one of the oldest labeled immunoassays.
However, the detection limit of fluorescence immunoassay is not
low enough.Moreover, it is difficult to store fluorescent samples for a
long time. Electrochemical immunosensor is an application that
combines electrochemiluminescence measurement with
immunosensor. It combines the advantages of high sensitivity of
electrochemiluminescence and high selectivity of immunoassay,
which has attracted the attention of many researchers (Dhawan
et al., 2018; Regan et al., 2018; Karimi-Maleh et al., 2020c; Wang
et al., 2020). The unique physicochemical properties of
nanomaterials make it a promising application in the
development of high-performance electrochemical and
electrochemiluminescent sensors.

Two-dimensional nano has been widely studied for its high
specific surface area and compatibility with miniaturized devices
(Khodadadi et al., 2019; Tahernejad-Javazmi et al., 2019). Among
them, MoS2, in which Mo atomic layers are arranged in a
hexagonal shape between S atomic layers, has an ultrathin
planar structure. It is sensitive to the surrounding
environment and becomes a suitable base material for building
aptamer sensors (Cai et al., 2018; Chekin et al., 2018). However,
MoS2 has low electrical conductivity and Van DerWaals between
the layers tend to agglomerate it. Reduced graphene (rGO) with
active edge sites and excellent electrical properties can effectively
improve the electrochemical activity of MoS2. The composite of
other nanomaterials in rGO can reduce the layer-layer interaction
force, so the performance of rGO can be further ensured (Fathil
et al., 2017; Lopa et al., 2019). Among them, silver nanomaterial
materials are often used in the design of electrochemical sensors
due to their cheap price and good electrocatalytic properties
(Zhou et al., 2018; Yan et al., 2019).

This work synthesized AgNPs/MoS2/rGO nanocomposites. By
combining the excellent properties of the composite (large surface
area and good electrical conductivity) with the aptamer (high affinity
and specificity), a label-free electrochemical aptamer sensor was
developed for the sensitive and selective detection of cTnI.

MATERIALS AND METHODS

cTnI and DNA oligonucleotides were obtained from Yeyuan
Biotech. Urea, thrombin, myoglobin, horseradish peroxidase,

L-cysteine, hemoglobin, and prostate-specific antigen were
ordered from Alading Co. Ltd. Graphene oxide (GO) powder
was purchased from Xianfeng Nano Tech Co. Ltd. All other
reagents are analytically pure and can be used without additional
purification. 0.1 M Tris-HCl buffer solution has been used for
dissolving amino-modified cTnI aptamer (AcTnl).

Sequence of the AcTnl is: 5′-NH2-C6H12-CGTGCAGTAC
GCCAACCTTTCTCATGCGCGCTGCCCCTCTTA-3′.

All electrochemical tests, including cyclic voltammetry (CV),
differential pulse voltammetry (DPV), and electrochemical
impedance spectroscopy (EIS) were performed using the
CHI660 electrochemical analyzer/workstation with three-
electrode system. SEM image has been recorded using a ZEISS
MERLIN.

Synthesis of AgNPs/MoS2/rGO nanocomposite: 50 mg of
AgNO3 was dissolved in 20 ml of ethanol and 100 mg of
octadecylamine was added with vigorous stirring. After
complete dissolution, 50 mg of glucose and 60 mg of glycine
were added and sonicated. The solution was transferred to a
hydrothermal kettle and heated at 120°C for overnight. Silver
nanoparticles (AgNPs) were obtained after filtration. MoS2/rGO
was prepared by adding 10 mg Na2MoO4.2H2O and
20 mg L-cysteine into 20 ml of GO dispersion (0.5 mg/ml,
DMF). The mixture was then transferred into a hydrothermal
kettle and heated at 100°C for 5 h. The MoS2/rGO was collected
after the filtration. The AgNPs/MoS2/rGO nanocomposite was
prepared by adding AgNPs into MoS2/rGO composite dispersion
after 1 h sonication.

Electrode fabrication: A glassy carbon electrode (GCE) has
been used for sensor fabrication. Specifically, a certain amount of
AgNPs/MoS2/rGO nanocomposite was drop casted on a GCE
and dried naturally. Then, a certain amount of AcTnl was drop
casted on the AgNPs/MoS2/rGO/GCE. After drying, the AcTnl/
AgNPs/MoS2/rGO was incubated in the cTnl solution with
different concentration for 1 h before electrochemical signal
recording.

RESULTS AND DISCUSSION

Figure 1 demonstrates the preparation and sensing strategy of
this label-free electrochemical aptamer sensor. AgNPs/MoS2/
rGO immobilized with GCE can immobilize the AcTnl
aptamer on the electrode surface via Ag-N bond. In this
process, the electrochemical signal of [Fe(CN)6]

3-/4- decreases
because the electron transfer is hindered by the nucleobases.
When AcTnl/AgNPs/MoS2/rGO is immersed in the cTnI
solution, the electrochemical signal is further reduced due to
the formation of AcTnI-cTnI complexes on the electrode surface
that further hinder electron transfer. By calculating the
relationship between peak current and cTnI concentration, the
detection of cTnI concentration can be achieved.

Figure 2 shows the SEM images of AgNPs, MoS2/rGO, and
AgNPs/MoS2/rGO. The structure of silver nanoflowers can be
clearly observed in Figure 2A. The SEM images of MoS2/rGO
show the typical wrinkled and folded structure of graphene and
the layer-like structure of MoS2/rGO. The tight contact between

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 6805932

Li et al. Electrochemical Sensor for CTnl Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


MoS2 and rGO is favorable for electron transfer. The SEM images
of AgNPs/MoS2/rGO nanocomposites clearly observe that
AgNPs are wrapped by MoS2/rGO composites.

We tested the electrochemical behavior of the electrode
surface during sensor assembly using a 5.0 mM [Fe(CN)6]

3-/4-

solution containing 0.1 MKCl (Figure 3). The redox peak current
of the modified GCE was significantly increased due to the
excellent conductivity and electron transfer of rGO. After the
modification of GCE withMoS2/rGO and AgNPs/MoS2/rGO, the
currents increased significantly in turn, which was caused by the
large specific surface area of MoS2 and the excellent
electrochemical properties of AgNPs.

The electrochemical properties of the sensor was further
investigated by EIS. In EIS, semicircular and straight regions
indicate electron transfer-limited processes and mass transfer
control processes (Demirbakan and Kemal Sezgintürk, 2020; Lee
et al., 2020), respectively. Considering the variation of the
electron transfer resistance (Rct), the EIS method can provide
important information to demonstrate the interaction between
the aptamer and the target protein. As shown in Figure 4, bare
GCE presents a small semicircle with an Rct value of 266Ω. Due
to the excellent properties and synergistic effects of rGO, MoS2
and AgNPs, the Rct value decreases to 91Ω after AgNPs/MoS2/
rGO modification, indicating that the electron transfer effect is

enhanced. This is consistent with the CV results of GCE and
AgNPs/MoS2/rGO/GCE. While the presence of AcTnI leads to
an increase in the spatial site blocking effect and hinders
electron transfer, the Rct increases sharply to occur at 3.31
kΩ, indicating the binding of AcTnI and AgNWs on the
electrode surface. With the binding of the target protein on
the AcTnI/AgNPs/MoS2/rGO/GCE surface, a continued
increase in Rct to 5.26 kΩ can be observed, indicating a
successful binding with the target protein to its aptamer,
which hinders the electron transfer.

In order to improve the sensitivity of detecting cTnI, different
parameters were optimized. Figure 5A shows the aptamer
electrodes assembled with different concentrations of AgNPs
in the MoS2/rGO dispersion. Although AgNPs have excellent
electrochemical properties, when AgNPs exceed a certain
concentration it may cause a high stacking density, resulting
in a lower detection efficiency of the sensor. Therefore, we chose
to add 250 μLof AgNPs into the MoS2/rGO dispersion.

The amount of modification of AgNPs/MoS2/rGO is an
important factor affecting the immobilization of AcTnI.
Figure 5B shows the electrochemical response of the proposed
aptamer sensor AgNPs/MoS2/rGO at different modification
amounts. As the concentration of AgNPs/MoS2/rGO increases,
the electron transfer resistance of the interface may increase,

FIGURE 2 | SEM images of (A) AgNPs (B) MoS2/rGO, and (C) AgNPs/MoS2/rGO.

FIGURE 1 | Schematic diagram for the preparation of the AcTnl/AgNPs/MoS2/rGO sensor for cTnI detection.
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while there may be some interference with the detection of cTnI.
Therefore, 5 μL of AgNPs/MoS2/rGO dispersion was obtained as
the optimal condition.

The concentration of AcTnI affects the charge transfer
efficiency of the electrode interface for detecting cTnI.
Figure 6A shows the effect of different AcTnI concentrations
on the DPV signal of AgNPs/MoS2/rGO. When the
concentration reaches 3 μM, the DPV response is significantly
reduced, indicating that the surface active site of the sensor may
be fully occupied. Considering the size of the aptamer itself, the
tightly packed surface prevents the aptamer from specifically

binding cTnI. because we chose 3 μM AcTnI as the optimal
concentration for the aptamer sensor.

The incubation time of cTnI is also another important factor
affecting cTnI detection. As shown in Figure 6B, the
electrochemical signal did not change significantly after the
incubation time of AcTnI reached 30 min. This indicates that
the bioaffinity between AcTnI on the electrode surface and the
cTnI target saturated. On the other hand, the current response
stabilizes due to the spatial potential resistance effect, leading to a
decrease in sensitivity to the target. Therefore, we chose 30 min as
the optimal incubation time.

FIGURE 3 | CV of GCE, rGO/GCE, MoS2/rGO/GCE and AgNPs/MoS2/rGO/GCE in 5.0 mM [Fe(CN)6]
3-/4-. Scan rate: 50 mV/s.

FIGURE 4 | EIS of GCE, rGO/GCE, MoS2/rGO/GCE and AgNps/MoS2/rGO/GCE in 5.0 mM [Fe(CN)6]
3-/4-.
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FIGURE 5 | The effect of (A) amount of AgNPs and (B) AgNPs/MoS2/rGO composite for sensing performance (n ≥ 3).

FIGURE 6 | The effect of (A) amount of AcTnI and (B) incubation time for sensing performance (n ≥ 3).

FIGURE 7 | (A) DPV curves of AcTnI/AgNPs/MoS2/rGO/GCE toward 0 pg/ml, 0.3 pg/ml, 1 pg/ml, 5 pg/ml, 10 pg/ml, 50 pg/ml, 0.1 ng/ml, and 0.2 ng/ml (B)
Linear relationship between current and logarithm of the cTnl concentrations (n ≥ 3).
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After optimizing the parameters, we immersed AcTnI/AgNPs/
MoS2/rGO/GCE in different concentrations of cTnI solutions.
Then, we detected the electrochemical signal by DPV in a 5 mM
[Fe(CN)6]

3-/4- solution containing 0.5 M KCl (Figure 7A). We
recorded the linear relationship between the peak value of DPV
and the negative logarithm of the concentration of the cTnI
standard solution to establish a standard working curve
(Figure 7B). It can be seen that the DPV signal correlates well
with the negative logarithm of the cTnI concentration in the
range of 0.3 pg/mL–0.2 ng/ml with the linear equation: Ip (μA) �
−2.73 logc (g/ml) −6.41 (R2 � 0.9947) and the limit of detection
limit was 0.27 pg/ml.

To examine the performance of the aptamer sensor, we
tested the reproducibility, stability and specificity of AcTnI/
AgNPs/MoS2/rGO/GCE. The RSD of 1.72% was recorded by
checking 5 parallel measurements on the same sensor,
indicating that the electrochemical aptamer sensor for cTnI
detection has good reproducibility. The stability of the
prepared aptamer sensor was further evaluated by
measuring the DPV current of the modified electrode after
one month. The electrochemical signal before and after storage
changed slightly with a 5.2% decrease in the peak DPV,
demonstrating the good stability of the proposed
electrochemical aptamer sensor for cTnI detection.

To determine the selectivity of the developed aptamer sensor, a
series of proteins were used for comparison, such as: urea (UA),
glucose (Glu), myoglobin (MB), dopamine (DP), and hemoglobin
(HB). Among them, the concentration of cTnI was 50 pg/ml and
the concentration of other infectants was 0.2 ng/ml due to the
excellent specific discrimination between cTnI and AcTnI, the
aptamer sensor for interferers showed negligible change in
current response compared to cTnI, and the results are shown
in Figure 8. The proposed aptamer sensor has good selectivity
and specific anti-interference ability.

CONCLUSION

In summary, an aptamer electrochemical sensor was constructed
using AgNPs/MoS2/rGO nanocomposite. By combining the
excellent properties of the composite (large surface area and
good electrical conductivity) with the aptamer (high affinity
and specificity), a label-free electrochemical aptamer sensor
was developed for the sensitive and selective detection of cTnI.
After the optimizations, the proposed aptamer sensor can linear
detect cTnl between 0.3 pg/mL–0.2 ng/ml with a low limit of
detection of 0.27 pg/ml. In addition, the proposed aptamer sensor
has good selectivity and specific anti-interference ability.
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