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Abstract: In this work, a knee sleeve is presented for application in physical therapy applications relat-
ing to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure
knee angles during exercise, and can support at-home rehabilitation methods. The development of the
device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using
a machine learning regressor. Subject-specific and device-specific models are analyzed and presented.
Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension
and internal/external rotation, respectively. Device-specific models average root mean square errors
of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device
presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model
the knee’s flexion/extension and internal/external rotation angles for rehabilitation purposes.

Keywords: nanocomposite stretch sensors; smart textile; rehabilitation

1. Introduction

The rate of invasive knee surgeries is rising. The number of total knee arthroplasty
(TKA) procedures has steadily increased over the past three decades [1,2]. Future projec-
tions estimate that the number will increase to 1.16–3.48 million annually by 2030 [2,3],
resulting in about 90 procedures per orthopedic surgeon per year in the United States [4].
ACL reconstructions are also expected to increase [5]. There is a proportional need for
post-operative physical therapy. However, recent estimates show a decreasing ratio of
physical therapists (PTs) per unit of population [6,7], partly due to burnout and career dis-
satisfaction [8] among PTs. The imbalance between the rising number of patients requiring
rehabilitation and a decreasing workforce is expected to grow.

Home-based rehabilitation methods have been developed to accommodate recent
trends relating to available PTs and the number of patients requiring therapy. Compared to
inpatient or outpatient rehabilitation, home-based interventions are less expensive [9–12]
and more accessible [12,13]. One critique of at-home rehabilitation, however, is decreased
regimen adherence that is usually seen in unguided or unsupervised rehabilitation [14].
However, important advantages of at-home rehabilitation, as described by patients, include
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ease of use of many currently available systems, decreased stress, and “not having to travel
when we are in pain” [13].

One solution to increase rehabilitation availability and patient accountability is sensor-
based technology. Such technology could potentially maintain quality of rehabilitative
care despite increasing patient-to-PT ratios. Sensor-based technology could also give the
PT quantitative feedback on the patient’s progress while performing at-home exercises.
However, sensor-based rehabilitation also has drawbacks: battery limitations, sensor drift
over time [15], device cost, and mobility. Furthermore, depending on the specific approach,
and its implementation, limitations might outweigh benefit and restrict widespread use of
sensor technology in physical rehabilitation. For example, if a sensor-based device exhibits
a large amount of drift, the error contained within the data may be large enough to render
the system unusable. This work presents a cost-efficient, low-power device to facilitate
passively supervised at-home rehabilitation via a knee sleeve instrumented with an array
of piezoresistive sensors.

High-deflection strain gauges are desirable for biomechanical measurement applica-
tions because of their large strain capacity and sensitivity to changes in strain [16,17]. There
are many types of high-deflection strain gauges used in biomechanics including liquid
metal [18–20], gel-based [21,22], polymer optical fiber [23–25], and piezoresistive sensors.
The most common filler materials used in high-deflection strain gauges are derivatives of
carbon [26–30], due to the favorable mechanical properties, high electrical conductivity,
and high thermal conductivity of carbon-based polymers.

A notable biomechanical application of polymer-based high-deflection strain gauges
is smart textiles, garments ranging from braces to shirts that are instrumented with sensors
to measure forces, positions, or pressure in the body [31]. For example, Shyr et al. [32]
estimated knee and elbow angles using a woven elastic textile. Gholami et al. [33] developed
a pair of leg tights capable of measuring knee flexion and extension with a high degree of
repeatability via machine learning regressors. These and other examples demonstrate the
potential for wearable sensors in TKA rehabilitation.

Although knee flexion and extension are essential for successful TKA rehabilitation,
the knee should not be considered a single degree of freedom joint. It has been well
established that transverse plane (internal/external of the tibia) rotation occurs naturally
in gait [34] and is a conjunct (or linked) movement necessary for full range of motion [35].
All mentions of internal/external in this work are concerning the tibia unless otherwise
noted. Post-operative tibia rotation correlates with post-operative flexion/extension [36],
but may not necessarily be correctly rehabilitated due to prosthesis misalignment [37]
or alterations in the patient’s gait patterns [36]. Recovery of normal ranges of rotation
of the tibia is especially imperative for flexion while bearing weight [38]. Inadequate
internal rotation of the tibia is a common cause of chronic pain after TKA [37]. Thus,
for a complete recovery of the knee’s pre-operative range of motion with decreased pain,
flexion/extension and internal/external rotation should be simultaneously monitored and
improved during rehabilitation.

This work utilizes a triphasic silicone/nickel composite [39–55] with two different
nickel filler materials—nickel nanostrands (NiNs, (18.76 wt%); Figure 1a) and nickel-
coated carbon fiber (NCCF, (3.13 wt%), Figure 1b). The resulting sensors are inversely
piezoresistive (negative correlation between strain and electrical resistance). A single
triphasic silicone/nickel sensor was previously used to measure knee flexion/extension [54],
but an array of these sensors can measure additional degrees of freedom in the knee. We
hypothesize that, by placing piezoresistive strain gauges in a garment across locations
of the anterior knee, where the skin experiences the greatest variance in strain, we can
accurately model and predict two rotational degrees of freedom: flexion/extension and
tibia/femur rotation, during open-chain knee flexion.

The device presented in this work was used to measure two rotational degrees of
freedom (flexion/extension and internal/external rotation) of the knee in healthy subjects
to determine the accuracy and repeatability of a 16-sensor, skin-mounted instrumented
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sleeve. Future application is intended to occur in physical therapy applications during TKA
rehabilitation. The technology represents a cost-efficient instrument that can eventually
be used to enhance at-home rehabilitation for TKA patients by providing a quantifiable
measurement of two rotational degrees of freedom. Future work will incorporate these
measurements into a real-time biofeedback system for improving the quality of at-home
physical therapy exercises [56].

(a) (b)

Figure 1. SEM images of the two electrically conductive filler materials. (a) SEM of NiNs. (b) SEM
of NCCFs.

2. Materials and Methods
2.1. Data Collection

The sensor system for this work, shown in Figure 2, was mounted onto an off-the-shelf
88% copper nylon, 12% spandex knee sleeve fitted so as not to squeeze the knee joint, yet
tight enough to not migrate during exercise. The positioning of an array of piezoresistive
sensors was developed based on previous work [57]. The fitting of the device was devised
with the guidance of an orthopedic surgeon and experienced PT. The instrumented knee
sleeve conforms to the skin of the knee without adhering to the skin and can be directly
donned and doffed by the user. A custom printed circuit board was developed to read
and simultaneously log data from all sixteen sensors. The sensors were connected with a
multiplexer into a Wheatstone bridge circuit that was excited with a 5-Volt square wave
at 300 Hz. The printed circuit board was externally powered and logged the data to an
accompanying computer through a serial connection.

(a) (b)

Figure 2. (a) shows the placement of the instrumented knee sleeve and markers used in the data
collection portion of the study. The placement of 16 sensors within the knee sleeve are shown in
yellow in (b). (a) Marker/sleeve placement. (b) Sensor placement.
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The sensor component materials, nickel nanostrands (18.76 wt%), nickel-coated carbon
fibers (3.13 wt%), and Ecoflex 00-30 silicone (Smooth-On Inc., Macungie, PA, USA), were
mixed and the resultant slurry was pressed into aluminum molds of three different lengths.
Five sensors were 21.0 mm long, ten were 31.2 mm, and one was 42.0 mm in length. All
sensors were 0.8 mm thick and 5.0 mm wide. Copper wires were embedded into the ends
of every sensor by placing 32-gauge wires within the slurry material before curing at 190 ◦F
for 90 min. Then, a thin layer of Libra gloss silicone from Zodiac (Kennesaw, GA, USA)
was spread onto a nylon/spandex knee sleeve over the desired location for each sensor
and cured at 190 ◦F for 30 min. This silicone layer created a base under each sensor that
prevented the Ecoflex silicone sensor adhesive from wicking into the nylon during the
curing process. Finally, sixteen sensors were adhered to the silicone footings and cured at
190 ◦F for 30 min. To connect the sensors to the circuit board described previously, 36-gauge
copper magnet wire was embroidered into a separate piece of rayon spandex cloth and
secured to the sleeve with stitch points between the sensors. By ensuring the additional
material fit more loosely than the knee sleeve, the layer of wires did not inhibit the motion
of the knee sleeve on a subject’s skin. The approximate manufacturing cost of this sensing
system was $7–8 plus electronics (roughly $20) and the cost of an off-the-shelf knee sleeve.

Previous work identified positions around the knee that are sensitive to knee motion
and informed the layout of the sensors in the device presented here [57]. The sensor
array was designed to capture redundant information in the array due to overlaps in
sensor orientation and positioning. Because PT goals are oriented strictly around knee
flexion/extension and internal/external rotation, the present work only included these
movements, but future work may include knee translation, valgus/varus motion, and
patella movement.

To develop a predictive model for the sensor array and validate the array performance,
an optical tracking system was used in conjunction with the sensor array. Twenty one mark-
ers were placed on the right leg and pelvis to measure knee kinematics (Figure 3). Motion
capture data were collected at 100 Hz, and sensor data were captured at 18.75 Hz/sensor.
The same computer captured both sets of data so the two sets could be synchronized with
respect to time using the computer’s local timestamp. Knee angles were calculated from the
marker data using a generic lower-body model in Visual3D (C-Motion, Germantown, MD).

(a) (b)

Figure 3. (a) Demonstration of open-chain knee flexion. (b) The captured motion with marker placement.

Eighteen healthy subjects (9 male, 9 female) between the ages of 20 and 47
(27.4 ± 7.1 years, mean ± SD), of varying body sizes (body mass indexes ranged from
18.3 to 33.9, with a mean of 23.9 ± 4.1) participated in this study, to determine the accuracy
and repeatability of the multi-sensor system. Information about the cohort can be found
in Table 1. Exclusion criteria for these subjects were past knee or hip surgeries or major
non-surgical knee injuries within the past two years. Subjects performed open-chain knee
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flexion (OCKF), an exercise that replicates the range of motion of movements seen during
post-operative TKA rehabilitation. OCKF was continually performed at an instructed pace
of “two seconds up and two seconds down” for 60 s.

Table 1. Biometric information of the cohort of subjects.

Gender Age Height (cm) Weight (kg) BMI

M 30 185 93 27.2
M 29 189 101.7 28.5
M 33 179.5 87.6 27.2
M 29 181 74.3 22.7
M 21 183 72.8 21.7
M 47 179 71.3 22.3
F 22 161.5 58.4 22.4
M 24 182.5 65.9 19.8
F 40 174 74.8 24.7
F 25 180 77.8 24.0
F 24 165 54.2 19.9
F 21 168 60 21.3
F 21 168 59.1 20.9
F 26 162.75 48.5 18.3
M 20 187.5 71.3 20.3
F 31 163.5 68.8 25.7
M 28 177 93.8 29.9
F 23 166 93.5 33.9

2.2. Modeling and Predictions

The collected data were used to produce subject-specific models and predict knee
angles. A subject-specific model is defined in this work as a model that was trained on
the data from a single subject and predicts knee angles of the same subject. Each model
was trained and tested with ten-fold cross-validation from the data collected from one
subject in the previous section. First, high-frequency noise was removed from the data
using a Butterworth filter, with cutoff frequencies of 10 Hz for the marker motion data and
2 Hz for the strain sensor data. Kinematic experimental data are commonly filtered with
a Butterworth filter with a cut-off frequency between 3 and 10 Hz [58]. The lower cut-off
frequency of 2 Hz was used to filter the strain sensor data because the signal-to-noise
ratio of the instrumented knee sleeve was higher than the motion capture data. A cut-off
frequency that was double the frequency of the captured motion was used. Although it
is lower than common cut-off frequencies, 2 Hz was experimentally found to provide the
greatest increase in the strain sensor data signal-to-noise ratio. Once filtered, the motion
capture data were downsampled to match the capture rate of the instrumented knee sleeve.

Unfiltered data from the sixteen sensors contained 1- and 2-point spikes that were
more than triple the magnitude of the rest of the signal. Static electricity between the
nylon–spandex knee sleeve material and exposed soldered points around the sensors likely
caused these transient spikes. After these outlying spikes were eliminated from the sensor
data using a Hampel filter (threshold = 2 SD), a Savitzky-Golay smoothing filter using a
centered window smoothed the sensor data. At this point, 16 additional variables were
created from the derivatives of each sensor’s data with time. Derivatives were calculated
using finite differences between consecutive data points. Lastly, the mean values were
subtracted from the sensor and derivative signals, and the data were scaled to unit variance
before predicting knee angles. The model’s explanatory variables were the scaled sensor
outputs and their derivatives. Figure 4 shows the post-processing pipeline.
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Figure 4. Flow chart of the pipeline used to predict knee angles.

Eighteen machine learning models were evaluated as candidates for mapping the
composite sensor responses to the knee angles. These models include linear regression,
neural networks, random forest regressors, adaptive boosted random forests, etc. All
included models are listed in Tables A1 and A2. The root mean square error (RMSE) and
coefficient of determination (R2) were used to assess model accuracy. The model with
the lowest mean RMSE over all subjects was selected, excluding models with excessively
large outlier RMSEs. Removing models with outlying RMSEs decreased the likelihood of
the chosen model failing for out-of-sample participants. To further test the validity of the
instrumented knee sleeve, an analysis of bias and variability in predictions was performed
to evaluate the predictive model’s agreement with the knee angles calculated from motion
capture data.

Predictive modeling of data were completed using scikit-learn [59]. The results from
ten separate models trained on different portions of a subject’s data were averaged to
determine the robustness of the model’s predictive capability. Each model was trained
on 90% of a subject’s data and tested on the remaining 10% of data. The training and
testing data were separated in a way to preserve the time series component in the data.
Multivariate machine learning regressor hyperparameters were optimized using the entire
dataset from a subject using grid search and multivariate Bayesian optimization approaches.
The average RMSE and R2 values from the ten unique models trained and tested on
different portions of a subject’s data determined each model’s predictive power. Three
instrumented knee sleeves were tested; therefore, both subject-specific and device-specific
models were analyzed.

3. Results
3.1. Data Collection

Subjects performed exercises in similar ranges of motion with respect to knee angle; a
complete record of knee angle ranges is found in Figure 5. Walking trials included knee
flexion angles between −2.9± 3.9◦ and 58.7± 5.1◦ (mean ± standard deviation), and OCKF
trials included knee flexion angles between −2.0 ± 4.8◦ and 97.5 ± 12.2◦. Walking trials
included internal/external rotation angles between −10.6 ± 7◦ and 6.9 ± 12.7◦, and OCKF
trials included internal/external rotation angles between 6.5 ± 8.3◦ and 9.1 ± 8.3◦.

Data from motion capture indicated ranges of knee flexion/extension angles between
−2.0 ± 4.8◦ and 97.5 ± 12.2◦ and internal/external rotation angles between 6.5 ± 8.3◦

and 9.1 ± 8.3◦. All participants exhibited similar ranges of motion in flexion/extension
and internal/external rotation and were within normal ranges of motion (see Figure 5).
Participants completed an average of 14 movements in 60 s.
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(a) (b)

Figure 5. Knee angle ranges of all subjects of two rotational degrees of freedom. The red line
represents the mean of all subjects. The blue lines represent the extrema. Positive angles correspond
to knee flexion and internal rotation of the tibia. (a) Flexion/extension angle. (b) Tibia internal/
external rotation.

3.2. Modeling and Predictions

Figure 6 shows representative sensor data and its calculated derivative that was used
as explanatory variables in the predictive models. Tables A1 and A2 summarize the results
from all 18 models. Adaptive boosting of a random forest regressor (RFR) predicted
flexion/extension angles and internal/external rotation most accurately. The accuracy of
the model’s predictions is indicated by both the R2 and RMSE values. Figure 7 shows the
performance of each model in the two rotational degrees of freedom of interest. The average
coefficient of determination (R2) of flexion/extension and internal/external rotation for the
final subject-specific models were 0.940 and 0.731, respectively. The average RMSE across all
subjects was 7.6◦ for flexion/extension and 1.8◦ for internal/external rotation. By including
the derivatives of the sensor outputs in the model, the average RMSE improvement in the
flexion/extension and internal/external rotation degrees of freedom were −16.9% and
−9.3%, respectively. The average improvement of the R2 values in the flexion/extension
and internal/external rotation degrees of freedom were 1.7% and 24.7%, respectively. All
reported values are from models that included the signal’s derivative. Table 2 shows the
accuracy of the device-specific models.

Table 2. RMSE and R2 values of the device-specific models.

Device Flexion/Extension Int./Ext. Rotation Number of Participants
RMSE R2 RMSE R2

A 18.525 0.723 5.528 0.271 14
B 5.744 0.975 2.714 0.862 3
C 13.577 0.859 2.285 0.676 1

Figure 8 shows the dependency of the model’s bias and standard deviation as a func-
tion of angle of flexion/extension (Figure 8a,b) and internal/external rotation (Figure 8c,d).
Figure 8 demonstrate that there is the most bias at the extreme of the model’s flexion/
extension angle, yet the smallest standard deviation. The same holds for the model’s
internal/external rotation. The largest standard deviation occurs in the middle of the range
of knee angles (for both degrees of freedom), where the average bias is the smallest.

Using the presented pipeline, shown graphically in Figure 4, the resulting predictions
and actual knee angles in Figure 7 were calculated to create the subject-specific models.
The models correctly predicted the frequency of a motion and reasonably captured the
magnitude of the extrema during OCKF. However, the magnitude of the models’ underesti-
mation at the extrema is consistent (as shown in the bias plots in Figure 8a,c). Furthermore,
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the predictive model’s largest errors occurred at angles less than or equal to 0◦ flexion (with
a straightened knee). This agrees with the bias results for all subjects shown in Figure 8.

The residuals of the predictive models’ bias showed a strong linear correlation with the
actual knee angle, see Figure 8. Adding a linear regression model of the residuals to correct
the bias was analyzed but proved to be statistically insignificant and was not included in
these results. A paired t-test, between the models, including the linear regression of the
residuals’ bias and those without, resulted in p-values greater than or equal to 0.191 for the
R2 values and RMSE of both knee angles.

(a)

(b)

Figure 6. Representative sensor data and its derivative from 30 s of open chain knee flexion.
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(a) (b)

(c) (d)

Figure 7. (a,b) show the distribution of the best model’s RMSE and R2 value in both degrees of
freedom for subject-specific models. Red bars denote the overall average and whiskers denote
standard deviations of the dataset. Samples of the models’ outputs (red) and actual knee angles
(blue) are also shown. Positive angles correspond to knee flexion and internal rotation. (c,d) show
representative data from one trial. (a) RMSE. (b) R2. (c) Predicted (red) versus actual (blue) flexion/
extension knee angle. (d) Predicted (red) versus actual (blue)internal/external rotation angle.
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Figure 8. Distributions of all subjects’ bias and standard deviations in both degrees of freedom. Blue
dots represent the local average across all subjects within 2 degree ranges. Lines represent the average
of all subjects.
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4. Discussion

An instrumented knee sleeve was developed, presented, and modeled using an adap-
tively boosted RFR model. The presented knee sleeve is a low-cost alternative to measuring
knee kinematics outside a laboratory setting with comparable accuracy to current tech-
nologies. Unfortunately, during testing on two subjects, connectivity was lost between the
sensors and the printed circuit board due to severed wires. Thus, the results from these two
subjects resulted in failed models and were excluded from the predictive model analysis.

The predictive models’ most significant bias occurred at angles less than or equal to 0◦

flexion (an extended knee). This can be partially due to the laxity in the knee sleeve once
the garment began to slip. After full flexion, the sleeve exhibited some buckling when the
leg extended again. This buckling also occurred in several strain gauges near the patella
and the insertion of the vastus lateralis, likely leading the model to believe the knee was in
flexion (when in actuality, it was hyperextended), thus underestimating the peaks of the knee
angle. The predictive models exhibited the most significant deviation in the middle of the
range of motion. This is most likely caused by the high angular velocities at these angles
and related to the inherent hysteresis caused by the polymer-based piezoresistive sensors’
viscoelastic nature. This has been seen previously in [54,60], and an attempt to compensate
for this effect post hoc can be seen in [23]. Similar to all polymer-based wearable sensors,
the sensors used in the current work exhibited viscoelastic effects such as creep, drift, and
hysteresis. The magnitude of these effects was not found to affect the accuracy of the current
analysis, and additional work characterizing these important sensor properties is currently
underway. The impact of these errors is similar to previous IMUs [61–65] and high deflection
strain gauges [54,66,67] used to measure joint angles. By including the derivatives of the
sensor outputs in the model, the average improvement of the RMSE in the flexion/extension
and internal/external rotation degrees of freedom were −16.9% and −9.3%, respectively.
The average increase of the R2 values in the flexion/extension and internal/external rotation
degrees of freedom were 1.7% and 24.7%, respectively. Accounting for differences in angular
velocities significantly decreased the RMSE of the models developed in this work; accounting
for angular velocities in optical fiber strain gauges results in similar improvements [68]. All
results from the predictive models are for within-subject predictions, and the prediction of
angles for previously unmeasured subjects would still have to be addressed.

Numerous studies have looked at methods to maximize the efficacy of at-home re-
habilitation with biofeedback systems, namely teleconferencing with a PT [69–72], inertial
measurement units (IMUs) [73,74], Nintendo Wii based systems/virtual reality (VR) [75–78],
or PT guidance with robotic assistance [79]. Lockdowns associated with the COVID-19 pan-
demic have accelerated the development of devices for at-home rehabilitation [80]. However,
telerehabilitation—rehabilitation that is still under the active guidance of a PT via video or
telephone conferencing—continues to be the norm [15,69,71,72,81]. Telerehabilitation does
little to relieve the increasing demand for TKA rehabilitation due to its reliance on one-to-one
patient-to-therapist structure. Affordable IMUs are portable solutions that work for brief peri-
ods. However, issues with sensor drift [82] and calibration sensitivity [83] keep this solution
from being widely adopted. Nintendo Wii-based systems are another promising solution.
However, Nintendo Wii and VR-based systems address only stationary rehabilitation exer-
cises, namely lateral weight shifting, multidirectional balance, and postural control [84]. Lastly,
robotic assistance devices are the most accurate of these alternatives. However, they are also
the most costly. Most robotic assistance measures are employed for inpatient use (as in [79])
but may be engineered for at-home use in the future. The sensor system presented in this
work may be integrated into the current technologies to enhance their effectiveness or address
their shortcomings. For example, the presented device may enhance telerehabilitation by
relieving the workload of PTs. By combining the two approaches, most rehabilitation may be
completed without direct PT observance. The presented device also allows the rehabilitation
of many patients simultaneously, and a PT may intervene when necessary. This approach
can increase the patient-to-therapist ratio without unduly increasing a PTs workload, yet still
provide quantifiable feedback on a patient’s progress.
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As noted in the Results section, our device could not fully capture the magnitude of the
peaks and valleys in the flexion/extension or internal/external rotation degrees of freedom
for all knee flexions for all subjects. Similar to other polymer-based devices [24], our device
underestimated the extremes. The KneeHapp device developed by Haladjian et al. in [85] is
a similar device that exhibited errors of similar magnitude to this work (4.82 ± 3.92◦) for the
flexion/extension angle. Other technologies, namely IMU-based devices (such as the one seen
in [65]), overestimate the extremes. Additional filtering techniques are out of the scope of this
work. However, they could be used in future works to mitigate this error since it was fairly
consistent for each subject; i.e., the amount of underestimation was of a similar proportion to
the actual peak angle for each knee flexion performed within each subject. The device presented
in this work represents a cost-efficient instrument that can enhance at-home rehabilitation for
TKA patients by providing a quantifiable measurement of two rotational degrees of freedom.

The present work focuses on the development and subject-specific modeling. However,
the longer-term goals of the project are to generate device-specific models, and eventually
a universal model that can be applied to all subjects. These goals will likely require a
more inclusive incorporation of the viscoelastic characteristics of the sensors, as well as the
inclusion of subject-specific demographic and anthropometric information.

We do note three limitations to this study. First, motion capture data were down-
sampled to equal the sampling rate of the instrumented knee sleeve resulting in some
interpolation. Although data were interpolated with a quadratic fit with continuous deriva-
tives, this step may have caused minute errors in the flexion/extension or internal/external
rotation angles referenced as ground truth throughout the data collection. Second, the
presented device was not adhered to the skin’s surface. Therefore, motion of the device
relative to the skin’s surface within the data are possible and may add errors to the data
if the device was not positioned correctly or was loosely fitted. This may be especially
relevant to closed chain movement where the potential for movement of the device is
amplified. Similar limitations have also been observed previously by Gholami et al. [33].
Third, there is debate around the accuracy of motion capture methods when measuring
tibia internal/external rotation. Merriaux et al. found the three-dimensional positioning
error of a motion capture system to be 2 mm during dynamic motion [86]. When using
motion capture to measure internal/external rotation, Keizer and Otten concluded that
rotations less than 1.70 degrees should be taken with caution due to the sum of errors
with the camera system [87]. Additional errors can be introduced from improper marker
placement on a limb’s anatomical landmarks, as well as from skin artifacts [88,89]. To
minimize errors related to improper placement or motion relative to the skin, the same
researcher placed markers on all participants to eliminate inter-researcher placement error.
The researcher also used double-sided adhesive to attach the markers to all participants.
Other techniques to more confidently measure bone motion may be used to mitigate this
potential source of error. However, the sensor prediction data shown here reflected the
motion capture data, despite the debate of the accuracy of the technique used.

In conclusion, the instrumented knee sleeve presented in this work accurately pre-
dicted two rotational degrees of freedom within the knee during OCKF. The viscoelastic
nature of the piezoresistive sensors used to predict the knee angle was apparent and a
source of error in predicting two rotational degrees of freedom at high angular veloci-
ties. Nevertheless, the instrumented knee sleeve presented in this work proved to be a
repeatable, reusable, low-cost device that can adequately model the flexion/extension and
internal/external rotation angles in the knee.
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Appendix A

Table A1. RMSE and R2 values for all models tested on flexion\slash extension. The failed column
shows the number of subjects predicted with negative R2 values from each model. All models were
optimized using Bayesian or grid search optimization. Data presented in this work were calculated
with the adaptive boosted regression (RFR) model.

Model Name
RMSE R2

Failed
Mean SD Max Min Mean SD Max Min

Linear Regression 14.18 3.68 23.78 9.45 0.79 0.16 0.93 0.34 6
Gradient Boosting Regression 14.78 10.27 33.96 4.54 0.72 0.37 0.99 0.09 1
Adaptive Boosted Regression (DTR) 7.75 2.51 14.34 4.11 0.94 0.04 0.99 0.85 1
RFR 8.34 2.62 13.54 4.51 0.93 0.05 0.98 0.83 1
Multilayer Perceptron Regression 14.50 5.32 26.58 8.78 0.67 0.33 0.93 0.01 4
Ridge 14.08 3.56 23.27 9.44 0.80 0.15 0.93 0.38 6
Bayesian Ridge 14.09 3.55 23.24 9.45 0.80 0.15 0.93 0.39 6
Elastic Net 16.26 6.07 29.40 9.30 0.69 0.28 0.93 0.02 3
PLS Regression 17.30 5.15 28.07 10.15 0.69 0.22 0.92 0.13 4
K-Neighbors Regression 10.04 2.44 14.92 5.38 0.90 0.05 0.98 0.81 1
SGD Regression 15.35 4.71 24.83 9.70 0.74 0.21 0.92 0.18 4
Lasso 14.56 3.32 22.30 9.42 0.80 0.08 0.93 0.63 4
SVR 16.33 7.32 29.31 8.86 0.70 0.29 0.93 0.08 6
NuSVR 27.23 7.23 35.85 15.12 0.31 0.29 0.77 0.03 11
Bagging Regression (RFR) 24.49 5.53 30.02 12.79 0.49 0.19 0.89 0.15 1
Linear Regression (PCA) 15.25 4.94 28.47 10.06 0.76 0.16 0.88 0.23 1
RFR (PCA) 8.24 2.63 13.71 4.53 0.93 0.04 0.98 0.85 1
Adaptive Boosted Regression (RFR) 7.57 2.55 13.58 4.19 0.94 0.04 0.99 0.86 1

Table A2. RMSE and R2 values for all models tested on internal\slash external rotation. The failed
column shows the number of subjects predicted with negative R2 values from each model. All
models were optimized using Bayesian or grid search optimization. Data presented in this work were
calculated with the adaptive boosted regression (RFR) model.

Model Name
RMSE R2

Failed
Mean SD Max Min Mean SD Max Min

Linear Regression 2.77 1.14 5.24 1.63 0.65 0.13 0.79 0.38 9
Gradient Boosting Regression 3.27 2.21 9.31 1.25 0.38 0.38 0.96 0.01 4
Adaptive Boosted Regression (DTR) 1.85 0.48 2.97 1.09 0.71 0.21 0.97 0.22 2
RFR 1.89 0.46 2.92 1.23 0.70 0.23 0.97 0.22 2
Multilayer Perceptron Regression 2.32 0.55 2.91 1.28 0.74 0.12 0.93 0.48 6
Ridge 2.75 1.12 5.17 1.62 0.65 0.13 0.79 0.39 9
Bayesian Ridge 2.74 1.12 5.17 1.60 0.66 0.13 0.79 0.41 9
Elastic Net 2.65 1.05 4.70 1.36 0.58 0.24 0.78 0.07 7
PLS Regression 2.79 1.12 5.10 1.35 0.55 0.22 0.77 0.12 7
K-Neighbors Regression 2.16 0.75 4.16 1.27 0.65 0.24 0.92 0.19 2
SGD Regression 3.48 2.17 8.86 1.56 0.54 0.28 0.80 0.04 7
Lasso 3.10 2.01 8.04 1.42 0.58 0.23 0.78 0.05 7
SVR 2.39 1.32 5.27 1.22 0.62 0.27 0.88 0.19 9
NuSVR 3.04 1.26 5.06 1.83 0.46 0.27 0.74 0.04 11
Bagging Regression (RFR) 4.05 2.44 9.92 1.33 0.36 0.23 0.71 0.03 5
Linear Regression (PCA) 2.97 1.35 5.74 1.38 0.50 0.24 0.71 0.01 4
RFR (PCA) 1.86 0.49 3.02 1.21 0.71 0.21 0.97 0.26 2
Adaptive Boosted Regression (RFR) 1.80 0.46 2.86 1.11 0.73 0.20 0.97 0.29 1
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Abbreviations

The following abbreviations are used in this manuscript:

OCKF open chain knee flexion
RFR random forest regressor
DTR decision tree regressor
SGD stochastic gradient descent
PLS partial least squares
SVR support vector regression
PCA principal component analysis
VR virtual reality
PT physical therapist

References
1. Kurtz, S.M.; Ong, K.L.; Lau, E.; Bozic, K.J. Impact of the economic downturn on total joint replacement demand in the United

States: Updated projections to 2021. J. Bone Jt. Surg. 2014, 96, 624–630.
2. Inacio, M.C.; Paxton, E.W.; Graves, S.E.; Namba, R.S.; Nemes, S. Projected increase in total knee arthroplasty in the United

States—An alternative projection model. Osteoarthr. Cartil. 2017, 25, 1797–1803. [CrossRef]
3. Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United

States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [CrossRef]
4. Sloan, M.; Premkumar, A.; Sheth, N.P. Future Demand for Total Joint Arthroplasty Drives Renewed Interest in Arthroplasty

Fellowship. HSS J. 2020, 16, 210–215. [CrossRef]
5. Herzog, M.M.; Marshall, S.W.; Lund, J.L.; Pate, V.; Mack, C.D.; Spang, J.T. Trends in Incidence of ACL Reconstruction and

Concomitant Procedures Among Commercially Insured Individuals in the United States, 2002–2014. Sport. Health 2018,
10, 523–531. [CrossRef]

6. Landry, M.D.; Ricketts, T.C.; Verrier, M.C. The precarious supply of physical therapists across Canada: Exploring national trends
in health human resources (1991 to 2005). Hum. Resour. Health 2007, 5, 23. [CrossRef]

7. Jesus, T.S.; Landry, M.D.; Hoenig, H.; Dussault, G.; Koh, G.C.; Fronteira, I. Is Physical Rehabilitation Need Associated With
the Rehabilitation Workforce Supply? An Ecological Study Across 35 High-Income Countries. Int. J. Health Policy Manag. 2020,
2017, 1–9. [CrossRef]

8. Lo, K.; Curtis, H.; Keating, J.L.; Bearman, M. Physiotherapy clinical educators’ perceptions of student fitness to practise. BMC
Med. Educ. 2017, 17, 16. [CrossRef]

9. Lavernia, C.J.; D’Apuzzo, M.R.; Hernandez, V.H.; Lee, D.J.; Rossi, M.D. Postdischarge Costs in Arthroplasty Surgery. J. Arthroplast.
2006, 21, 144–150. [CrossRef]

10. Tran, V.; Doctor, D.; Nelson, C. The cost of postoperative home health extended care rehabilitation facilities for total joint
replacement patients. In Proceedings of the American Academy of Orthopaedic Surgeons Annual Meeting, Anaheim, CA, USA,
4–8 February 1999.

11. Wang, W.L.; Rondon, A.J.; Tan, T.L.; Wilsman, J.; Purtill, J.J. Self-Directed Home Exercises vs Outpatient Physical Therapy After
Total Knee Arthroplasty: Value and Outcomes Following a Protocol Change. J. Arthroplast. 2019, 34, 2388–2391. [CrossRef]

12. Joice, M.G.; Bhowmick, S.; Amanatullah, D.F. Perioperative physiotherapy in total knee arthroplasty. Orthopedics 2017,
40, e765–e773. [CrossRef]

13. Kairy, D.; Tousignant, M.; Leclerc, N.; Côté, A.M.; Levasseur, M. The patient’s perspective of in-home telerehabilitation
physiotherapy services following total knee arthroplasty. Int. J. Environ. Res. Public Health 2013, 10, 3998–4011. [CrossRef]

14. Oatis, C.A.; Li, W.; Dirusso, J.M.; Hoover, M.J.; Johnston, K.K.; Butz, M.K.; Phillips, A.L.; Nanovic, K.M.; Cummings, E.C.; Rosal,
M.C.; Ayers, D.C.; Franklin, P.D. Variations in Delivery and Exercise Content of Physical Therapy Rehabilitation Following
Total Knee Replacement Surgery: A Cross-Sectional Observation Study HHS Public Access. Int. J. Phys. Med. Rehabil. 2014, 5.
[CrossRef]

15. Naeemabadi, M.; Fazlali, H.; Najafi, S.; Dinesen, B.; Hansen, J. Telerehabilitation for Patients With Knee Osteoarthritis: A Focused
Review of Technologies and Teleservices. JMIR Biomed. Eng. 2020, 5, e16991. [CrossRef]

16. Yee, M.J.; Mubarak, N.M.; Abdullah, E.C.; Khalid, M.; Walvekar, R.; Karri, R.R.; Nizamuddin, S.; Numan, A. Carbon Nanomaterials
Based Films for Strain Sensing Application—A Review. Nano-Struct. Nano-Objects 2019, 18, 100312.

17. Lu, Y.; Biswas, M.C.; Guo, Z.; Jeon, J.W.; Wujcik, E.K. Recent developments in bio-monitoring via advanced polymer
nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 2019, 123, 167–177. [CrossRef]

18. Abd, M.A.; Al-Saidi, M.; Lin, M.; Liddle, G.; Mondal, K.; Engeberg, E.D. Surface Feature Recognition and Grasped Object Slip
Prevention with a Liquid Metal Tactile Sensor for a Prosthetic Hand. In Proceedings of the IEEE RAS and EMBS International
Conference on Biomedical Robotics and Biomechatronics, New York, NY, USA, 29 November–1 December 2020; pp. 1174–1179.
[CrossRef]

http://doi.org/10.1016/j.joca.2017.07.022
http://dx.doi.org/10.2106/JBJS.F.00222
http://dx.doi.org/10.1007/s11420-019-09678-y
http://dx.doi.org/10.1177/1941738118803616
http://dx.doi.org/10.1186/1478-4491-5-23
http://dx.doi.org/10.34172/ijhpm.2020.150
http://dx.doi.org/10.1186/S12909-016-0847-2
http://dx.doi.org/10.1016/j.arth.2006.05.003
http://dx.doi.org/10.1016/j.arth.2019.05.020
http://dx.doi.org/10.3928/01477447-20170518-03
http://dx.doi.org/10.3390/ijerph10093998
http://dx.doi.org/10.4172/2329-9096.S5-002
http://dx.doi.org/10.2196/16991
http://dx.doi.org/10.1016/j.bios.2018.08.037
http://dx.doi.org/10.1109/BioRob49111.2020.9224294


Sensors 2022, 22, 2499 14 of 16

19. Abd, M.A.; Paul, R.; Aravelli, A.; Bai, O.; Lagos, L.; Lin, M.; Engeberg, E.D. Hierarchical Tactile Sensation Integration from
Prosthetic Fingertips Enables Multi-Texture Surface Recognition. Sensors 2021, 21, 4324. [CrossRef]

20. Park, Y.L.; Chen, B.R.; Wood, R.J. Design and fabrication of soft artificial skin using embedded microchannels and liquid
conductors. IEEE Sens. J. 2012, 12, 2711–2718. [CrossRef]

21. Ying, B.; Chen, R.Z.; Zuo, R.; Li, J.; Liu, X. An Anti-Freezing, Ambient-Stable and Highly Stretchable Ionic Skin with Strong
Surface Adhesion for Wearable Sensing and Soft Robotics. Adv. Funct. Mater. 2021, 31, 2104665.

22. Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus
Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials 2022, 12, 334.

23. Leal-Junior, A.G.; Frizera-Neto, A.; Pontes, M.J.; Botelho, T.R. Hysteresis compensation technique applied to polymer optical fiber
curvature sensor for lower limb exoskeletons. Meas. Sci. Technol. 2017, 28, 125103.

24. Rezende, A.; Alves, C.; Marques, I.; Silva, M.A.; Naves, E. Polymer optical fiber goniometer: A new portable, low cost and reliable
sensor for joint analysis. Sensors 2018, 18, 4293. [CrossRef]

25. Donno, M.; Palange, E.; Di Nicola, F.; Member, S.; Bucci, G.; Ciancetta, F. A New Flexible Optical Fiber Goniometer for Dynamic
Angular Measurements: Application to Human Joint Movement Monitoring. IEEE Trans. Instrum. Meas. 2008, 57, 1614–1620.
[CrossRef]

26. Liu, Q.; Chen, J.; Li, Y.; Shi, G. High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range
Detection of Human Motions. ACS Nano 2016, 10, 7901–7906. [CrossRef]

27. Gholami, M.; Rezaei, A.; Cuthbert, T.J.; Napier, C.; Menon, C. Lower Body Kinematics Monitoring in Running Using Fabric-Based
Wearable Sensors and Deep Convolutional Neural Networks. Sensors 2019, 19, 5325. [CrossRef]

28. Li, Y.Q.; Zhu, W.B.; Yu, X.G.; Huang, P.; Fu, S.Y.; Hu, N.; Liao, K. Multifunctional Wearable Device Based on Flexible and
Conductive Carbon Sponge/Polydimethylsiloxane Composite. ACS Appl. Mater. Interfaces 2016, 8, 33189–33196. [CrossRef]

29. Amjadi, M.; Yoon, Y.J.; Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocompos-
ites. Nanotechnology 2015, 26, 744–747. [CrossRef]

30. Luhrs, C.C.; Daskam, C.D.; Gonzalez, E.; Phillip, J. Fabrication of a low density carbon fiber foam and its characterization as a
strain gauge. Materials 2014, 7, 3699–3714. [CrossRef]

31. Singha, K.; Kumar, J.; Pandit, P. Recent advancements in wearable & smart textiles: An overview. Mater. Today Proc. 2019,
16, 1518–1523. [CrossRef]

32. Shyr, T.W.; Shie, J.W.; Jiang, C.H.; Li, J.J. A textile-based wearable sensing device designed for monitoring the flexion angle of
elbow and knee movements. Sensors 2014, 14, 4050–4059. [CrossRef]

33. Gholami, M.; Ejupi, A.; Rezaei, A.; Ferrone, A.; Menon, C. Estimation of Knee Joint Angle Using a Fabric-Based Strain Sensor and
Machine Learning: A Preliminary Investigation. In Proceedings of the 2018 7th IEEE International Conference on Biomedical
Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018. [CrossRef]

34. Levens, A.; Inman, V.T.; Blosser, J. Transverse rotation of the segments of the lower extremity in locomotion. J. Bone Jt. Surg. 1948,
30, 859–872.

35. Lützner, J.; Kirschner, S.; Günther, K.P.; Harman, M.K. Patients with no functional improvement after total knee arthroplasty
show different kinematics. Int. Orthop. 2012, 36, 1841. [CrossRef]

36. Matsuzaki, T.; Matsumoto, T.; Muratsu, H.; Kubo, S.; Matsushita, T.; Kawakami, Y.; Ishida, K.; Oka, S.; Kuroda, R.; Kurosaka, M.
Kinematic factors affecting postoperative knee flexion after cruciate-retaining total knee arthroplasty. Int. Orthop. 2013, 37, 803.
[CrossRef]

37. Nicoll, D.; Rowley, D.I. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J.
Bone Jt. Surg. Ser. B 2010, 92, 1238–1244. [CrossRef]

38. Meccia, B.; Komistek, R.D.; Mahfouz, M.; Dennis, D. Abnormal axial rotations in TKA contribute to reduced weightbearing
flexion knee. Clin. Orthop. Relat. Res. 2014, 472, 248–253. [CrossRef]

39. Gardner, C.; Johnson, O.; Fullwood, D.; Hansen, G.; Adams, B. Piezoresistive Effect in Nickel Nanostrand-Polymer Composites.
In Proceedings of the TMS 2009 Annual Meeting & Exhibition, San Francisco, CA, USA, 15–19 February 2009.

40. Johnson, O.; Gardner, C.; Fullwood, D.; Adams, B.; Hansen, G.; Kalidindi, S. Textures of Dispersion of Nickel Nanostrand
Composites, and Modeling of Piezoresistive Behavior. In Proceedings of the Materials Science & Technology, Pittsburgh, PA,
USA, 25–29 October 2009.

41. Calkins, T.B.; Fullwood, D.T.; Ghosh, S.; Hyatt, T.B.; Johnson, O.K.; Hansen, N.; Hansen, G. Applications For A Nano-composite
High Displacement Strain Gauge. In Proceedings of the 42nd ISTC, Salt Lake City, UT, USA, 11–14 October 2010.

42. Johnson, O.K.; Gardner, C.J.; Fullwood, D.T.; Adams, B.L.; Hansen, N.; Hansen, G. The colossal piezoresistive effect in nickel
nanostrand polymer composites and a quantum tunneling model. Comput. Mater. Contin. 2010, 15, 87–111. [CrossRef]

43. Johnson, O.; Mara, N.; Kaschner, G.; Mason, T.; Fullwood, D.; Adams, B. Multi-scale Model for the Extreme Piezoresistivity
in Silicone/Nickel “Nanostrand”/Nickel Coated Carbon Fiber Nanocomposite. Metall. Mater. Trans. A 2010, 42, 3898–3906.
[CrossRef]

44. Johnson, O.K.; Kaschner, G.C.; Mason, T.A.; Fullwood, D.T.; Hansen, G. Optimization of nickel nanocomposite for large strain
sensing applications. Sens. Actuators A Phys. 2011, 166, 40–47. [CrossRef]

45. Johnson, T.M.; Fullwood, D.T.; Hansen, G. Strain monitoring of carbon fiber composite via embedded nickel nano-particles.
Compos. Part B Eng. 2012, 43, 1155–1163.

http://dx.doi.org/10.3390/S21134324
http://dx.doi.org/10.1109/JSEN.2012.2200790
http://dx.doi.org/10.3390/s18124293
http://dx.doi.org/10.1109/TIM.2008.925336
http://dx.doi.org/10.1021/acsnano.6b03813
http://dx.doi.org/10.3390/s19235325
http://dx.doi.org/10.1021/acsami.6b11196
http://dx.doi.org/10.1088/0957-4484/26/37/375501
http://dx.doi.org/10.3390/ma7053699
http://dx.doi.org/10.1016/j.matpr.2019.05.334
http://dx.doi.org/10.3390/s140304050
http://dx.doi.org/10.1109/BIOROB.2018.8487199
http://dx.doi.org/10.1007/S00264-012-1584-8
http://dx.doi.org/10.1007/S00264-013-1803-Y
http://dx.doi.org/10.1302/0301-620X.92B9.23516/ASSET/IMAGES/LARGE/23516-3.JPEG
http://dx.doi.org/10.1007/S11999-013-3105-5/FIGURES/3
http://dx.doi.org/10.3970/cmc.2010.015.087
http://dx.doi.org/10.1007/s11661-011-0814-9
http://dx.doi.org/10.1016/j.sna.2010.12.022


Sensors 2022, 22, 2499 15 of 16

46. Koecher, M.C.; Pande, J.H.; Merkley, S.S.; Henderson, S.; Fullwood, D.T. Evaluation of nickel nanostrands as strain sensors in
CFRP. In Proceedings of the SAMPE 2012 Conference, Baltimore, MD, USA, 21–24 May 2012.

47. Remington, T.D.; Merrell, A.; Stolworthy, D.; McArthur, D.; Fullwood, D.; Bowden, A.; Hansen, N. Biomechanical applications of
nano-composite strain gauges. In Proceedings of the SAMPE 2013 Conference, Long Beach, CA, USA, 6–9 June 2012.

48. Koecher, M.; Yeager, J.D.; Park, T.; Fullwood, D.; Colton, J.S.; Mara, N.; Hansen, N. Characterization of nickel nanostrand
nanocomposites through dielectric spectroscopy and nanoindentation. Polym. Eng. Sci. 2013, 53, 2666–2673.

49. Remington, D. Biomechanical Applications and Modeling of Quantum Nano-Composite Strain Gauges. Ph.D. Thesis, Brigham
Young University, Provo, UT, USA, 2014.

50. Adam Bilodeau, R.; Fullwood, D.T.; Colton, J.S.; Yeager, J.D.; Bowden, A.E.; Park, T. Evolution of nano-junctions in piezoresistive
nanostrand composites. Compos. Part B Eng. 2015, 72, 45–52. [CrossRef]

51. Hansen, N.; Adams, D.O.; Fullwood, D.T. Evaluation and development of electrical conductivity models for nickel nanostrand
polymer composites. Polym. Eng. Sci. 2015, 55, 549–557.

52. Koecher, M.C.; Pande, J.H.; Merkley, S.; Henderson, S.; Fullwood, D.T.; Bowden, A.E. Piezoresistive in-situ strain sensing of
composite laminate structures. Compos. Part B Eng. 2015, 69, 534–541.

53. Baradoy, D.A. Composition Based Modaling of Silicone Nano-Composite Strain Gauges. Ph.D. Thesis, Brigham Young University,
Provo, UT, USA, 2015.

54. Martineau, A.D. Estimation of Knee Kinematics Using Non-Monotonic Nanocomposite High-Deflection Strain Gauges. Ph.D.
Thesis, Brigham Young University, Provo, UT, USA, 2018.

55. Clayton, M. Modeling Piezoresistive Effects in Flexible Sensors. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2019.
56. Mitchell, U.H.; Lee, H.; Dennis, H.E.; Seeley, M.K. Quality of knee strengthening exercises performed at home deteriorates after

one week. BMC Musculoskelet. Disord. 2022, 23, 164.
57. Wood, D.S.; Jensen, K.; Fullwood, D.; Seeley, M.; Mitchell, U.; Christensen, W.; Bowden, A. General Method of Measuring Skin

Strain of the Anterior Knee using Linear Strain Theory and Application. CMBBE 2021. under review
58. Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009.
59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
60. Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential

Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698.
61. Bakhshi, S.; Mahoor, M.H.; Davidson, B.S. Development of a body joint angle measurement system using IMU sensors. In

Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA,
USA, 30 August–3 September 2011; pp. 6923–6926. [CrossRef]

62. Cooper, G.; Sheret, I.; McMillian, L.; Siliverdis, K.; Sha, N.; Hodgins, D.; Kenney, L.; Howard, D. Inertial sensor-based knee
flexion/extension angle estimation. J. Biomech. 2009, 42, 2678–2685. [CrossRef]

63. Fennema, M.C.; Bloomfield, R.A.; Lanting, B.A.; Birmingham, T.B.; Teeter, M.G. Repeatability of measuring knee flexion angles
with wearable inertial sensors. Knee 2019, 26, 97–105. [CrossRef]

64. Watanabe, T.; Saito, H. Tests of wireless wearable sensor system in joint angle measurement of lower limbs. In Proceedings of the
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3
September 2011; pp. 5469–5472. [CrossRef]

65. Ajdaroski, M.; Tadakala, R.; Nichols, L.; Esquivel, A. Validation of a Device to Measure Knee Joint Angles for a Dynamic
Movement. Sensors 2020, 20, 1747. [CrossRef]

66. Mohamed, A.A.; Baba, J.; Beyea, J.; Landry, J.; Sexton, A.; McGibbon, C.A. Comparison of strain-gage and fiber-optic goniometry
for measuring knee kinematics during activities of daily living and exercise. J. Biomech. Eng. 2012, 134, 084502. [CrossRef]
[PubMed]

67. Nakamoto, H.; Yamaji, T.; Hirata, I.; Ootaka, H.; Kobayashi, F. Joint angle measurement by stretchable strain sensor. J. Ambient.
Intell. Humaniz. Comput. 2018, 9, 1–6. [CrossRef]

68. Avellar, L.; Leal-Junior, A.; Marques, C.; Frizera, A. Performance Analysis of a Lower Limb Multi Joint Angle Sensor Using
CYTOP Fiber: Influence of Light Source Wavelength and Angular Velocity Compensation. Sensors 2020, 20, 326. [CrossRef]

69. Tousignant, M.; Moffet, H.; Biossy, P.; Corriveau, H.; Cabana, F.; Marquis, F. A randomized controlled trial of home telerehabilita-
tion for post-knee arthroplasty. J. Telemed. Telecare 2011, 17, 195–198. [PubMed]

70. Moffet, H.; Tousignant, M.; Nadeau, S.; Mérette, C.; Boissy, P.; Corriveau, H.; Marquis, F.F.F.; Cabana, F.F.; Ranger, P.; Belzile, É.L.;
Dimentberg, R. In-home telerehabilitation compared with faceto-face rehabilitation after total knee arthroplasty: A noninferiority
randomized controlled trial. J. Bone Jt. Surg. Am. Vol. 2015, 97, 1129–1141. [CrossRef]

71. Xie, S.H.; Wang, Q.; Wang, L.Q.; Wang, L.; Song, K.P.; He, C.Q. Effect of internet-based rehabilitation programs on improvement
of pain and physical function in patients with knee osteoarthritis: Systematic review and meta-analysis of randomized controlled
trials. J. Med. Internet Res. 2021, 23, e21542. [CrossRef]

72. Jansson, M.M.; Rantala, A.; Miettunen, J.; Pikkarainen, M.; Puhto, A.P.; Pikkarainen, M. The effects and safety of telerehabilitation
in patients with lower-limb joint replacement: A systematic review and narrative synthesis. J. Telemed. Telecare 2022, 28, 96–114.
[CrossRef]

http://dx.doi.org/10.1016/j.compositesb.2014.11.028
http://dx.doi.org/10.1109/IEMBS.2011.6091743
http://dx.doi.org/10.1016/j.jbiomech.2009.08.004
http://dx.doi.org/10.1016/j.knee.2018.11.002
http://dx.doi.org/10.1109/IEMBS.2011.6091395
http://dx.doi.org/10.3390/s20061747
http://dx.doi.org/10.1115/1.4007094
http://www.ncbi.nlm.nih.gov/pubmed/22938362
http://dx.doi.org/10.1007/S12652-018-0915-Z
http://dx.doi.org/10.3390/S20020326
http://www.ncbi.nlm.nih.gov/pubmed/21398389
http://dx.doi.org/10.2106/JBJS.N.01066
http://dx.doi.org/10.2196/21542
http://dx.doi.org/10.1177/1357633X20917868


Sensors 2022, 22, 2499 16 of 16

73. Correia, F.D.; Nogueira, A.; Magalhães, I.; Guimarães, J.; Moreira, M.; Barradas, I.; Teixeira, L.; Tulha, J.; Seabra, R.; Lains, J.; et al.
Home-based Rehabilitation with A Novel Digital Biofeedback System versus Conventional In-person Rehabilitation after Total
Knee Replacement: A feasibility study. Sci. Rep. 2018, 8, 11299. [CrossRef]

74. Piqueras, M.; Marco, E.; Coll, M.; Escalada, F.; Ballester, A.; Cinca, C.; Belmonte, R.; Muniesa, J.M. Effectiveness of an interactive
virtual telerehabilitation system in patients after total knee arthroplasty: A randomized controlled trial. J. Rehabil. Med. 2013,
45, 392–396. [CrossRef]

75. Ficklscherer, A.; Stapf, J.; Meissner, K.M.; Niethammer, T.; Lahner, M.; Wagenhäuser, M.; Müller, P.E.; Pietschmann, M.F. Testing
the feasibility and safety of the Nintendo Wii gaming console in orthopedic rehabilitation: A pilot randomized controlled study.
Arch. Med. Sci. 2016, 12, 1273–1278. [CrossRef]

76. Fung, V.; Ho, A.; Shaffer, J.; Chung, E.; Gomez, M. Use of Nintendo Wii Fit TM in the rehabilitation of outpatients following total
knee replacement: A preliminary randomised controlled trial. Physiotherapy 2012, 98, 183–188. [CrossRef] [PubMed]

77. Christiansen, C.L.; Bade, M.J.; Davidson, B.S.; Dayton, M.R.; Stevens-Lapsley, J.E. Effects of weight-bearing biofeedback training
on functional movement patterns following total knee arthroplasty: A randomized controlled trial. J. Orthop. Sport. Phys. Ther.
2015, 45, 647–655. [CrossRef]

78. Jin, C.; Feng, Y.; Ni, Y.; Shan, Z. Virtual reality intervention in postoperative rehabilitation after total knee arthroplasty: A
prospective and randomized controlled clinical trial. Int. J. Clin. Exp. Med. 2018, 11, 6119–6124.

79. Li, J.; Wu, T.; Xu, Z.; Gu, X. A pilot study of post-total knee replacement gait rehabilitation using lower limbs robot-assisted
training system. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 203–208. [CrossRef] [PubMed]

80. Lim, M.A.; Pranata, R. Teleorthopedic: A Promising Option During and After the Coronavirus Disease 2019 (COVID-19)
Pandemic. Front. Surg. 2020, 7, 62. [CrossRef]

81. Eichler, S.; Rabe, S.; Salzwedel, A.; Müller, S.; Stoll, J.; Tilgner, N.; John, M.; Wegscheider, K.; Mayer, F.; Völler, H. Effectiveness of
an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement: Study
protocol for a multicenter, superiority, no-blinded randomized controlled trial. Trials 2017, 18, 438. [CrossRef]

82. Zhao, Y.; Horemuz, M.; Sjöberg, L.E. Stochastic modelling and analysis of IMU sensor errors. Arch. Fotogram. Kartogr. Teledetekcji
2011, 22, 437–449.

83. Walchko, K.J.; Mason, P.A. Inertial navigation. In Proceedings of the 2002 Florida Conference on Recent Advances in Robotics,
Gainesville, FL, USA, 10–11 May 2002; pp. 1–9.

84. Byra, J.; Czernicki, K. The Effectiveness of Virtual Reality Rehabilitation in Patients with Knee and Hip Osteoarthritis. J. Clin.
Med. 2020, 9, 2639. [CrossRef]

85. Haladjian, J.; Bredies, K.; Brugge, B. KneeHapp textile: A smart textile system for rehabilitation of knee injuries. In Proceedings
of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks, Las Vegas, NV, USA, 4–7
March 2018. [CrossRef]

86. Merriaux, P.; Dupuis, Y.; Boutteau, R.; Vasseur, P.; Savatier, X. A Study of Vicon System Positioning Performance. Sensors 2017, 17,
1591. [CrossRef]

87. Keizer, M.N.; Otten, E. Technical note: Sensitivity analysis of the SCoRE and SARA methods for determining rotational axes
during tibiofemoral movements using optical motion capture. J. Exp. Orthop. 2020, 7, 6. [CrossRef]

88. Taylor, W.R.; Ehrig, R.M.; Duda, G.N.; Schell, H.; Seebeck, P.; Heller, M.O. On the influence of soft tissue coverage in the
determination of bone kinematics using skin markers. J. Orthop. Res. 2005, 23, 726–734. [CrossRef] [PubMed]

89. Akbarshahi, M.; Schache, A.G.; Fernandez, J.W.; Baker, R.; Banks, S.; Pandy, M.G. Non-invasive assessment of soft-tissue artifact
and its effect on knee joint kinematics during functional activity. J. Biomech. 2010, 43, 1292–1301. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-018-29668-0
http://dx.doi.org/10.2340/16501977-1119
http://dx.doi.org/10.5114/aoms.2016.59722
http://dx.doi.org/10.1016/j.physio.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22898573
http://dx.doi.org/10.2519/jospt.2015.5593
http://dx.doi.org/10.1007/s00590-012-1159-9
http://www.ncbi.nlm.nih.gov/pubmed/23412304
http://dx.doi.org/10.3389/fsurg.2020.00062
http://dx.doi.org/10.1186/s13063-017-2173-3
http://dx.doi.org/10.3390/JCM9082639
http://dx.doi.org/10.1109/BSN.2018.8329646
http://dx.doi.org/10.3390/s17071591
http://dx.doi.org/10.1186/S40634-020-0219-Z
http://dx.doi.org/10.1016/j.orthres.2005.02.006
http://www.ncbi.nlm.nih.gov/pubmed/16022983
http://dx.doi.org/10.1016/j.jbiomech.2010.01.002
http://www.ncbi.nlm.nih.gov/pubmed/20206357

	Introduction
	Materials and Methods
	Data Collection
	Modeling and Predictions

	Results
	Data Collection
	Modeling and Predictions

	Discussion
	
	References

