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How can artificial intelligence models assist PD-L1 expression
scoring in breast cancer: results of multi-institutional ring
studies
Xinran Wang1,7, Liang Wang 2,7, Hong Bu3, Ningning Zhang1, Meng Yue1, Zhanli Jia1, Lijing Cai1, Jiankun He1, Yanan Wang4, Xin Xu5,
Shengshui Li6, Kaiwen Xiao2, Kezhou Yan2, Kuan Tian2, Xiao Han2, Junzhou Huang2, Jianhua Yao2✉ and Yueping Liu 1✉

Programmed death ligand-1 (PD-L1) expression is a key biomarker to screen patients for PD-1/PD-L1-targeted immunotherapy.
However, a subjective assessment guide on PD-L1 expression of tumor-infiltrating immune cells (IC) scoring is currently adopted in
clinical practice with low concordance. Therefore, a repeatable and quantifiable PD-L1 IC scoring method of breast cancer is
desirable. In this study, we propose a deep learning-based artificial intelligence-assisted (AI-assisted) model for PD-L1 IC scoring.
Three rounds of ring studies (RSs) involving 31 pathologists from 10 hospitals were carried out, using the current guideline in the
first two rounds (RS1, RS2) and our AI scoring model in the last round (RS3). A total of 109 PD-L1 (Ventana SP142)
immunohistochemistry (IHC) stained images were assessed and the role of the AI-assisted model was evaluated. With the assistance
of AI, the scoring concordance across pathologists was boosted to excellent in RS3 (0.950, 95% confidence interval (CI): 0.936–0.962)
from moderate in RS1 (0.674, 95% CI: 0.614–0.735) and RS2 (0.736, 95% CI: 0.683–0.789). The 2- and 4-category scoring accuracy
were improved by 4.2% (0.959, 95% CI: 0.953–0.964) and 13% (0.815, 95% CI: 0.803–0.827) (p < 0.001). The AI results were generally
accepted by pathologists with 61% “fully accepted” and 91% “almost accepted”. The proposed AI-assisted method can help
pathologists at all levels to improve the PD-L1 assay (SP-142) IC assessment in breast cancer in terms of both accuracy and
concordance. The AI tool provides a scheme to standardize the PD-L1 IC scoring in clinical practice.
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INTRODUCTION
Breast cancer is one of the most common malignant tumors for
women worldwide1. Programmed death 1 (PD-1)/programmed
death ligand-1 (PD-L1) immunotherapy is one of the most
promising treatments for breast cancer, relying on and helping
the patient’s immune system to fight cancers2–4, and offering a
personalized and less invasive alternative therapy. However, only a
portion of patients with breast cancer responds to immunother-
apy. Nevertheless, the Impassion 130 study indicated clinically
meaningful prolonged overall survival for PD-L1 positive patients
with tumor-infiltrating immune cell (IC) score greater than 1%
when atezolizumab combined with nab-paclitaxel were used as
first-line treatment for unresectable local advanced or metastatic
triple-negative breast cancer (TNBC)5. PD-1/PD-L1 can therefore be
used as an effective biomarker to identify patients suitable for
immunotherapy6. Following clinical trial reports, the U.S. Food and
Drug Administration (FDA) has approved Ventana PD-L1 (SP142)
as the companion diagnostic tool for PD-L1 immunotherapy7. As
the main manufacturer of SP142 assays, Roche proposed a
guideline for SP142 staining assessment by estimating the IC
ratio8. However, this scoring guideline is based on description and
examples, and is therefore subjective. Moreover, several studies
with a broad range of evaluators have shown that pathologists
have low rates of agreement and repeatability in assessing PD-L1
expression9–12. Consequently, an objective, repeatable, and
accurate PD-L1 evaluation method is desirable.

The emergence of digital image analysis is also expected to
improve this current situation. The potential of artificial intelli-
gence (AI) technologies such as deep learning algorithms in
helping pathologists improve diagnostic accuracy, concordance,
and efficiency had been reported13–18. Specifically, several AI
models have been developed for PD-L1 analysis: for instance, a
deep learning model was developed for epithelial cell segmenta-
tion in PD-L1 images19–21, and a semi-supervised method was
proposed for stratification of non-small cell lung carcinoma
(NSCLC) for anti-PD-L1 immunotherapy by registering images at
different magnifications22. Nevertheless, most existing AI models
for PD-L1 evaluation have been developed for NSCLC and few
applications on breast cancer can be found in the literature.
On the other hand, multi-institutional ring studies are a

standard and effective way to evaluate the reproducibility and
concordance of a scoring protocol. The blueprint project11

compared four PD-L1 assays on NSCLC tumors and evaluated
the reliability of PD-L1 scoring. This project recruited 3 patholo-
gists to evaluate 39 specimens in phase I and 18 pathologists to
score 81 PD-L1 stained samples in phase II studies. Moreover, a
recent ring study9 evaluated the concordance of PD-L1 IC scoring
on 100 patients with TNBC across 19 pathologists. Ultimately,
these reader studies indicate that current PD-L1 scoring protocols
suffer from poor reproducibility across multiple pathologists.
Furthermore, these studies only evaluated the pathologists’
performances and did not involve AI in the trial.
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Advances in AI technology make its adoption imperative in
assisting pathologists who score PD-L1 expression. In this
investigation, we proposed a deep-learning AI model that
quantifies both aggregated and scattered ICs in a unified
framework. We organized one of the largest multi-institutional
ring studies to establish a PD-L1 evaluation standard with an
emphasis on evaluating the role of AI in PD-L1 expression
assessment, the acceptance of AI by pathologists, and the
limitation of the IC scoring protocol in current clinical practice.

RESULTS
In this section, we report the outcomes of the multi-institutional
ring study using the following aspects: concordance, accuracy,
and acceptance of AI results. The full continuous, 2-category and
4-category PD-L1 (SP142) IC scores evaluated by the 31
pathologists using the 109 test images in the three-ring studies
are shown in Fig. 1.

Results of AI-assisted PD-L1 scoring model
The visual results of our AI-assisted PD-L1 scoring model are shown
in Fig. 2a–f. We evaluated the performance of the proposed AI-
assisted model on the 109 test images using the 2-category and 4-
category gold standard scores provided by expert pathologists.
The 2-category score accuracy was 0.963 (105/109 images), with an
AUC of 0.888 and a 2-class weighted F1 score of 0.962. For the 4-
category score, accuracy was 0.752 (82/109 images), with an AUC
of 0.797, and 4-class weighted F1 score of 0.764. It can be noticed
that four images fail to correct the estimated for the 2-category
scoring. One case was underestimated on the stain regions, and
three cases were falsely over-estimated on stain regions with the
slightly underestimated necrotic region. It indicates that the
threshold-based stain region segmentation method has a few
optimization potentials. Details of the four cases are shown in
Supplementary Fig. 1. Furthermore, the end-to-end epithelium and
necrotic region detection neural network models were evaluated
by comparing the performance with and without these models.
With the epithelium and necrotic region detection, the RMSE of the
continuous IC score reduced from 0.10 to 0.05, and the MAE
reduced from 0.05 to 0.03. Several examples are shown in
Supplementary Fig. 2. In addition, the concordance of the AI
model on two different whole slide scanners from different
vendors was evaluated. We rescanned all slides used in this study
on a different scanner (NanoZoomer S210 Digital slide scanner
C13239-01, Hamamatsu Photonics K.K., Japan) at ×40 magnifica-
tion with the scanning resolution of 0.2285 µm/pixel. Same image
patches were selected, resized to the same resolution, and white
balanced. The ICC31 was used to evaluate the concordance of AI-
predicted IC scores from images of the two scanners. The
concordance score was “excellent” (ICC31= 0.98, 95% CI:
0.97–0.99), which indicates that our AI model generates consistent
results on different scanners. Several examples of images from the
two scanners can be found in Supplementary Fig. 3.

Concordance analysis for continuous PD-L1 (SP142) IC scores
in each ring study
The concordance results in each respective ring study are shown
in Fig. 3a. ICC31 was 0.674 (95% confidence interval (CI):
0.614–0.735) for RS1, and 0.736 (95% CI: 0.683–0.789) for RS2.
Both values were <0.75 and were hence interpreted as “moderate”
concordance. With the assistance of the proposed AI model, ICC31
for RS3 improved to 0.95 (95% CI: 0.936–0.962), which is an
“excellent” concordance.
Among all the pathologists, the intermediate group out-

performed the senior and junior groups in RS1 and RS2 (p <
0.001). However, with the help of the AI-assisted model, the junior
group achieved the best ICC31 (0.973, 95% CI: 0.965–0.980, p <

Fig. 1 Full IC score from 31 pathologists for 109 images in three-
ring studies. a Continuous score. b 2-category score. The colors red
and yellow represent the category scores 1 and 2, respectively. c 4-
category score. The colors red, green, blue, and yellow represent the
category scores 1, 2, 3, and 4, respectively.
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0.001) in RS3, and the senior group achieved the largest ICC
improvement, from 0.629 (95% CI: 0.562–0.698) in RS2 to 0.927
(95% CI: 0.906–0.945) in RS3 (p < 0.001). We found that all three
groups benefited from the AI-assisted model when results are
compared between RS2 and RS3 (p < 0.001).

Concordance analysis for categorical IC scores in each ring
study from all pathologists
Figure 3b, c shows the FKS results for the 2-category and 4-
category PD-L1 (SP142) IC scores. For the 2-category score, the
concordance was improved to “strong” (0.856, 95% CI: 0.848–0.865)
with AI-assisted model in RS3 from “moderate” (0.628, 95% CI:
0.619–0.636) in RS1 (p < 0.001), and “weak” (0.543, 95% CI:
0.535–0.552) in RS2 (p < 0.001). For the 4-category score, scoring
concordance was “moderate” (0.780, 95% CI: 0.775–0.786) in RS3,

with a significant improvement (p < 0.001) from “weak” in RS1
(0.431, 95% CI: 0.425–0.436) and RS2 (0.471, 95% CI: 0.465–0.476).

Intra-pathologist concordance
The average intra-pathologist concordance (ICC21) between RS1
and RS2 was 0.737 (95% CI: 0.595–0.819). The ICC21 for each
pathologist is shown in Fig. 3e. Average ICC21 scores were 0.601
(95% CI: 0.443–0.709), 0.866 (95% CI: 0.751–0.919), and 0.758 (95%
CI: 0.605–0.840) for the senior, intermediate, and junior patholo-
gists, respectively (Fig. 3d).The intermediate group had better
intra-pathologist concordance than the senior and junior groups
(p < 0.001). In addition, the concordance of 2-category IC scoring
was evaluated. 5.8% (196 out of 3379) binary scores were different
for the same pathologist between RS1 and RS2 (Supplementary
Fig. 4). Similarly, we calculated the intra-pathologist concordances

Fig. 2 Visual results of our AI-assisted PD-L1 scoring model. a Input image of X20 magnification. b Hue channel of the transformed image.
c PD-L1 stained cells mask Mstain, including the stained cells inside the epithelial and necrotic regions. d Epithelium mask Mepithelium . e IC mask
MIC, which is the result after excluding stained cells inside the epithelial and necrotic regions and then image morphology processing on
Mstain. f Input image overlaid with IC mask MIC. Predicted IC score = 1.7 %. g–i The histograms of HSV image channels for stained PD-L1 (SP142)
IC regions. Two gray dashed lines indicate the threshold on each channel.
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between RS1 and RS3, and between RS2 and RS3 (Supplementary
Fig. 5) the average ICC21 of RS1–RS3 was 0.756 (95% CI:
0.580–0.845), and the one of RS2-RS3 was 0.784 (95% CI:
0.642–0.858).

Accuracy evaluation in ring studies
For the 2-category scoring (Fig. 4a), pathologists alone achieved
relatively high performance in terms of average accuracy in RS1
and RS2, at 0.935 (95% CI: 0.926–0.945) and 0.92 (95% CI:
0.899–0.942), respectively. AI assistance gave a significant
accuracy boost (p < 0.001) in RS3 (0.959, 95% CI: 0.953–0.964),
which improved 4.2% from RS2. For 4-category scoring (Fig. 4b),

the average scoring accuracy also had a significant improvement
(p < 0.001) of 14.7% from RS2 to RS3 through AI assistance, at
0.815 (95% CI: 0.803–0.827) in RS3 vs. 0.710 (95% CI: 0.665–0.756)
in RS2.
Despite having different levels of experience, the pathologists

showed comparable scoring accuracy, especially after the AI-
assistance. For 2-category scoring, the senior, intermediate, and
junior groups had accuracy improvements of 1.7% (p < 0.001),
4.9% (p < 0.001), and 6.1% (p < 0.001) from RS2 to RS3, respec-
tively. Similarly, for 4-category scoring, the senior, intermediate,
and junior groups had improvements of 16.9% (p < 0.001), 13.9%
(p < 0.001), and 13.1% (p < 0.001) from RS2 to RS3, respectively.

Fig. 3 The concordance of IC scoring. The white and black circles indicate the values, and the red bars indicate a 95% confidence interval.
a Continuous concordances ICC31 in three-ring studies. b The FKS concordances for a 2-category score. c The FKS concordances for a 4-
category score. d Boxplots of intra-pathologist concordances ICC21 between RS1 and RS2 for all and three levels of pathologists. The center
bar of each box represents the median value, and the box body extends from the 25th to the 75th percentile of values in one group. Black
circles indicate the ICC21 of the individual pathologists, and black diamonds indicate the outliers. e Intra-pathologist concordances ICC21 for
individual pathologists between RS1 and RS2. The shadow area indicates the 95% CI.
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Figure 4 also shows that pathologists in the different experience
groups demonstrated very similar accuracy in RS3 despite their
performances having varied greatly in RS1 and RS2, both within
and across groups (Supplementary Table 1).

Acceptance of AI results
In this section, we analyze the difference between the patholo-
gists’ IC scores and the reference AI scores in RS3 to evaluate the
acceptance of AI results by the pathologists. We considered that
the AI score is “fully accepted” by a pathologist if the score
difference is smaller than 1% absolute value (Fig. 5a) and “almost
accepted” if smaller than 5% (Fig. 5b), excluding AI scores that
change score categories. We also considered that the AI score is
“categorically accepted” if the pathologist’s score and the AI score
are in the same category (Fig. 5c, d).
As shown in Fig. 5a, 60.6% of the AI scores were “fully accepted”

by pathologists on all images, with senior pathologists at 56.7%,
intermediate pathologists at 60.6%, and junior pathologists at
65.0%. When considering “almost acceptance” by all pathologists,
the rate improved to 91.4%.
The acceptance of the 2- and 4-category AI scores are illustrated

in Fig. 5c, d, respectively. For the 2-category scores, on average, all
pathologists, senior, intermediate, and junior groups had 98.3%,
98.1%, 98.4%, and 98.5% similarity in category scores as the AI,

respectively. For the 4-category, all pathologists and the three
groups had 87.1% similarity in category score as the AI on average,
whereas the junior group had smaller acceptance variability than
the other two groups.

DISCUSSION
PD-L1 is an important biomarker whose accurate assessment is
essential in cancer patient triage for immunotherapy. Drug
companies and pathologist associations have proposed several
interpretation guidelines targeted at reliable and consistent PD-L1
expression assessment. However, several reader studies9,11 have
shown that reproducibility and concordance are poor across
pathologists. Pathologists are good at identifying and locating
cancer regions, but are not efficient at counting and computing,
which are the strengths of AI models. We speculate that
combining the strengths of pathologists and AI models by
providing pathologists with easily perceived AI counting results
is the way to improve pathologists’ scoring reliability. To validate
this concept, we conducted one of the largest reader studies for
PD-L1 expression scoring. The Blueprint study recruited 18
pathologists evaluating 81 specimens of lung cancer and
Reisenbichler’s study recruited 19 pathologists reading 100 breast
cancer cases9,11. In the present study, we organized 31
pathologists with various experience levels to score 109 PD-L1
stained breast cancer images. Furthermore, we proposed an AI-
assisted scoring algorithm based on deep-learning methods to
help pathologists with the PD-L1 IC scoring. To the best of our
knowledge, this study involved specifically AI method in PD-L1
breast cancer evaluation. In addition to the consistency and
accuracy evaluation similar to most other reader studies, our ring
study had been designed to answer the following questions: (1)
what is AI’s role in PD-L1 expression assessment? (2) to what
extent can AI models help pathologists of various experience
levels? (3) how much do pathologists trust and accept AI? and (4)
what is the best practical scoring scheme for PD-L1 expression in
breast cancer?
What is AI’s role in PD-L1 expression assessment? Human

pathologists are not good at precisely evaluating ratios, especially
when hundreds of cells are presented. Therefore, Roche’s guide
and the Impassion130 protocol used 1% of PD-L1 (SP142) IC
expression to stratify patients into two groups; they demonstrated
a prolonged overall survival rate for PD-L1 (SP142)-positive
patients when IC score is >1%8. The 2-category scoring scheme
served the purpose of a rough but reliable assessment. Our study
demonstrated that the 2-category concordance across patholo-
gists was merely 0.628 since borderline cases (those around 1% IC)
are hard to be reliably differentiated by pathologists. Binary
stratification can decide whether a patient should receive
immunotherapy, but this is not sufficient for personalized therapy,
especially since patients with different levels of PD-L1 expression
may need to receive different therapeutic plans in terms of drug
dose and therapy length. Some difficult cases, especially those
with PD-L1 scores around 1%, might be misinterpreted by
pathologists, and thus result in the misclassification of patients.
In routine diagnosis, pathologists score PD-L1 as negative by
completely relying on their visual perception. Positive patients
misclassified as negative could be deprived of the benefits of
immunotherapy, whereas negative patients scored as positive
could be exposed to unnecessary, costly, and potentially toxic
therapy. Because of these limitations, the 4-category scoring
scheme was used in our study, which allowed for more granular
patient stratification. However, this scheme also increased scoring
difficulty and lowered the concordance, which was merely 0.471 in
RS2. On the other hand, AI-assisted scores gave pathologists a
ballpark estimation, making them more confident in providing
multi-category scores. Our study demonstrated that the 2-
category concordance was boosted by 0.228 and the 4-category

Fig. 4 Boxplots of scoring accuracies in three-ring studies for
pathologists in different levels. The center bar of each box
represents the median value, and the box body extends from the
25th to the 75th percentile of values in one ring study. Black circles
indicate the accuracy of the individual pathologists, and black
diamonds indicate the outliers. a 2-category score. b 4-
category score.
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concordance by 0.309 with AI assistance. The improved ICC in RS3
also suggested that in addition to a defined guideline, the AI-
assisted diagnosis model with quantified reference feedback
might be a valuable tool for pathologists to standardize the
process of PD-L1 expression assessment in breast cancer. Our
experiments were conducted on selected regions from a WSI with
the manual exclusion of artifactual staining regions, since we
wanted to ensure that all pathologists read the same content in
the regions containing mostly the epithelium, interstitial, and
stained regions. However, region selection is also part of the
scoring process and should have been evaluated separately. In
daily practice, the pathologists have full control of the workflow,
and the algorithm just provides the tedious computation part. Our
experimental setup reflected the daily practice and the AI model
relieved the pathologists from the uncertain and tedious counting
work. Moreover, different tiles from the same WSI could be
selected if the pathologists worked independently. We conducted
an experiment evaluating two individual pathologists’ tile selec-
tion on 20 WSIs. Three tiles were selected from each WSI. With the
assistance of the AI models, two pathologists scored their tiles and
the average IC score of each WSI. The ICC31 was computed to
compare the IC score results by the two pathologists, which was
regarded as “excellent” (ICC31= 0.967, 95% CI: 0.92–0.99). Details
can be found in Supplementary Fig. 6. Based on our results, AI
models can have a big role in helping pathologists evaluate
borderline cases and provide assistance in more granular scoring
for personalized treatment. Moreover, applying this approach to
routine diagnostic practice could improve the diagnostic effi-
ciency of pathologists, and relieve the pressure especially from
those who lack more experience.
To what extent can AI models help pathologists of various

experience levels? In our study, the pathologists had been divided
into three levels according to their level of experience. These
groups of different levels demonstrated different performances in
RS1 and RS2. For instance, intermediate pathologists had the best
concordance in continuous scoring and 4-category scoring,
possibly because they have a good balance of reading experience

(good for senior pathologists) and counting capability (good for
junior pathologists). Senior pathologists were more confident and
their own habits in diagnosis may not be easily influenced. They
performed best in 2-category scoring (FKS: 0.694 vs. 0.513 and
0.431), where the cutoff value of 1% has been proven meaningful
in clinical trials. However, with the assistance of AI in RS3, all
pathologists boosted their performances and the gaps among the
different levels became smaller. These findings indicate that AI can
not only help improve the consistency of pathologists with various
experience levels, but also help level the playing field, closing the
experience gaps across pathologists.
How much do pathologists trust and accept AI? Our AI model

detected and marked the PD-L1 stained ICs in the intratumoral
and peritumoral stroma, and also computed the IC score based on
the Roche guide. These AI results had been provided to
pathologists as references in RS3. If a pathologist trusted the AI
result, he/she will take the AI score with little or no modification;
otherwise, the pathologist will adjust the AI score according to
their perception on whether the AI over-computed or under-
computed the IC score. Results from RS3 indicate that pathologists
generally trust AI, with only 7% of all AI scores adjusted by more
than 5%. As we have observed, the AI model is not 100% accurate.
It could miss weakly stained cells or mistakenly recognize artefacts
as stained cells. Epithelial segmentation could also have errors.
Furthermore, our AI model can not reliably choose the right
regions for scoring. At their current development stage, AI models
are not designed to replace pathologists, but rather to assist
pathologists. Therefore, it is important that AI results are
presented in an intuitive way, so that pathologists can quickly
grasp the meaning and make judgments based on these AI scores.
We need to combine the strengths of the pathologists and AI
models. A pathologist with the assistance of AI is better than a
pathologist alone.
What is the best practical scoring scheme for PD-L1 expression

in breast cancer? PD-L1 expression scoring currently plays a
significant role in the immunotherapy for an increasing number of
advanced carcinomas23–25. Nevertheless, standardization of this

Fig. 5 Boxplots of acceptance of continuous and categorial AI scores. The center bar of each box represents the median value, and the box
body extends from the 25th to the 75th percentile of values in one group. Black circles indicate the value of individual pathologists, and black
diamonds indicate the outliers. The larger black circles with white inside indicate the average value of one group. a “Fully accepted” of
continuous AI score with a scoring difference <1%. b “Almost Acceptance” of continuous AI score with scoring difference < 5%. c Acceptance
of 2-category AI score. d Acceptance of 4-category AI score.
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subjective testing has not been achieved. With the AI-assisted
model, we tried to establish a PD-L1 evaluation standard in breast
cancer and improve the current situation of poor consistency in
PD-L1 scoring among pathologists due to subjective assessment
or lack of experience. Moreover, the insights from this study may
also be applicable to the standardization of other diagnostic
biomarkers in other carcinomas. Our findings show that the
consistency of both 2-category and 4-category scoring signifi-
cantly improved. At present, the current clinical studies suggest
prolonged overall survival for PD-L1-positive patients with IC
scores >1% in breast cancer8. However, with the development of
clinical trials and the increasingly prominent role of precision
medicine, the cutoff value of PD-L1 expression should be
optimized to accommodate the benefits of immunotherapy for a
variety of patients. Therefore, a more granular classification and
more accurate interpretation of PD-L1 scoring could be a trend
that would provide the basis for patients to obtain personalized
treatment and an accurate therapeutic schedule. With the fine-
grained estimated IC score, our proposed method could work with
various cutoff values from different clinical applications and trials
and could even propose a reliable cutoff value for precision
medicine.
The PD-L1 (SP142) IC scoring guide is currently adopted in

clinical practice. This guide illustrates two IC patterns, aggregated
and scattered, and suggests different strategies for scoring each.
For the aggregated pattern, a polygon enclosing the aggregation
is delineated for the IC area. For the scattered pattern, a few
matching templates are provided for a few concrete scores.
Therefore, it is difficult for pathologists to come up with a score
when both patterns are presented in one image. Hence, the
number of ICs instead of the areas of ICs may be a better indicator
of PD-L1 expression, in which case the space between ICs will not
be a factor and the two patterns can be processed in the same
way. Currently, our AI model handles this problem with a unified
framework, where scattered cells are first detected and then the
spaces between aggregated cells are closed using morphological
operations. Our model is straightforward in using the number of IC
cells instead, such as the tumor proportion score (TPS) scoring in
lung cancer. PD-L1 evaluation is subjective and to a great extent
relies on the experience of the pathologists. In our study, a
quantifiable method made the objective evaluation of PD-L1
possible. The proposed AI model could assist pathologists in
overcoming the confusing “aggregated” and “scattered” patterns
in the Roche guide.
However, this study has several potential limitations. The AI

model had been developed and trained following the Roche
guide and a few examples of 2-category scoring. The guide had
been based on the results of a previously reported clinical trial,
and hence could be subject to change after future new trials.
Moreover, the gold standard scores used in our study had been
based on consensus reading from three experienced pathologists,
which are still somewhat subjective. More rigorous gold standard
scores based on manual annotation of all PD-L1 stained ICs may
be necessary to evaluate the true performance of AI models and
pathologists. Also, tiles with non-tumor regions such as cancer
in situ, normal areas, and non-specific staining, etc., were manually
excluded in our study. Those regions can be detected by our
region detection methods that have been developed after the
experiment and can be integrated in the future. Besides, the
concordance analysis and the P-values obtained from the 109
images in our study show a preliminary tendency that the AI-
assisted model could be helpful for the IC scoring of pathologists.
However, it is reasonable that more cases will certainly increase
the statistical power. Furthermore, although all three ring studies
have been conducted on the same online system. The patholo-
gists used different devices, such as personal computer, laptop,
cell phone, or tablet computer, to access the online system, which

may have contributed to part of the scoring disparity. This factor
was not evaluated in our study.
In conclusion, we have developed an AI-assisted model for the

quantitative calculation of PD-L1 staining on IC. A multi-
institutional ring study demonstrated that AI-assisted scoring
could help pathologists improve in PD-L1 assay (SP-142) assess-
ment in terms of both accuracy and concordance. The results
show that pathologists of all experience levels could benefit from
the AI-assisted model, and that the AI results are generally
accepted by pathologists.

METHODS
Patient cohort and data preparation
One hundred tumor resection samples (formalin-fixed, paraffin-embedded
blocks) from 100 patients with invasive breast cancer were collected in the
fourth hospital of Hebei Medical University from January to June 2019.
Patient characteristics are listed in Table 1. For each block, 4 μm sections
were cut using the LEICA RM2255 slicer. These were baked on the TKY-TKA
spreader at 65 °C for 1 h and then stained with PD-L1 at a dilution of 1:50
(clone SP142, Ventana Medical Systems, Tucson, USA) using the OptiView
DAB IHC detection kit, strictly following the manufacturer’s instructions on
benchmark XT automatic immunohistochemistry (IHC) (BenchMark ULTRA,
Ventana, Tucson, USA).
All immunostained slides were scanned using the Unic digital scanner

(precision 600 Series, Unic Technologies, INC. Beijing, China) at ×40
magnification. The data was prepared in the following steps. Firstly, from
the scanned whole slide images (WSI), two pathologists manually
identified the tumor regions. They also annotated the necrosis area,
cancer in situ, and normal areas by strictly following the scoring guideline
of Ventana PD-L1 (SP142) in breast cancer provided by Roche guide8.
Secondly, from the tumor regions, sliding windows with no overlap were
scanned through the tumor regions and generated 4246 image patches.
The image size was 3290 × 3290 at 0.344 µm/pixel, and resized to 2160 ×
2160 as 0.524 µm/pixel, which was approximate to ×20 objective
magnification of a normal microscope. After that, images with manually
identified necrosis area, cancer in situ, and normal areas were excluded,
and 2395 image patches remained. Then, considering the workload, 109
image patches were randomly proposed from the 2395 image patches,
with the criteria that the proposed patches should not have non-specific
staining, focal contamination, and folding, and should not be similar to
other patches in the set. At last, the selected 109 image patches were used
for this study. The STARD flow diagram is shown in Supplementary Fig. 7.
The images were then uploaded onto an online system for reviewing and
scoring.

Table 1. Patient characteristics of 100 cases of invasive breast cancer.

Characteristics Case number

Age

≤50 39

>50 61

Histologic type

Invasive carcinoma of no special type 97

Invasive lobular carcinoma 2

Metaplastic carcinoma 1

Histological grade

I 3

II 37

III 60

Clinical stage

I 28

II 57

III 15

IV 0
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Ethics statement
All tissues and data were retrieved under the permission of the
institutional research ethics board of the Fourth Hospital of Hebei Medical
University with the declaration number of 2020KY112 on 24 February 2020,
since it did not involve interaction with human subjects and/or use of
individual’s personal identifying information. Informed consent was not
required for the use of existing pathological materials with no reveal of
identifiable patient information.

Pathologist recruitment
We organized a multi-institutional ring study for Ventana PD-L1 SP142
assay assessment in invasive breast cancer, recruiting 31 board-certified
pathologists from 10 provincial and municipal hospitals. The pathologists
were divided into three groups according to their experience: senior (≥10
years, 11 pathologists), intermediate (≥5 years but <10 years, 10
pathologists), and junior (≥2 years but <5 years, 10 pathologists). All
pathologists attended training sessions on the Roche PD-L1 scoring
guideline.

Ring study design
The ring studies comprised three rounds of experiments. The purpose of
ring study 1 (RS1) was to evaluate the scoring concordance across
pathologists in the current clinical practice. Pathologists provided PD-L1 IC
scores through an online system after receiving training on the Roche PD-
L1 (SP142) IC scoring guideline. During RS1, the pathologists logged onto
an online website developed by our team (Supplementary Fig. 8), viewed
the images, estimated the area of stained ICs, provided the IC score, and
entered their assessments on each of the 109 image patches. After a 2-
week washout period, ring study 2 (RS2) was carried out, with the purpose
of evaluating intra- and inter-observer concordance. The pathologists
performed scoring in the same manner as in RS1. After another 2 weeks of
washout period, ring study 3 (RS3) was conducted. Here, the emphasis was
on evaluating the role of AI assistance in PD-L1 scoring. The pathologists
performed the scoring once again using the same online system, but this
time with the assistance of IC score results from our AI model
(Supplementary Fig. 9). PD-L1 stained areas identified by our AI model
(described in the “AI-assisted IC scoring model” section) and the associated
IC scores were provided to the pathologists as reference. The pathologists
had the option to adjust the score based on the comparison between the
perceived stained areas and AI detected areas. In all three ring studies, the
pathologists viewed and scored the images independently and made use
of the same online systems. The images were randomly reordered in each
ring study.

IC scoring protocol
According to the Roche guideline, the IC score is defined as the areas of
PD-L1 stained IC (of any staining intensity) over the tumor area, which are
occupied by tumor cells and associated intratumoral and contiguous
peritumoral stroma8. In all three ring studies, the pathologists provided
continuous IC scores, ranging from 0 to 100%. In the Roche guideline, the
2-category score (<1% IC and ≥1% IC) was used to stratify patients for
immunotherapy. In addition, a 4-category score, i.e., at (0%, 1%),(1%, 5%),
(5%, 10%), and (10%, 100%) intervals, was proposed in another report26 for
a more granular stratification. Both categorical score schemes were
evaluated in the ring studies.
The gold standard for the categorical PD-L1 (SP142) IC scores of the test

images were provided through consensus reading from two experienced
pathologists who received formal training from Roche Diagnostics and

practiced PD-L1 (SP142) expression scoring in their routine clinical work.
Scoring disagreement between the two pathologists was resolved by a
third senior pathologist who joined the discussion to reach a consensus. All
these three pathologists were not involved in the ring studies.

Evaluation metrics and statistical analyses
Both score concordance and accuracy were evaluated in the three-ring
studies. The two-way mixed-effects intraclass correlation coefficient model
of consistency definition with single measurement (ICC31) was adopted for
the analysis of continuous IC score concordance27. The concordance was
regarded as “poor,” “moderate,” “good,” and “excellent” for the ICC values
in (0, 0.5), (0.5, 0.75), (0.75, 0.9), and (0.9,1.0), respectively11,27. The Fleiss’
kappa statistic (FKS) was applied for the concordance analysis on the 2-
and 4-category PD-L1 (SP142) IC scores28,29. FKS is an extension of Cohen’s
kappa for three raters or more30. The FKS can be interpreted as “weak,”
“moderate,” “strong,” and “near perfect” for its value in (0.4, 0.6), (0.6, 0.8),
(0.8, 0.9), and (0.9, 1), respectively11,31. Furthermore, intra-pathologist
scoring concordance between RS1 and RS2 was evaluated using a two-way
random effect absolute agreement model (denoted as ICC21)27. The
accuracy evaluation was represented by several metrics, including
accuracy, area under the curve (AUC), and weighted F1 score32. The
evaluation and statistical analyses were performed using Python program-
ming language version 3.6.5, with the Scikit-learn version 0.23.1 and
Pingouin version 0.3.3 packages.

AI-assisted IC scoring model
According to Roche’s interpretation guide for Ventana PD-L1 (SP142)
expression in patients with TNBC, IC are presented in the intratumoral and
contiguous peritumoral stroma that include lymphocytes, macrophages,
dendritic cells, and granulocytes. IC score is considered as the proportion
of tumor area that is occupied by PD-L1 staining IC of any intensity.
Therefore, we designed an AI-assisted PD-L1 IC scoring method following
this guideline, as outlined in Fig. 6. Due to the non-specificity of PD-L1
staining, both tumor cells in epithelial regions and ICs in intratumoral and
peritumoral stoma could be stained. The AI model had two parallel threads
to separately handle stain and tumor detections. The first thread detected
and segmented all staining cells of any intensity. The second thread was an
end-to-end network that segmented tumor epithelium and necrotic
regions. The results from the two threads were combined so that stained
cells in epithelial and necrotic regions can be excluded, leaving only ICs in
the intratumoral and contiguous peritumoral stroma regions.

PD-L1-stained cell detection and segmentation
We discovered that the PD-L1-stained cells can be better distinguished
from other cells in the hue property than in the original red, green, blue
(RGB) properties33. Therefore, we first transformed the image from the RGB
color space to the hue, saturation, value (HSV) color space and then
applied thresholds on the HSV space to obtain the initial detection34.
The thresholds were determined using training data from analysis of the

HSV histogram of PD-L1 stained cells, which are h1; h2½ �, s1; s2½ �, and v1; v2½ �
for the hue, saturation, and value channels, respectively. The training data
consisted of 25 image patches from the Roche guide8, with IC scores of 0%
(2 images), <1% (6 images), >1% (12 images), 2% (2 images), 5% (1 image),
15% (1 image), and 25% (1 image). The stained IC pixels of 25 Roche
images8 were used to determine the threshold. The RGB pixel values were
converted to HSV values and the histogram of the stained IC regions in the
training images were plotted in H, S, V channels, respectively (shown in Fig.
2g–i). By analyzing the histogram to include 95% of all stained IC pixels, we

Fig. 6 Overall pipeline of the AI-assisted model. The AI model had two parallel threads: the first thread detected and segmented all staining
cells; the second thread segmented tumor epithelium and necrotic regions. The ICs were obtained by combining the results of the two
threads.
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obtained the threshold of h1; h2½ �, s1; s2½ �, and v1; v2½ �, which were [101,
175], [40, 120], and, [40, 150], respectively. By applying these thresholds, a
binary mask of stained pixels Mstain can be obtained, with the pixel value 1
representing the PD-L1 stained pixels.
We then applied image morphological (opening and dilation) operations

on Mstain to smooth out the noise. First, a morphological erosion was
applied on the image with a 3 × 3 kernel, which removed small image
noise. Then, a dilation operation with a 3 × 3 kernel was adopted to restore
the stained regions.

Epithelium and necrotic region detection
We trained an end-to-end deep learning model (Linknet) to segment the
epithelial regions35. Linknet is a pixel-wise semantic segmentation network
based on an encoder-decoder architecture. The model for the epithelial
region segmentation was trained using 2,767 IHC image patches from 41
estrogen receptor, 37 progesterone receptor, and 394 Ki67 WSIs. The
necrotic region segmentation model was trained using 2079 image
patches from 255 PDL1 (SP142) WSIs. All the image patches were 832 ×
832 pixels with 0.848 µm/pixel. The epithelial and necrotic regions were
manually annotated on the image patches. The models were trained by
nearly 300 epochs by minimizing the mean square loss. The drop rate was
r= 0.8, the learning rate was 10–2 initially and decreased to 10–5 gradually,
and the batch size was 64. Image augmentations of random flip and
rotation were applied. The models were implemented by Python 3.6,
Tensorflow 1.14, and Cuda 10.0 with NVIDIA Tesla P40 GPU (RAM 24 G),
with details in ref. 36. As a result, a binary mask representing the epithelial
region Mepithelium was predicted from the deep learning model. Similarly,
we detected the necrotic region mask Mnecrotic.

Scoring
The effective PD-L1 (SP142) IC pixels mask MIC was then obtained by
calculating the intersection of Mstain and the inverse of Mepithelium+
Mnecrotic:

MIC ¼ Mstain \ Inv Mepithelium ∪Mnecrotic
� �� �

(1)

where the MIC is a binary image with pixel values of 0 and 1, and Inc (·)
calculates the inverse binary mask.
The effective IC mask MIC located the position of stained ICs in the

intratumoral and contiguous peritumoral stroma regions. Furthermore, in
the Roche guide there were two types of stained IC regions: aggregated
and scattered (Supplementary Fig. 10). In the aggregated case, the
enclosed area of the aggregation was treated as the PD-L1 (SP142) IC
region. Therefore, we iteratively dilated MIC to fill up the space between
stained cells. The number of iterations was chosen so that the effective PD-
L1 (SP142) IC area matched the IC area in the reference images. The PD-L1
(SP142) IC score was then computed as the ratio of the area of stained PD-
L1 (SP142) ICs over the area of effective tumor region:

IC � score ¼
PN

i¼1 Dilation MIC½ � ¼ 1
N

; (2)

where
PN

i¼1 �ð Þ calculates the pixel number matching the condition ofPN
i¼1 Dilation MIC½ � ¼ 1, N is the total pixel number of mask MIC.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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